Preloader

Production and immobilization of β-glucanase from Aspergillus niger with its applications in bioethanol production and biocontrol of phytopathogenic fungi

  • 1.

    Martin, K., McDougall, B. M., McIlroy, S., Chen, J. & Seviour, R. Biochemistry and molecular biology of exocellular fungal β-(1, 3)-and β-(1, 6)-glucanases. FEMS Microbiol. Rev. 31, 168–192 (2007).

    CAS 
    Article 

    Google Scholar 

  • 2.

    Li, C.-H., Wang, H.-R. & Yan, T.-R. Cloning, purification, and characterization of a heat-and alkaline-stable endoglucanase B from Aspergillus niger BCRC31494. Molecules 17, 9774–9789 (2012).

    CAS 
    Article 

    Google Scholar 

  • 3.

    Xue, X. & Fry, S. C. Evolution of mixed-linkage (1→ 3, 1→ 4)-β-d-glucan (MLG) and xyloglucan in Equisetum (horsetails) and other monilophytes. Ann. Bot. 109, 873–886 (2012).

    CAS 
    Article 

    Google Scholar 

  • 4.

    Dewi, R. T. K., Mubarik, N. R. & Suhartono, M. T. Medium optimization of β-glucanase production by Bacillus subtilis SAHA 32.6 used as biological control of oil palm pathogen. Emirates J. Food Agric. 28(2), 116–125 (2016).

    Article 

    Google Scholar 

  • 5.

    Wu, P. et al. Optimization of bioprocess extraction of Poria cocos polysaccharide (PCP) with Aspergillus niger β-glucanase and the evaluation of PCP antioxidant property. Molecules 25, 5930. https://doi.org/10.3390/molecules25245930 (2020).

    CAS 
    Article 
    PubMed Central 

    Google Scholar 

  • 6.

    Liu, X. et al. High-level production and characterization of a novel β-1, 3–1, 4-glucanase from Aspergillus awamori and its potential application in the brewing industry. Process. Biochem. 92, 252–260. https://doi.org/10.1016/j.procbio.2020.01.017 (2020).

    CAS 
    Article 

    Google Scholar 

  • 7.

    Kim, Y.-R., Kim, E.-Y., Lee, J. M., Kim, J. K. & Kong, I.-S. Characterisation of a novel Bacillus sp. SJ-10 β-1, 3–1, 4-glucanase isolated from jeotgal, a traditional Korean fermented fish. Bioprocess. Biosyst. Eng. 36, 721–727 (2013).

    CAS 
    Article 

    Google Scholar 

  • 8.

    Cho, H. J. et al. Immobilization of β-1, 3–1, 4-glucanase from Bacillus sp. on porous silica for production of β-glucooligosaccharides. Enzyme Microb. Technol. 110, 30–37 (2018).

    CAS 
    Article 

    Google Scholar 

  • 9.

    Yang, J.-L. et al. Barley β-glucan lowers serum cholesterol based on the up-regulation of cholesterol 7α-hydroxylase activity and mRNA abundance in cholesterol-fed rats. J. Nutr. Sci. Vitaminol. 49, 381–387 (2003).

    CAS 
    Article 

    Google Scholar 

  • 10.

    Nghiem, N. P. et al. Scale-up of ethanol production from winter barley by the EDGE (enhanced dry grind enzymatic) process in fermentors up to 300 l. Appl. Biochem. Biotechnol. 165, 870–882 (2011).

    CAS 
    Article 

    Google Scholar 

  • 11.

    Chapman, J., Ismail, A. E. & Dinu, C. Z. Industrial applications of enzymes: Recent advances, techniques, and outlooks. Catalysts 8, 238 (2018).

    Article 

    Google Scholar 

  • 12.

    El-Shora, H. M. & El-Sharkawy, R. M. Chitinase from Bacillus subtilis: Immobilization, antifungal activity and production of N-acetyl-d glucosamine. Biosci. Res. 17, 123–135 (2020).

    Google Scholar 

  • 13.

    Alnadari, F. et al. Immobilization of β-glucosidase from Thermatoga maritima on chitin-functionalized magnetic nanoparticle via a novel thermostable chitin-binding domain. Sci. Rep. 10, 1–12. https://doi.org/10.1038/s41598-019-57165-5 (2020).

    CAS 
    Article 

    Google Scholar 

  • 14.

    Zhu, X. et al. Net-immobilization of β-glucosidase on nonwoven fabrics to lower the cost of “cellulosic ethanol” and increase cellulose conversions. Sci. Rep. 6, 1–9. https://doi.org/10.1038/srep23437 (2016).

    CAS 
    Article 

    Google Scholar 

  • 15.

    Romo-Sánchez, S., Camacho, C., Ramirez, H. L., Arévalo-Villena, M. J. A. & i. B. & Biotechnology. Immobilization of commercial cellulase and xylanase by different methods using two polymeric supports. Adv. Biosci. Biotechnol. 5, 517 (2014).

    Article 

    Google Scholar 

  • 16.

