Martin, K., McDougall, B. M., McIlroy, S., Chen, J. & Seviour, R. Biochemistry and molecular biology of exocellular fungal β-(1, 3)-and β-(1, 6)-glucanases. FEMS Microbiol. Rev. 31, 168–192 (2007).
Google Scholar
Li, C.-H., Wang, H.-R. & Yan, T.-R. Cloning, purification, and characterization of a heat-and alkaline-stable endoglucanase B from Aspergillus niger BCRC31494. Molecules 17, 9774–9789 (2012).
Google Scholar
Xue, X. & Fry, S. C. Evolution of mixed-linkage (1→ 3, 1→ 4)-β-d-glucan (MLG) and xyloglucan in Equisetum (horsetails) and other monilophytes. Ann. Bot. 109, 873–886 (2012).
Google Scholar
Dewi, R. T. K., Mubarik, N. R. & Suhartono, M. T. Medium optimization of β-glucanase production by Bacillus subtilis SAHA 32.6 used as biological control of oil palm pathogen. Emirates J. Food Agric. 28(2), 116–125 (2016).
Google Scholar
Wu, P. et al. Optimization of bioprocess extraction of Poria cocos polysaccharide (PCP) with Aspergillus niger β-glucanase and the evaluation of PCP antioxidant property. Molecules 25, 5930. https://doi.org/10.3390/molecules25245930 (2020).
Google Scholar
Liu, X. et al. High-level production and characterization of a novel β-1, 3–1, 4-glucanase from Aspergillus awamori and its potential application in the brewing industry. Process. Biochem. 92, 252–260. https://doi.org/10.1016/j.procbio.2020.01.017 (2020).
Google Scholar
Kim, Y.-R., Kim, E.-Y., Lee, J. M., Kim, J. K. & Kong, I.-S. Characterisation of a novel Bacillus sp. SJ-10 β-1, 3–1, 4-glucanase isolated from jeotgal, a traditional Korean fermented fish. Bioprocess. Biosyst. Eng. 36, 721–727 (2013).
Google Scholar
Cho, H. J. et al. Immobilization of β-1, 3–1, 4-glucanase from Bacillus sp. on porous silica for production of β-glucooligosaccharides. Enzyme Microb. Technol. 110, 30–37 (2018).
Google Scholar
Yang, J.-L. et al. Barley β-glucan lowers serum cholesterol based on the up-regulation of cholesterol 7α-hydroxylase activity and mRNA abundance in cholesterol-fed rats. J. Nutr. Sci. Vitaminol. 49, 381–387 (2003).
Google Scholar
Nghiem, N. P. et al. Scale-up of ethanol production from winter barley by the EDGE (enhanced dry grind enzymatic) process in fermentors up to 300 l. Appl. Biochem. Biotechnol. 165, 870–882 (2011).
Google Scholar
Chapman, J., Ismail, A. E. & Dinu, C. Z. Industrial applications of enzymes: Recent advances, techniques, and outlooks. Catalysts 8, 238 (2018).
Google Scholar
El-Shora, H. M. & El-Sharkawy, R. M. Chitinase from Bacillus subtilis: Immobilization, antifungal activity and production of N-acetyl-d glucosamine. Biosci. Res. 17, 123–135 (2020).
Alnadari, F. et al. Immobilization of β-glucosidase from Thermatoga maritima on chitin-functionalized magnetic nanoparticle via a novel thermostable chitin-binding domain. Sci. Rep. 10, 1–12. https://doi.org/10.1038/s41598-019-57165-5 (2020).
Google Scholar
Zhu, X. et al. Net-immobilization of β-glucosidase on nonwoven fabrics to lower the cost of “cellulosic ethanol” and increase cellulose conversions. Sci. Rep. 6, 1–9. https://doi.org/10.1038/srep23437 (2016).
Google Scholar
Romo-Sánchez, S., Camacho, C., Ramirez, H. L., Arévalo-Villena, M. J. A. & i. B. & Biotechnology. Immobilization of commercial cellulase and xylanase by different methods using two polymeric supports. Adv. Biosci. Biotechnol. 5, 517 (2014).
