Preloader

Probiotics maintain the gut microbiome homeostasis during Indian Antarctic expedition by ship

  • 1.

    Rydstedt, L. W. & Lundh, M. An ocean of stress? The relationship between psychosocial workload and mental strain among engine officers in the Swedish merchant fleet. Int. Marit. Health 62(3), 168–175 (2010).

    PubMed 

    Google Scholar 

  • 2.

    Ehara, M., Muramatsu, S., Sano, Y., Takeda, S. & Hisamune, S. The tendency of diseases among seamen during the last fifteen years in Japan. Ind. Health 44(1), 155–160 (2006).

    PubMed 
    Article 

    Google Scholar 

  • 3.

    Oldenburg, M., Harth, V. & Jensen, H. J. Overview and prospect: food and nutrition of seafarers on merchant ships. Int. Marit. Health 64(4), 191–194 (2013).

    PubMed 
    Article 

    Google Scholar 

  • 4.

    Bhushan, B., Yadav, A. P., Singh, S. B. & Ganju, L. Diversity and functional analysis of salivary microflora of Indian Antarctic expeditionaries. J. Oral Microbiol. 11(1), 1581513 (2019).

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 

  • 5.

    Pagel, J. I. & Choukèr, A. Effects of isolation and confinement on humans-implications for manned space explorations. J. Appl. Physiol. 120, 1449–1457 (2016).

    CAS 
    PubMed 
    Article 

    Google Scholar 

  • 6.

    Bhushan, B. et al. Urine metabolite profiling of Indian Antarctic Expedition members: NMR spectroscopy-based metabolomic investigation. Heliyon 7(5), e07114 (2021).

    PubMed 
    PubMed Central 
    Article 

    Google Scholar 

  • 7.

    Bhushan, B., Tanwar, H., Dogra, V., Singh, S. B., & Ganju, L. Investigation of complement system activation and regulation during Indian Antarctic expedition. Polar Sci., 100699 (2021).

  • 8.

    Xie, S. et al. Analysis and determinants of Chinese navy personnel health status: A cross-sectional study. Health Qual. Life Outcomes 16(1), 1–11 (2018).

    Article 

    Google Scholar 

  • 9.

    Zheng, D., Liwinski, T. & Elinav, E. Interaction between microbiota and immunity in health and disease. Cell Res. 30(6), 1–15 (2020).

    Article 

    Google Scholar 

  • 10.

    Wu, H. J. & Wu, E. The role of gut microbiota in immune homeostasis and autoimmunity. Gut microbes 3(1), 4–14 (2012).

    PubMed 
    PubMed Central 
    Article 

    Google Scholar 

  • 11.

    Krajmalnik-Brown, R., Ilhan, Z. E., Kang, D. W. & DiBaise, J. K. Effects of gut microbes on nutrient absorption and energy regulation. Nutr. Clin. Pract. 27(2), 201–214 (2012).

    PubMed 
    PubMed Central 
    Article 

    Google Scholar 

  • 12.

    Lloyd-Price, J. et al. Strains, functions and dynamics in the expanded Human Microbiome Project. Nature 550(7674), 61–66 (2017).

    CAS 
    PubMed 
    PubMed Central 
    Article 
    ADS 

    Google Scholar 

  • 13.

    Federico, A., Dallio, M., Caprio, G. G., Ormando, V. M. & Loguercio, C. Gut microbiota and the liver. Minerva Gastroenterol. Dietol. 63(4), 385–398 (2017).

    PubMed 

    Google Scholar 

  • 14.

    Chiu, C. C. et al. Nonalcoholic fatty liver disease is exacerbated in high-fat diet-fed gnotobiotic mice by colonization with the gut microbiota from patients with nonalcoholic steatohepatitis. Nutrients 9(11), 1220 (2017).

    PubMed Central 
    Article 
    CAS 
    PubMed 

    Google Scholar 

  • 15.

    Abu-Shanab, A. & Quigley, E. M. The role of the gut microbiota in nonalcoholic fatty liver disease. Nat. Rev. Gastroenterol. Hepatol. 7(12), 691–701 (2010).

    PubMed 
    Article 

    Google Scholar 

  • 16.