    Elnashar, M. M. et al. Optimal immobilization of β-galactosidase onto κ-carrageenan gel beads using response surface methodology and its applications. Sci. World J. 2014 (2014).

  • 17.

    El-Shora, H. M. & El-Sharkawy, R. M. Tyrosinase from Penicillium chrysogenum: Characterization and application in phenol removal from aqueous solution. J. Gen. Appl. Microbiol. (2020).

  • 18.

    Esawy, M. A., Gamal, A. A., Kamel, Z., Ismail, A.-M.S. & Abdel-Fattah, A. F. Evaluation of free and immobilized Aspergillus niger NRC1ami pectinase applicable in industrial processes. Carbohyd. Polym. 92, 1463–1469 (2013).

    CAS 
    Article 

    Google Scholar 

  • 19.

    Vinche, M. H., Khanahmadi, M., Ataei, S. A. & Danafar, F. Optimization of process variables for production of beta-glucanase by Aspergillus niger CCUG33991 in solid-state fermentation using wheat bran. Waste Biomass Valorization 12, 3233–3243. https://doi.org/10.1007/s12649-020-01177-0 (2021).

    CAS 
    Article 

    Google Scholar 

  • 20.

    Vasić, K., Knez, Ž & Leitgeb, M. J. M. Bioethanol production by enzymatic hydrolysis from different lignocellulosic sources. Molecules 26, 753 (2021).

    Article 

    Google Scholar 

  • 21.

    El-Sharkawy, R. & El-Shora, H. M. Biocontrol of wilt-inducing Fusarium oxysporum by aqueous leaf extract from Egyptian Ammi majus and Ammi visnaga. Egypt. J. Bot. 60, 423–435 (2020).

    Google Scholar 

  • 22.

    Wang, Z. et al. Biocontrol of Penicillium digitatum on postharvest citrus fruits by Pseudomonas fluorescens. J. Food Qual. https://doi.org/10.1155/2018/2910481 (2018).

    Article 

    Google Scholar 

  • 23.

    Carmona-Hernandez, S. et al. Biocontrol of postharvest fruit fungal diseases by bacterial antagonists: A review. Agronomy 9, 121. https://doi.org/10.3390/agronomy9030121 (2019).

    CAS 
    Article 

    Google Scholar 

  • 24.

    Tang, X.-J., He, G.-Q., Chen, Q.-H., Zhang, X.-Y. & Ali, M. A. Medium optimization for the production of thermal stable β-glucanase by Bacillus subtilis ZJF-1A5 using response surface methodology. Biores. Technol. 93, 175–181 (2004).

    CAS 
    Article 

    Google Scholar 

  • 25.

    Rao, K., Raju, K. S. & Ravisankar, H. Cultural conditions on the production of extracellular enzymes by Trichoderma isolates from tobacco rhizosphere. Braz. J. Microbiol. 47, 25–32 (2016).

    Article 

    Google Scholar 

  • 26.

    Giese, E. C., Dekker, R. F., Scarminio, I. S., Barbosa, A. M. & da Silva, R. Comparison of β-1, 3-glucanase production by Botryosphaeria rhodina MAMB-05 and Trichoderma harzianum Rifai and its optimization using a statistical mixture-design. Biochem. Eng. J. 53, 239–243 (2011).

    CAS 
    Article 

    Google Scholar 

  • 27.

    Doughari, J. H. Production of β-glucanase enzyme from Penicillium oxalicum and Penicillium citrinum. Afr. J. Biotech. 10, 9661–9667 (2011).

    Article 

    Google Scholar 

  • 28.

    Salsabilla, K. A. et al. Enhancement of β-1, 3 glucanase production from Penicillium oxalicum T3.3. Int. J. Environ. Agric. Res. 14(2), 22–31 (2018).

    Google Scholar 

  • 29.

    Bai, H. et al. Purification and characterization of beta 1, 4-glucanases from Penicillium simplicissimum H-11. BioResources 8, 3657–3671 (2013).

    Article 

    Google Scholar 

  • 30.

    Shindia, A., Khalaf, S. & Yassin, M. Production and partial characterization of β-glucanase from Aspergillus niger jq1516491 under submerged and solid state fermentation. Asian J. Microbiol. Biotechnol. Environ. Sci. 15, 459–472 (2013).

    CAS 

    Google Scholar 

  • 31.

    Elgharbi, F. et al. Purification and biochemical characterization of a novel thermostable lichenase from Aspergillus niger US368. Carbohyd. Polym. 98, 967–975 (2013).

    CAS 
    Article 

    Google Scholar 

  • 32.

    Rodríguez-Mendoza, J. et al. Purification and biochemical characterization of a novel thermophilic exo-β-1, 3-glucanase from the thermophile biomass-degrading fungus Thielavia terrestris Co3Bag1. Electron. J. Biotechnol. 41, 60–71 (2019).

    Article 

    Google Scholar 

  • 33.

    Chang, M.-Y. & Juang, R.-S. Stability and catalytic kinetics of acid phosphatase immobilized on composite beads of chitosan and activated clay. Process. Biochem. 39, 1087–1091 (2004).

