Rydstedt, L. W. & Lundh, M. An ocean of stress? The relationship between psychosocial workload and mental strain among engine officers in the Swedish merchant fleet. Int. Marit. Health 62(3), 168–175 (2010).
Google Scholar
Ehara, M., Muramatsu, S., Sano, Y., Takeda, S. & Hisamune, S. The tendency of diseases among seamen during the last fifteen years in Japan. Ind. Health 44(1), 155–160 (2006).
Google Scholar
Oldenburg, M., Harth, V. & Jensen, H. J. Overview and prospect: food and nutrition of seafarers on merchant ships. Int. Marit. Health 64(4), 191–194 (2013).
Google Scholar
Bhushan, B., Yadav, A. P., Singh, S. B. & Ganju, L. Diversity and functional analysis of salivary microflora of Indian Antarctic expeditionaries. J. Oral Microbiol. 11(1), 1581513 (2019).
Google Scholar
Pagel, J. I. & Choukèr, A. Effects of isolation and confinement on humans-implications for manned space explorations. J. Appl. Physiol. 120, 1449–1457 (2016).
Google Scholar
Bhushan, B. et al. Urine metabolite profiling of Indian Antarctic Expedition members: NMR spectroscopy-based metabolomic investigation. Heliyon 7(5), e07114 (2021).
Google Scholar
Bhushan, B., Tanwar, H., Dogra, V., Singh, S. B., & Ganju, L. Investigation of complement system activation and regulation during Indian Antarctic expedition. Polar Sci., 100699 (2021).
Xie, S. et al. Analysis and determinants of Chinese navy personnel health status: A cross-sectional study. Health Qual. Life Outcomes 16(1), 1–11 (2018).
Google Scholar
Zheng, D., Liwinski, T. & Elinav, E. Interaction between microbiota and immunity in health and disease. Cell Res. 30(6), 1–15 (2020).
Google Scholar
Wu, H. J. & Wu, E. The role of gut microbiota in immune homeostasis and autoimmunity. Gut microbes 3(1), 4–14 (2012).
Google Scholar
Krajmalnik-Brown, R., Ilhan, Z. E., Kang, D. W. & DiBaise, J. K. Effects of gut microbes on nutrient absorption and energy regulation. Nutr. Clin. Pract. 27(2), 201–214 (2012).
Google Scholar
Lloyd-Price, J. et al. Strains, functions and dynamics in the expanded Human Microbiome Project. Nature 550(7674), 61–66 (2017).
Google Scholar
Federico, A., Dallio, M., Caprio, G. G., Ormando, V. M. & Loguercio, C. Gut microbiota and the liver. Minerva Gastroenterol. Dietol. 63(4), 385–398 (2017).
Google Scholar
Chiu, C. C. et al. Nonalcoholic fatty liver disease is exacerbated in high-fat diet-fed gnotobiotic mice by colonization with the gut microbiota from patients with nonalcoholic steatohepatitis. Nutrients 9(11), 1220 (2017).
Google Scholar
Abu-Shanab, A. & Quigley, E. M. The role of the gut microbiota in nonalcoholic fatty liver disease. Nat. Rev. Gastroenterol. Hepatol. 7(12), 691–701 (2010).
Google Scholar
Nallu, A., Sharma, S., Ramezani, A., Muralidharan, J. & Raj, D. Gut microbiome in chronic kidney disease: challenges and opportunities. Transl. Res. 179, 24–37 (2017).
Google Scholar
Bercik, P. The microbiota–gut–brain axis: Learning from intestinal bacteria?. Gut 60(3), 288–289 (2011).
Google Scholar
Collins, S. M. & Bercik, P. Gut microbiota: intestinal bacteria influence brain activity in healthy humans. Nat. Rev. Gastroenterol. Hepatol. 10(6), 326 (2013).
Google Scholar
Bienenstock, J., Kunze, W. & Forsythe, P. Microbiota and the gut–brain axis. Nutr. Rev. 73, 28–31 (2015).
Google Scholar
Dinan, T. G. & Cryan, J. F. Brain–gut–microbiota axis—mood, metabolism and behaviour. Nat. Rev. Gastroenterol. Hepatol. 14(2), 69–70 (2017).