    Nallu, A., Sharma, S., Ramezani, A., Muralidharan, J. & Raj, D. Gut microbiome in chronic kidney disease: challenges and opportunities. Transl. Res. 179, 24–37 (2017).

    CAS 
    PubMed 
    Article 

    Google Scholar 

  • 17.

    Bercik, P. The microbiota–gut–brain axis: Learning from intestinal bacteria?. Gut 60(3), 288–289 (2011).

    PubMed 
    Article 

    Google Scholar 

  • 18.

    Collins, S. M. & Bercik, P. Gut microbiota: intestinal bacteria influence brain activity in healthy humans. Nat. Rev. Gastroenterol. Hepatol. 10(6), 326 (2013).

    PubMed 
    Article 

    Google Scholar 

  • 19.

    Bienenstock, J., Kunze, W. & Forsythe, P. Microbiota and the gut–brain axis. Nutr. Rev. 73, 28–31 (2015).

    PubMed 
    Article 

    Google Scholar 

  • 20.

    Dinan, T. G. & Cryan, J. F. Brain–gut–microbiota axis—mood, metabolism and behaviour. Nat. Rev. Gastroenterol. Hepatol. 14(2), 69–70 (2017).

    CAS 
    PubMed 
    Article 

    Google Scholar 

  • 21.

    Zheng, W. et al. Metagenomic sequencing reveals altered metabolic pathways in the oral microbiota of sailors during a long sea voyage. Sci. Rep. 5(1), 1–11 (2015).

    Google Scholar 

  • 22.

    Jin, J. S., Touyama, M., Yamada, S., Yamazaki, T. & Benno, Y. Alteration of a human intestinal microbiota under extreme life environment in the Antarctica. Biol. Pharm. Bull. 37(12), 1899–1906 (2014).

    CAS 
    PubMed 
    Article 

    Google Scholar 

  • 23.

    Gerritsen, J., Smidt, H., Rijkers, G. T. & de Vos, W. M. Intestinal microbiota in human health and disease: the impact of probiotics. Genes Nutr. 6(3), 209–240 (2011).

    PubMed 
    PubMed Central 
    Article 

    Google Scholar 

  • 24.

    Wescombe, P. A., Heng, N. C., Burton, J. P., Chilcott, C. N. & Tagg, J. R. Streptococcal bacteriocins and the case for Streptococcus salivarius as model oral probiotics. Future Microbiol. 4(7), 819–835 (2009).

    CAS 
    PubMed 
    Article 

    Google Scholar 

  • 25.

    Zhang, J. et al. Probiotics maintain the intestinal microbiome homeostasis of the sailors during a long sea voyage. Gut Microbes 11(4), 930–943 (2020).

    PubMed 
    PubMed Central 
    Article 

    Google Scholar 

  • 26.

    Kultima, J. R. et al. MOCAT2: A metagenomic assembly, annotation and profiling framework. Bioinformatics 32(16), 2520–2523 (2016).

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 

  • 27.

    Zakrzewski, M. et al. Calypso: a user-friendly web-server for mining and visualizing microbiome–environment interactions. Bioinformatics 33(5), 782–783 (2017).

    CAS 
    PubMed 

    Google Scholar 

  • 28.

    Buchfink, B., Xie, C. & Huson, D. H. Fast and sensitive protein alignment using DIAMOND. Nat. Methods 12(1), 59–60 (2015).

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 

  • 29.

    Parks, D. H., Tyson, G. W., Hugenholtz, P. & Beiko, R. G. STAMP: statistical analysis of taxonomic and functional profiles. Bioinformatics 30(21), 3123–3124 (2014).

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 

  • 30.

    Yin, Y. et al. dbCAN: a web resource for automated carbohydrate-active enzyme annotation. Nucl. Acids Res. 40(W1), W445–W451 (2012).

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 

  • 31.

    Eddy, S. R. A new generation of homology search tools based on probabilistic inference. In Genome Informatics 2009: Genome Informatics Series, 23, 205–211 (2009).

  • 32.

    R Core Team. R: A language and environment for statistical computing. R Foundation for Statistical Computing, (Vienna, Austria 2019).

  • 33.

