Preloader

Prevalence of Trypanosoma and Sodalis in wild populations of tsetse flies and their impact on sterile insect technique programmes for tsetse eradication

  • Elsen, P., Amoudi, M. A. & Leclercq, M. First record of Glossina fuscipes fuscipes Newstead, 1910 and Glossina morsitans submorsitans Newstead, 1910 in southwestern Saudi Arabia. Ann. Soc. Belg. Med. Trop. 70, 281–287 (1990).

    CAS 
    PubMed 

    Google Scholar 

  • Leak, S. G. A. Tsetse Biology and Ecology: Their Role in the Epidemiology and Control of Trypanosomosis. (ILRI (aka ILCA and ILRAD), 1999).

  • Mattioli, R. C. et al. Tsetse and trypanosomiasis intervention policies supporting sustainable animal-agricultural development. J. Food Agric. Environ. 2, 310–314 (2004).

    Google Scholar 

  • Cecchi, G., Mattioli, R. C., Slingenbergh, J. & Rocque, S. D. L. Land cover and tsetse fly distributions in sub-Saharan Africa. Med. Vet. Entomol. 22, 364–373 (2008).

    CAS 
    PubMed 

    Google Scholar 

  • Aksoy, S., Gibson, W. C. & Lehane, M. J. Interactions between tsetse and trypanosomes with implications for the control of trypanosomiasis. In Advances in Parasitology vol. 53 1–83 (Academic Press, 2003).

  • Roditi, I. & Lehane, M. J. Interactions between trypanosomes and tsetse flies. Curr. Opin. Microbiol. 11, 345–351 (2008).

    PubMed 

    Google Scholar 

  • Geerts, S. & Holmes, P. H. Drug management and parasite resistance in bovine trypanosomiasis in Africa. (Food and Agriculture Organization of the United Nations, 1998).

    Google Scholar 

  • Reinhardt, E. Travailler Ensemble: La Mouche Tse´ -tse´ et La Pauvrete Rurale. Accessed Nov 2021. https://www.un.org/french/pubs/chronique/2002/numero2/0202p17_la_mouche_tsetse.html. (2002).

  • Geiger, A. et al. Transcriptomics and proteomics in human African trypanosomiasis: Current status and perspectives. J. Proteom. 74, 1625–1643 (2011).

    CAS 

    Google Scholar 

  • Aksoy, S. & Rio, R. V. M. Interactions among multiple genomes: Tsetse, its symbionts and trypanosomes. Insect Biochem. Mol. Biol. 35, 691–698 (2005).

    CAS 
    PubMed 

    Google Scholar 

  • Delespaux, V., Geysen, D., Van den Bossche, P. & Geerts, S. Molecular tools for the rapid detection of drug resistance in animal trypanosomes. Trends Parasitol. 24, 236–242 (2008).

    CAS 
    PubMed 

    Google Scholar 

  • Vreysen, M. J. B. Principles of area-wide integrated tsetse fly control using the sterile insect technique. Méd. Trop. 61, 397–411 (2001).

    CAS 

    Google Scholar 

  • Schofield, C. J. & Kabayo, J. P. Trypanosomiasis vector control in Africa and Latin America. Parasit. Vectors 1, 24 (2008).

    PubMed 
    PubMed Central 

    Google Scholar 

  • Molyneux, D. H., Hopkins, D. R. & Zagaria, N. Disease eradication, elimination and control: The need for accurate and consistent usage. Trends Parasitol. 20, 347–351 (2004).

    PubMed 

    Google Scholar 

  • Abbeele, J. V. D., Claes, Y., Bockstaele, D. V., Ray, D. L. & Coosemans, M. Trypanosoma brucei spp. development in the tsetse fly: Characterization of the post-mesocyclic stages in the foregut and proboscis. Parasitology 118, 469–478 (1999).

    Google Scholar 

  • Maudlin, I. & Welburn, S. C. Maturation of trypanosome infections in tsetse. Exp. Parasitol. 79, 202–205 (1994).

    CAS 
    PubMed 

    Google Scholar 

  • Moloo, S. K., Asonganyi, T. & Jenni, L. Cyclical development of Trypanosoma brucei gambiense from cattle and goats in Glossina. Cycl. Dev. Trypanos. Brucei Gamb. Cattle Goats Glossina 43, 407–408 (1986).

  • MacLeod, E. T., Darby, A. C., Maudlin, I. & Welburn, S. C. Factors affecting trypanosome maturation in tsetse flies. PLoS One 2, 1–5 (2007).

    CAS 

    Google Scholar 

  • Weiss, B. L., Wang, J., Maltz, M. A., Wu, Y. & Aksoy, S. Trypanosome infection establishment in the tsetse fly gut is influenced by microbiome-regulated host immune barriers. PLoS Pathog. 9, e1003318 (2013).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • O’Neill, S. L., Gooding, R. H. & Aksoy, S. Phylogenetically distant symbiotic microorganisms reside in Glossina midgut and ovary tissues. Med. Vet. Entomol. 7, 377–383 (1993).