Google Scholar
Zheng, W. et al. Metagenomic sequencing reveals altered metabolic pathways in the oral microbiota of sailors during a long sea voyage. Sci. Rep. 5(1), 1–11 (2015).
Jin, J. S., Touyama, M., Yamada, S., Yamazaki, T. & Benno, Y. Alteration of a human intestinal microbiota under extreme life environment in the Antarctica. Biol. Pharm. Bull. 37(12), 1899–1906 (2014).
Google Scholar
Gerritsen, J., Smidt, H., Rijkers, G. T. & de Vos, W. M. Intestinal microbiota in human health and disease: the impact of probiotics. Genes Nutr. 6(3), 209–240 (2011).
Google Scholar
Wescombe, P. A., Heng, N. C., Burton, J. P., Chilcott, C. N. & Tagg, J. R. Streptococcal bacteriocins and the case for Streptococcus salivarius as model oral probiotics. Future Microbiol. 4(7), 819–835 (2009).
Google Scholar
Zhang, J. et al. Probiotics maintain the intestinal microbiome homeostasis of the sailors during a long sea voyage. Gut Microbes 11(4), 930–943 (2020).
Google Scholar
Kultima, J. R. et al. MOCAT2: A metagenomic assembly, annotation and profiling framework. Bioinformatics 32(16), 2520–2523 (2016).
Google Scholar
Zakrzewski, M. et al. Calypso: a user-friendly web-server for mining and visualizing microbiome–environment interactions. Bioinformatics 33(5), 782–783 (2017).
Google Scholar
Buchfink, B., Xie, C. & Huson, D. H. Fast and sensitive protein alignment using DIAMOND. Nat. Methods 12(1), 59–60 (2015).
Google Scholar
Parks, D. H., Tyson, G. W., Hugenholtz, P. & Beiko, R. G. STAMP: statistical analysis of taxonomic and functional profiles. Bioinformatics 30(21), 3123–3124 (2014).
Google Scholar
Yin, Y. et al. dbCAN: a web resource for automated carbohydrate-active enzyme annotation. Nucl. Acids Res. 40(W1), W445–W451 (2012).
Google Scholar
Eddy, S. R. A new generation of homology search tools based on probabilistic inference. In Genome Informatics 2009: Genome Informatics Series, 23, 205–211 (2009).
R Core Team. R: A language and environment for statistical computing. R Foundation for Statistical Computing, (Vienna, Austria 2019).
Mishra, K. P., Yadav, A. P., Chanda, S., Majumdar, D. & Ganju, L. Serum levels of immunoglobulins (IgG, IgA, IgM) in Antarctic summer expeditioners and their relationship with seasickness. Cell. Immunol. 271(1), 29–35 (2011).
Google Scholar
Yadav, A. P. et al. Activation of complement system during ship voyage and winter-over expedition in antarctica. J. Mar. Sci. Res. Dev. 5(3), 1 (2015).
Google Scholar
Visser, J. T. Patterns of illness and injury on Antarctic research cruises, 2004–2019: A descriptive analysis. J. Travel Med. 27(6), taaa111 (2020).
Google Scholar
Nord, C. E., Heimdal, A. & Kager, L. Antimicrobial induced alterations of the human oropharyngeal and intestinal microflora. Scand J. Infect. Dis. 49, 64–72 (1986).
Google Scholar
Adamsson, I., Nord, C. E., Lundquist, P., Sjostedt, S. & Edlund, C. Comparative effects of omeprazole, amoxycillin, plus metronidazole versus omeprazole, clarithromycin plus metronidazole on the oral, gastric and intestinal microflora in Helicobacter pylori-infected patients. J. Antimicrob. Chemother. 44, 629–640 (1999).
Google Scholar
Li, K. et al. Comparative analysis of gut microbiota of native tibetan and han populations living at different altitudes. PLoS ONE 11, e0155863 (2016).
Google Scholar
Goodrich, J. K., Davenport, E. R., Waters, J. L., Clark, A. G. & Ley, R. E. Cross-species comparisons of host genetic associations with the microbiome. Science 352(6285), 532–535 (2016).