    Mishra, K. P., Yadav, A. P., Chanda, S., Majumdar, D. & Ganju, L. Serum levels of immunoglobulins (IgG, IgA, IgM) in Antarctic summer expeditioners and their relationship with seasickness. Cell. Immunol. 271(1), 29–35 (2011).

    CAS 
    PubMed 
    Article 

    Google Scholar 

  • 34.

    Yadav, A. P. et al. Activation of complement system during ship voyage and winter-over expedition in antarctica. J. Mar. Sci. Res. Dev. 5(3), 1 (2015).

    CAS 

    Google Scholar 

  • 35.

    Visser, J. T. Patterns of illness and injury on Antarctic research cruises, 2004–2019: A descriptive analysis. J. Travel Med. 27(6), taaa111 (2020).

    PubMed 
    Article 

    Google Scholar 

  • 36.

    Nord, C. E., Heimdal, A. & Kager, L. Antimicrobial induced alterations of the human oropharyngeal and intestinal microflora. Scand J. Infect. Dis. 49, 64–72 (1986).

    CAS 

    Google Scholar 

  • 37.

    Adamsson, I., Nord, C. E., Lundquist, P., Sjostedt, S. & Edlund, C. Comparative effects of omeprazole, amoxycillin, plus metronidazole versus omeprazole, clarithromycin plus metronidazole on the oral, gastric and intestinal microflora in Helicobacter pylori-infected patients. J. Antimicrob. Chemother. 44, 629–640 (1999).

    CAS 
    PubMed 
    Article 

    Google Scholar 

  • 38.

    Li, K. et al. Comparative analysis of gut microbiota of native tibetan and han populations living at different altitudes. PLoS ONE 11, e0155863 (2016).

    PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar 

  • 39.

    Goodrich, J. K., Davenport, E. R., Waters, J. L., Clark, A. G. & Ley, R. E. Cross-species comparisons of host genetic associations with the microbiome. Science 352(6285), 532–535 (2016).

    CAS 
    PubMed 
    PubMed Central 
    Article 
    ADS 

    Google Scholar 

  • 40.

    Nogueira, T., David, P. H. & Pothier, J. Antibiotics as both friends and foes of the human gut microbiome: the microbial community approach. Drug Dev. Res. 80(1), 86–97 (2019).

    CAS 
    PubMed 
    Article 

    Google Scholar 

  • 41.

    Elo, A. L. Health and stress of seafarers. Scand. J. Work Environ. Health 11, 427–432 (1985).

    CAS 
    PubMed 
    Article 

    Google Scholar 

  • 42.

    Alcock, J., Maley, C. C. & Aktipis, C. A. Is eating behavior manipulated by the gastrointestinal microbiota? Evolutionary pressures and potential mechanisms. BioEssays 36, 940–949 (2014).

    PubMed 
    PubMed Central 
    Article 

    Google Scholar 

  • 43.

    Fetissov, S. O. Role of the gut microbiota in host appetite control bacterial growth to animal feeding behaviour. Nat. Rev. Endocrinol. 13, 11–25 (2017).

    CAS 
    PubMed 
    Article 

    Google Scholar 

  • 44.

    Zmora, N. et al. Personalized gut mucosal colonization resistance to empiric probiotics is associated with unique host and microbiome features. Cell 174, 1388–1405 (2018).

    CAS 
    PubMed 
    Article 

    Google Scholar 

  • 45.

    Turroni, S. et al. Temporal dynamics of the gut microbiota in people sharing a confined environment, a 520-day ground-based space simulation, MARS500. Microbiome 5(1), 1–11 (2017).

    Article 

    Google Scholar 

  • 46.

    Liu, H. et al. Resilience of human gut microbial communities for the long stay with multiple dietary shifts. Gut 68(12), 2254–2255 (2019).

    CAS 
    PubMed 
    Article 

    Google Scholar 

  • 47.

    Timmerman, H. M., Koning, C. J. M., Mulder, L., Rombouts, F. M. & Beynen, A. C. Monostrain, multistrain and multispecies probiotics: A comparison of functionality and efficacy. Int. J. Food Microbiol. 96(3), 219–233 (2004).