    CAS 
    Article 

    Google Scholar 

  • 34.

    Alnadari, F. et al. Large batch production of galactooligosaccharides using β-glucosidase immobilized on chitosan-functionalized magnetic nanoparticle. J. Food Biochem. 45, e13589 (2020).

    PubMed 

    Google Scholar 

  • 35.

    Antony, N., Balachandran, S. & Mohanan, P. Immobilization of diastase α-amylase on nano zinc oxide. Food Chem. 211, 624–630 (2016).

    CAS 
    Article 

    Google Scholar 

  • 36.

    Zhao, X., Zhang, L. & Liu, D. Comparative study on chemical pretreatment methods for improving enzymatic digestibility of crofton weed stem. Biores. Technol. 99, 3729–3736 (2008).

    CAS 
    Article 

    Google Scholar 

  • 37.

    Lin, F., Ifran, M., Nadeem, M. & Syed, Q. Effect of NaOH and H2O2 on degradation of saw dust. Wulfenia J. 20, 381–392 (2013).

    Google Scholar 

  • 38.

    Falter, C. et al. Glucanocellulosic ethanol: the undiscovered biofuel potential in energy crops and marine biomass. Sci. Rep. 5, 1–9. https://doi.org/10.1038/srep13722 (2015).

    Article 

    Google Scholar 

  • 39.

    Bhatia, S. K. et al. Recent developments in pretreatment technologies on lignocellulosic biomass: Effect of key parameters, technological improvements, and challenges. Bioresour. Technol. 300, 122724 (2020).

    CAS 
    Article 

    Google Scholar 

  • 40.

    Ingale, S., Joshi, S. J. & Gupte, A. Production of bioethanol using agricultural waste: Banana pseudo stem. Braz. J. Microbiol. 45, 885–892 (2014).

    CAS 
    Article 

    Google Scholar 

  • 41.

    Cripwell, R. et al. Utilisation of wheat bran as a substrate for bioethanol production using recombinant cellulases and amylolytic yeast. Appl. Energy 160, 610–617 (2015).

    CAS 
    Article 

    Google Scholar 

  • 42.

    Beltrán-García, M. J. et al. Singlet molecular oxygen generation by light-activated DHN-melanin of the fungal pathogen Mycosphaerella fijiensis in black Sigatoka disease of bananas. PLoS ONE 9, e91616 (2014).

    Article 
    ADS 

    Google Scholar 

  • 43.

    Wei, Q. et al. Isolation, characterisation and antifungal activity of β-1, 3-glucanase from seeds of Jatropha curcas. S. Afr. J. Bot. 71, 95–99 (2005).

    CAS 
    Article 

    Google Scholar 

  • 44.

    Hong, T.-Y. & Meng, M. Biochemical characterization and antifungal activity of an endo-1, 3-β-glucanase of Paenibacillus sp. isolated from garden soil. Appl. Microbiol. Biotechnol. 61, 472–478 (2003).

    CAS 
    Article 

    Google Scholar 

  • 45.

    How, C. W. et al. Seminars in Cancer Biology (Elsevier, 2021).

    Google Scholar 

  • 46.

    Rachidi, F., Benhima, R., Kasmi, Y., Sbabou, L. & El Arroussi, H. Evaluation of microalgae polysaccharides as biostimulants of tomato plant defense using metabolomics and biochemical approaches. Sci. Rep. 11, 1–16. https://doi.org/10.1038/s41598-020-78820-2 (2021).

    CAS 
    Article 

    Google Scholar 

  • 47.

    Asril, M., Mubarik, N. R. & Wahyudi, A. T. Partial purification of bacterial chitinase as biocontrol of leaf blight disease on oil palm. Res. J. Microbiol. 9, 265–277 (2014).

    Article 

    Google Scholar 

  • 48.

    Miller, G. L. Use of dinitrosalicylic acid reagent for determination of reducing sugar. Anal. Chem. 31, 426–428 (1959).

    CAS 
    Article 

    Google Scholar 

  • 49.

    Bradford, M. M. A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Anal. Biochem. 72, 248–254 (1976).

    CAS 
    Article 

    Google Scholar 

  • 50.

    Laemmli, U. Cleavage of structural proteins during the assembly of the head of bacteriophage T4. Nature 227, 680–685 (1970).

    CAS 
    Article 
    ADS 

    Google Scholar 

  • 51.

    Hassan, M. E., Yang, Q. & Xiao, Z. Covalent immobilization of glucoamylase enzyme onto chemically activated surface of κ-carrageenan. Bull. Natl. Res. Centre 43, 1–11 (2019).

    Article 

    Google Scholar 

  • 52.

    Águila-Almanza, E. et al. Facile and green approach in managing sand crab carapace biowaste for obtention of high deacetylation percentage chitosan. J. Environ. Chem. Eng. 9, 105229. https://doi.org/10.1016/j.jece.2021.105229 (2021).

    CAS 
    Article 

    Google Scholar 

  • Source link