Google Scholar
Nogueira, T., David, P. H. & Pothier, J. Antibiotics as both friends and foes of the human gut microbiome: the microbial community approach. Drug Dev. Res. 80(1), 86–97 (2019).
Google Scholar
Elo, A. L. Health and stress of seafarers. Scand. J. Work Environ. Health 11, 427–432 (1985).
Google Scholar
Alcock, J., Maley, C. C. & Aktipis, C. A. Is eating behavior manipulated by the gastrointestinal microbiota? Evolutionary pressures and potential mechanisms. BioEssays 36, 940–949 (2014).
Google Scholar
Fetissov, S. O. Role of the gut microbiota in host appetite control bacterial growth to animal feeding behaviour. Nat. Rev. Endocrinol. 13, 11–25 (2017).
Google Scholar
Zmora, N. et al. Personalized gut mucosal colonization resistance to empiric probiotics is associated with unique host and microbiome features. Cell 174, 1388–1405 (2018).
Google Scholar
Turroni, S. et al. Temporal dynamics of the gut microbiota in people sharing a confined environment, a 520-day ground-based space simulation, MARS500. Microbiome 5(1), 1–11 (2017).
Google Scholar
Liu, H. et al. Resilience of human gut microbial communities for the long stay with multiple dietary shifts. Gut 68(12), 2254–2255 (2019).
Google Scholar
Timmerman, H. M., Koning, C. J. M., Mulder, L., Rombouts, F. M. & Beynen, A. C. Monostrain, multistrain and multispecies probiotics: A comparison of functionality and efficacy. Int. J. Food Microbiol. 96(3), 219–233 (2004).
Google Scholar
Dharmani, P., De Simone, C. & Chadee, K. The probiotic mixture VSL# 3 accelerates gastric ulcer healing by stimulating vascular endothelial growth factor. PLoS ONE 8(3), e58671 (2013).
Google Scholar
Kabluchko, T. V., Bomko, T. V., Nosalskaya, T. N., Martynov, A. V. & Osolodchenko, T. P. In the gastrointestinal tract exist the protective mechanisms which prevent overgrowth of pathogenic bacterial and its incorporation. Ann. Mechnikov Inst. 1, 28–33 (2017).
Girard, P., Coppé, M. C., Pansart, Y. & Gillardin, J. M. Gastroprotective effect of Saccharomyces boulardii in a rat model of ibuprofen-induced gastric ulcer. Pharmacology 85(3), 188–193 (2010).
Google Scholar
Flatley, E. A., Wilde, A. M. & Nailor, M. D. Saccharomyces boulardii for the prevention of hospital onset Clostridium difficile infection. J. Gastrointestin. Liver Dis. 24(1), 21–24 (2015).
Google Scholar
McFarland, L. V. Use of probiotics to correct dysbiosis of normal microbiota following disease or disruptive events: A systematic review. BMJ Open 4, e005047 (2014).
Google Scholar
Xue, L. et al. Probiotics may delay the progression of nonalcoholic fatty liver disease by restoring the gut microbiota structure and improving intestinal endotoxemia. Sci. Rep. 7(1), 1–13 (2017).
Google Scholar
Saulnier, D. M., Spinler, J. K., Gibson, G. R. & Versalovic, J. Mechanisms of probiosis and prebiosis: considerations for enhanced functional foods. Curr. Opin. Biotechnol. 20(2), 135–141 (2009).
Google Scholar
Gotteland, M., Cruchet, S. & Verbeke, S. Effect of Lactobacillus ingestion on the gastrointestinal mucosal barrier alterations induced by indometacin in humans. Aliment. Pharmacol. Ther. 15(1), 11–17 (2001).
Google Scholar
Lankaputhra, W. E. V. Survival of Lactobacillus acidophilus and Bifidobacterium spp. in the presence of acid and bile salt. Cult. Dairy Prod. J. 30, 2–7 (1995).
Google Scholar
Corcoran, B. M., Stanton, C., Fitzgerald, G. F. & Ross, R. P. Survival of probiotic lactobacilli in acidic environments is enhanced in the presence of metabolizable sugars. Appl. Environ. Microbiol. 71(6), 3060–3067 (2005).