    CAS 
    PubMed 
    Article 

    Google Scholar 

  • 48.

    Dharmani, P., De Simone, C. & Chadee, K. The probiotic mixture VSL# 3 accelerates gastric ulcer healing by stimulating vascular endothelial growth factor. PLoS ONE 8(3), e58671 (2013).

    CAS 
    PubMed 
    PubMed Central 
    Article 
    ADS 

    Google Scholar 

  • 49.

    Kabluchko, T. V., Bomko, T. V., Nosalskaya, T. N., Martynov, A. V. & Osolodchenko, T. P. In the gastrointestinal tract exist the protective mechanisms which prevent overgrowth of pathogenic bacterial and its incorporation. Ann. Mechnikov Inst. 1, 28–33 (2017).

    Google Scholar 

  • 50.

    Girard, P., Coppé, M. C., Pansart, Y. & Gillardin, J. M. Gastroprotective effect of Saccharomyces boulardii in a rat model of ibuprofen-induced gastric ulcer. Pharmacology 85(3), 188–193 (2010).

    CAS 
    PubMed 
    Article 

    Google Scholar 

  • 51.

    Flatley, E. A., Wilde, A. M. & Nailor, M. D. Saccharomyces boulardii for the prevention of hospital onset Clostridium difficile infection. J. Gastrointestin. Liver Dis. 24(1), 21–24 (2015).

    PubMed 
    Article 

    Google Scholar 

  • 52.

    McFarland, L. V. Use of probiotics to correct dysbiosis of normal microbiota following disease or disruptive events: A systematic review. BMJ Open 4, e005047 (2014).

    PubMed 
    PubMed Central 
    Article 

    Google Scholar 

  • 53.

    Xue, L. et al. Probiotics may delay the progression of nonalcoholic fatty liver disease by restoring the gut microbiota structure and improving intestinal endotoxemia. Sci. Rep. 7(1), 1–13 (2017).

    Article 
    CAS 

    Google Scholar 

  • 54.

    Saulnier, D. M., Spinler, J. K., Gibson, G. R. & Versalovic, J. Mechanisms of probiosis and prebiosis: considerations for enhanced functional foods. Curr. Opin. Biotechnol. 20(2), 135–141 (2009).

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 

  • 55.

    Gotteland, M., Cruchet, S. & Verbeke, S. Effect of Lactobacillus ingestion on the gastrointestinal mucosal barrier alterations induced by indometacin in humans. Aliment. Pharmacol. Ther. 15(1), 11–17 (2001).

    CAS 
    PubMed 
    Article 

    Google Scholar 

  • 56.

    Lankaputhra, W. E. V. Survival of Lactobacillus acidophilus and Bifidobacterium spp. in the presence of acid and bile salt. Cult. Dairy Prod. J. 30, 2–7 (1995).

    CAS 

    Google Scholar 

  • 57.

    Corcoran, B. M., Stanton, C., Fitzgerald, G. F. & Ross, R. P. Survival of probiotic lactobacilli in acidic environments is enhanced in the presence of metabolizable sugars. Appl. Environ. Microbiol. 71(6), 3060–3067 (2005).

    CAS 
    PubMed 
    PubMed Central 
    Article 
    ADS 

    Google Scholar 

  • 58.

    Gao, C. et al. An NAD-independent l-lactate dehydrogenase required for l-lactate utilization in Pseudomonas stutzeri A1501. J. Bacteriol. 197, 2239–2247 (2015).

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 

  • 59.

    Wang, X., Conway, P. L., Brown, I. L. & Evans, A. J. In vitro utilization of amylopectin and high-amylose maize (amylomaize) starch granules by human colonic bacteria. Appl. Environ. Microbiol. 65(11), 4848–4854 (1999).

    CAS 
    PubMed 
    PubMed Central 
    Article 
    ADS 

    Google Scholar 

  • 60.

    Kang, S. et al. Dysbiosis of fecal microbiota in Crohn’s disease patients as revealed by a custom phylogenetic microarray. Inflamm. Bowel Dis. 16(12), 2034–2042 (2010).

    PubMed 
    Article 

    Google Scholar 

  • 61.