Google Scholar
Elnashar, M. M. et al. Optimal immobilization of β-galactosidase onto κ-carrageenan gel beads using response surface methodology and its applications. Sci. World J. 2014 (2014).
El-Shora, H. M. & El-Sharkawy, R. M. Tyrosinase from Penicillium chrysogenum: Characterization and application in phenol removal from aqueous solution. J. Gen. Appl. Microbiol. (2020).
Esawy, M. A., Gamal, A. A., Kamel, Z., Ismail, A.-M.S. & Abdel-Fattah, A. F. Evaluation of free and immobilized Aspergillus niger NRC1ami pectinase applicable in industrial processes. Carbohyd. Polym. 92, 1463–1469 (2013).
Google Scholar
Vinche, M. H., Khanahmadi, M., Ataei, S. A. & Danafar, F. Optimization of process variables for production of beta-glucanase by Aspergillus niger CCUG33991 in solid-state fermentation using wheat bran. Waste Biomass Valorization 12, 3233–3243. https://doi.org/10.1007/s12649-020-01177-0 (2021).
Google Scholar
Vasić, K., Knez, Ž & Leitgeb, M. J. M. Bioethanol production by enzymatic hydrolysis from different lignocellulosic sources. Molecules 26, 753 (2021).
Google Scholar
El-Sharkawy, R. & El-Shora, H. M. Biocontrol of wilt-inducing Fusarium oxysporum by aqueous leaf extract from Egyptian Ammi majus and Ammi visnaga. Egypt. J. Bot. 60, 423–435 (2020).
Wang, Z. et al. Biocontrol of Penicillium digitatum on postharvest citrus fruits by Pseudomonas fluorescens. J. Food Qual. https://doi.org/10.1155/2018/2910481 (2018).
Google Scholar
Carmona-Hernandez, S. et al. Biocontrol of postharvest fruit fungal diseases by bacterial antagonists: A review. Agronomy 9, 121. https://doi.org/10.3390/agronomy9030121 (2019).
Google Scholar
Tang, X.-J., He, G.-Q., Chen, Q.-H., Zhang, X.-Y. & Ali, M. A. Medium optimization for the production of thermal stable β-glucanase by Bacillus subtilis ZJF-1A5 using response surface methodology. Biores. Technol. 93, 175–181 (2004).
Google Scholar
Rao, K., Raju, K. S. & Ravisankar, H. Cultural conditions on the production of extracellular enzymes by Trichoderma isolates from tobacco rhizosphere. Braz. J. Microbiol. 47, 25–32 (2016).
Google Scholar
Giese, E. C., Dekker, R. F., Scarminio, I. S., Barbosa, A. M. & da Silva, R. Comparison of β-1, 3-glucanase production by Botryosphaeria rhodina MAMB-05 and Trichoderma harzianum Rifai and its optimization using a statistical mixture-design. Biochem. Eng. J. 53, 239–243 (2011).
Google Scholar
Doughari, J. H. Production of β-glucanase enzyme from Penicillium oxalicum and Penicillium citrinum. Afr. J. Biotech. 10, 9661–9667 (2011).
Google Scholar
Salsabilla, K. A. et al. Enhancement of β-1, 3 glucanase production from Penicillium oxalicum T3.3. Int. J. Environ. Agric. Res. 14(2), 22–31 (2018).
Bai, H. et al. Purification and characterization of beta 1, 4-glucanases from Penicillium simplicissimum H-11. BioResources 8, 3657–3671 (2013).
Google Scholar
Shindia, A., Khalaf, S. & Yassin, M. Production and partial characterization of β-glucanase from Aspergillus niger jq1516491 under submerged and solid state fermentation. Asian J. Microbiol. Biotechnol. Environ. Sci. 15, 459–472 (2013).
Google Scholar
Elgharbi, F. et al. Purification and biochemical characterization of a novel thermostable lichenase from Aspergillus niger US368. Carbohyd. Polym. 98, 967–975 (2013).
Google Scholar
Rodríguez-Mendoza, J. et al. Purification and biochemical characterization of a novel thermophilic exo-β-1, 3-glucanase from the thermophile biomass-degrading fungus Thielavia terrestris Co3Bag1. Electron. J. Biotechnol. 41, 60–71 (2019).