Google Scholar
Gao, C. et al. An NAD-independent l-lactate dehydrogenase required for l-lactate utilization in Pseudomonas stutzeri A1501. J. Bacteriol. 197, 2239–2247 (2015).
Google Scholar
Wang, X., Conway, P. L., Brown, I. L. & Evans, A. J. In vitro utilization of amylopectin and high-amylose maize (amylomaize) starch granules by human colonic bacteria. Appl. Environ. Microbiol. 65(11), 4848–4854 (1999).
Google Scholar
Kang, S. et al. Dysbiosis of fecal microbiota in Crohn’s disease patients as revealed by a custom phylogenetic microarray. Inflamm. Bowel Dis. 16(12), 2034–2042 (2010).
Google Scholar
Vannucci, L. et al. Immunostimulatory properties and antitumor activities of glucans. Int. J. Oncol. 43(2), 357–364 (2013).
Google Scholar
Singh, R. P., Rajarammohan, S., Thakur, R. & Hassan, M. Linear and branched β-Glucans degrading enzymes from versatile Bacteroides uniformis JCM 13288T and their roles in cooperation with gut bacteria. Gut microbes 12(1), 1–18 (2020).
Google Scholar
Markowiak-Kopeć, P. & Śliżewska, K. The effect of probiotics on the production of short-chain fatty acids by human intestinal microbiome. Nutrients 12(4), 1107 (2020).
Google Scholar
LeBlanc, J. G. et al. Beneficial effects on host energy metabolism of short-chain fatty acids and vitamins produced by commensal and probiotic bacteria. Microb. Cell Fact. 16(1), 1–10 (2017).
Google Scholar
Depke, M. et al. Hypermetabolic syndrome as a consequence of repeated psychological stress in mice. Endocrinology 149(6), 2714–2723 (2008).
Google Scholar
Nguyen, T. T., Hathaway, H., Kosciolek, T., Knight, R. & Jeste, D. V. Gut microbiome in serious mental illnesses: A systematic review and critical evaluation. Schizophr. Res. 234, 24–40 (2021).
Google Scholar
Kriss, M., Hazleton, K. Z., Nusbacher, N. M., Martin, C. G. & Lozupone, C. A. Low diversity gut microbiota dysbiosis: Drivers, functional implications and recovery. Curr. Opin. Microbiol. 44, 34–40 (2018).
Google Scholar
Wong, J. M., De Souza, R., Kendall, C. W., Emam, A. & Jenkins, D. J. Colonic health: fermentation and short chain fatty acids. J. Clin. Gastroenterol. 40(3), 235–243 (2006).
Google Scholar
So, D. et al. Dietary fiber intervention on gut microbiota composition in healthy adults: a systematic review and meta-analysis. Am. J. Clin. Nutr. 107(6), 965–983 (2018).
Google Scholar
Kasai, C. et al. Comparison of the gut microbiota composition between obese and non-obese individuals in a Japanese population, as analyzed by terminal restriction fragment length polymorphism and next-generation sequencing. BMC Gastroenterol. 15(1), 1–10 (2015).
Google Scholar
Payahoo, L., Khajebishak, Y. & Ostadrahimi, A. Akkermansia muciniphila bacteria: A new perspective on the management of obesity: An updated review. Rev. Med. Microbiol. 30(2), 83–89 (2019).
Google Scholar
Labus, J. S. et al. Clostridia from the gut microbiome are associated with brain functional connectivity and evoked symptoms in IBS. Gastroenterology 152(5), S40 (2017).
Google Scholar
Blaak, E. E. et al. Short chain fatty acids in human gut and metabolic health. Benef. Microbes 11(5), 411–455 (2020).
Google Scholar
Turroni, F. et al. Glycan utilization and cross-feeding activities by bifidobacteria. Trends Microbiol. 26(4), 339–350 (2018).
Google Scholar
Hemarajata, P. & Versalovic, J. Effects of probiotics on gut microbiota: mechanisms of intestinal immunomodulation and neuromodulation. Ther. Adv. Gastroenterol. 6(1), 39–51 (2013).
Google Scholar