    Vannucci, L. et al. Immunostimulatory properties and antitumor activities of glucans. Int. J. Oncol. 43(2), 357–364 (2013).

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 

  • 62.

    Singh, R. P., Rajarammohan, S., Thakur, R. & Hassan, M. Linear and branched β-Glucans degrading enzymes from versatile Bacteroides uniformis JCM 13288T and their roles in cooperation with gut bacteria. Gut microbes 12(1), 1–18 (2020).

    PubMed 
    Article 
    CAS 

    Google Scholar 

  • 63.

    Markowiak-Kopeć, P. & Śliżewska, K. The effect of probiotics on the production of short-chain fatty acids by human intestinal microbiome. Nutrients 12(4), 1107 (2020).

    PubMed Central 
    Article 
    CAS 
    PubMed 

    Google Scholar 

  • 64.

    LeBlanc, J. G. et al. Beneficial effects on host energy metabolism of short-chain fatty acids and vitamins produced by commensal and probiotic bacteria. Microb. Cell Fact. 16(1), 1–10 (2017).

    Article 
    CAS 

    Google Scholar 

  • 65.

    Depke, M. et al. Hypermetabolic syndrome as a consequence of repeated psychological stress in mice. Endocrinology 149(6), 2714–2723 (2008).

    CAS 
    PubMed 
    Article 

    Google Scholar 

  • 66.

    Nguyen, T. T., Hathaway, H., Kosciolek, T., Knight, R. & Jeste, D. V. Gut microbiome in serious mental illnesses: A systematic review and critical evaluation. Schizophr. Res. 234, 24–40 (2021).

    PubMed 
    Article 

    Google Scholar 

  • 67.

    Kriss, M., Hazleton, K. Z., Nusbacher, N. M., Martin, C. G. & Lozupone, C. A. Low diversity gut microbiota dysbiosis: Drivers, functional implications and recovery. Curr. Opin. Microbiol. 44, 34–40 (2018).

    PubMed 
    PubMed Central 
    Article 

    Google Scholar 

  • 68.

    Wong, J. M., De Souza, R., Kendall, C. W., Emam, A. & Jenkins, D. J. Colonic health: fermentation and short chain fatty acids. J. Clin. Gastroenterol. 40(3), 235–243 (2006).

    CAS 
    PubMed 
    Article 

    Google Scholar 

  • 69.

    So, D. et al. Dietary fiber intervention on gut microbiota composition in healthy adults: a systematic review and meta-analysis. Am. J. Clin. Nutr. 107(6), 965–983 (2018).

    PubMed 
    Article 

    Google Scholar 

  • 70.

    Kasai, C. et al. Comparison of the gut microbiota composition between obese and non-obese individuals in a Japanese population, as analyzed by terminal restriction fragment length polymorphism and next-generation sequencing. BMC Gastroenterol. 15(1), 1–10 (2015).

    CAS 
    Article 
    ADS 

    Google Scholar 

  • 71.

    Payahoo, L., Khajebishak, Y. & Ostadrahimi, A. Akkermansia muciniphila bacteria: A new perspective on the management of obesity: An updated review. Rev. Med. Microbiol. 30(2), 83–89 (2019).

    Article 

    Google Scholar 

  • 72.

    Labus, J. S. et al. Clostridia from the gut microbiome are associated with brain functional connectivity and evoked symptoms in IBS. Gastroenterology 152(5), S40 (2017).

    Article 

    Google Scholar 

  • 73.

    Blaak, E. E. et al. Short chain fatty acids in human gut and metabolic health. Benef. Microbes 11(5), 411–455 (2020).

    CAS 
    PubMed 
    Article 

    Google Scholar 

  • 74.

    Turroni, F. et al. Glycan utilization and cross-feeding activities by bifidobacteria. Trends Microbiol. 26(4), 339–350 (2018).

    CAS 
    PubMed 
    Article 

    Google Scholar 

  • 75.

    Hemarajata, P. & Versalovic, J. Effects of probiotics on gut microbiota: mechanisms of intestinal immunomodulation and neuromodulation. Ther. Adv. Gastroenterol. 6(1), 39–51 (2013).

    CAS 
    Article 

    Google Scholar 

  • Source link