Google Scholar
Chang, M.-Y. & Juang, R.-S. Stability and catalytic kinetics of acid phosphatase immobilized on composite beads of chitosan and activated clay. Process. Biochem. 39, 1087–1091 (2004).
Google Scholar
Alnadari, F. et al. Large batch production of galactooligosaccharides using β-glucosidase immobilized on chitosan-functionalized magnetic nanoparticle. J. Food Biochem. 45, e13589 (2020).
Google Scholar
Antony, N., Balachandran, S. & Mohanan, P. Immobilization of diastase α-amylase on nano zinc oxide. Food Chem. 211, 624–630 (2016).
Google Scholar
Zhao, X., Zhang, L. & Liu, D. Comparative study on chemical pretreatment methods for improving enzymatic digestibility of crofton weed stem. Biores. Technol. 99, 3729–3736 (2008).
Google Scholar
Lin, F., Ifran, M., Nadeem, M. & Syed, Q. Effect of NaOH and H2O2 on degradation of saw dust. Wulfenia J. 20, 381–392 (2013).
Falter, C. et al. Glucanocellulosic ethanol: the undiscovered biofuel potential in energy crops and marine biomass. Sci. Rep. 5, 1–9. https://doi.org/10.1038/srep13722 (2015).
Google Scholar
Bhatia, S. K. et al. Recent developments in pretreatment technologies on lignocellulosic biomass: Effect of key parameters, technological improvements, and challenges. Bioresour. Technol. 300, 122724 (2020).
Google Scholar
Ingale, S., Joshi, S. J. & Gupte, A. Production of bioethanol using agricultural waste: Banana pseudo stem. Braz. J. Microbiol. 45, 885–892 (2014).
Google Scholar
Cripwell, R. et al. Utilisation of wheat bran as a substrate for bioethanol production using recombinant cellulases and amylolytic yeast. Appl. Energy 160, 610–617 (2015).
Google Scholar
Beltrán-García, M. J. et al. Singlet molecular oxygen generation by light-activated DHN-melanin of the fungal pathogen Mycosphaerella fijiensis in black Sigatoka disease of bananas. PLoS ONE 9, e91616 (2014).
Google Scholar
Wei, Q. et al. Isolation, characterisation and antifungal activity of β-1, 3-glucanase from seeds of Jatropha curcas. S. Afr. J. Bot. 71, 95–99 (2005).
Google Scholar
Hong, T.-Y. & Meng, M. Biochemical characterization and antifungal activity of an endo-1, 3-β-glucanase of Paenibacillus sp. isolated from garden soil. Appl. Microbiol. Biotechnol. 61, 472–478 (2003).
Google Scholar
How, C. W. et al. Seminars in Cancer Biology (Elsevier, 2021).
Rachidi, F., Benhima, R., Kasmi, Y., Sbabou, L. & El Arroussi, H. Evaluation of microalgae polysaccharides as biostimulants of tomato plant defense using metabolomics and biochemical approaches. Sci. Rep. 11, 1–16. https://doi.org/10.1038/s41598-020-78820-2 (2021).
Google Scholar
Asril, M., Mubarik, N. R. & Wahyudi, A. T. Partial purification of bacterial chitinase as biocontrol of leaf blight disease on oil palm. Res. J. Microbiol. 9, 265–277 (2014).
Google Scholar
Miller, G. L. Use of dinitrosalicylic acid reagent for determination of reducing sugar. Anal. Chem. 31, 426–428 (1959).
Google Scholar
Bradford, M. M. A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Anal. Biochem. 72, 248–254 (1976).
Google Scholar
Laemmli, U. Cleavage of structural proteins during the assembly of the head of bacteriophage T4. Nature 227, 680–685 (1970).
Google Scholar
Hassan, M. E., Yang, Q. & Xiao, Z. Covalent immobilization of glucoamylase enzyme onto chemically activated surface of κ-carrageenan. Bull. Natl. Res. Centre 43, 1–11 (2019).
Google Scholar
Águila-Almanza, E. et al. Facile and green approach in managing sand crab carapace biowaste for obtention of high deacetylation percentage chitosan. J. Environ. Chem. Eng. 9, 105229. https://doi.org/10.1016/j.jece.2021.105229 (2021).
Google Scholar