    PubMed 

    Google Scholar 

  • Cheng, Q. & Aksoy, S. Tissue tropism, transmission and expression of foreign genes in vivo in midgut symbionts of tsetse flies. Insect Mol. Biol. 8, 125–132 (1999).

    CAS 
    PubMed 

    Google Scholar 

  • Wang, J., Weiss, B. L. & Aksoy, S. Tsetse fly microbiota: Form and function. Front. Cell. Infect. Microbiol. 3, 69 (2013).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Dale, C. & Welburn, S. C. The endosymbionts of tsetse flies: Manipulating host–parasite interactions. Int. J. Parasitol. 31, 628–631 (2001).

    CAS 
    PubMed 

    Google Scholar 

  • Trappeniers, K., Matetovici, I., Van Den Abbeele, J. & De Vooght, L. The tsetse fly displays an attenuated immune response to its secondary symbiont, Sodalis glossinidius. Front. Microbiol. 10, 1650 (2019).

    PubMed 
    PubMed Central 

    Google Scholar 

  • Medlock, J., Atkins, K. E., Thomas, D. N., Aksoy, S. & Galvani, A. P. Evaluating paratransgenesis as a potential control strategy for African trypanosomiasis. PLoS Negl. Trop. Dis. 7, e2374 (2013).

    PubMed 
    PubMed Central 

    Google Scholar 

  • Geiger, A., Ponton, F. & Simo, G. Adult blood-feeding tsetse flies, trypanosomes, microbiota and the fluctuating environment in sub-Saharan Africa. ISME J. 9, 1496–1507 (2015).

    PubMed 

    Google Scholar 

  • Maudlin, I. & Ellis, D. S. Association between intracellular rickettsial-like infections of midgut cells and susceptibility to trypanosome infection in Glossina spp. Z. Für Parasitenkd. 71, 683–687 (1985).

    CAS 

    Google Scholar 

  • Geiger, A. et al. Vector competence of Glossina palpalis gambiensis for Trypanosoma brucei s.l. and genetic diversity of the symbiont Sodalis glossinidius. Mol. Biol. Evol. 24, 102–109 (2007).

    CAS 
    PubMed 

    Google Scholar 

  • Hamidou Soumana, I. et al. The transcriptional signatures of Sodalis glossinidius. in the Glossina palpalis gambiensis flies negative for Trypanosoma brucei gambiense contrast with those of this symbiont in tsetse flies positive for the parasite: Possible involvement of a Sodalis-hosted prophage in fly Trypanosoma refractoriness?. Infect. Genet. Evol. 24, 41–56 (2014).

    PubMed 

    Google Scholar 

  • Farikou, O. et al. Tripartite interactions between tsetse flies, Sodalis glossinidius and trypanosomes—An epidemiological approach in two historical human African trypanosomiasis foci in Cameroon. Infect. Genet. Evol. 10, 115–121 (2010).

    PubMed 

    Google Scholar 

  • Makhulu, E. E. et al. Tsetse blood-meal sources, endosymbionts, and trypanosome infections provide insight into African trypanosomiasis transmission in the Maasai Mara National Reserve, a wildlife-human-livestock interface. bioRxiv https://doi.org/10.1101/2020.04.06.027367 (2020).

    Article 

    Google Scholar 

  • Wamwiri, F. N. et al. Wolbachia, Sodalis and trypanosome co-infections in natural populations of Glossina austeni and Glossina pallidipes. Parasit. Vectors 6, 232 (2013).

    PubMed 
    PubMed Central 

    Google Scholar 

  • Channumsin, M., Ciosi, M., Masiga, D., Turner, C. M. R. & Mable, B. K. Sodalis glossinidius presence in wild tsetse is only associated with presence of trypanosomes in complex interactions with other tsetse-specific factors. BMC Microbiol. 18, 163 (2018).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Kanté Tagueu, S., Farikou, O., Njiokou, F. & Simo, G. Prevalence of Sodalis glossinidius and different trypanosome species in Glossina palpalis palpalis caught in the Fontem sleeping sickness focus of the southern Cameroon. Parasite 25, 44 (2018).

    PubMed 
    PubMed Central 

    Google Scholar 

  • Kame-Ngasse, G. I. et al. Prevalence of symbionts and trypanosome infections in tsetse flies of two villages of the “Faro and Déo” division of the Adamawa region of Cameroon. BMC Microbiol. 18, 159 (2018).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Dennis, J. W. et al. Sodalis glossinidius prevalence and trypanosome presence in tsetse from Luambe National Park, Zambia. Parasit. Vectors 7, 378 (2014).

    PubMed 
    PubMed Central 

    Google Scholar 

  • Vreysen, M. J. B., Saleh, K. M., Zhu, Z.-R. & Suleiman, F. W. Responses of Glossina austeni to sticky panels and odours. Med. Vet. Entomol. 14, 283–289 (2000).

    PubMed 

    Google Scholar 

  • Vreysen, M. J. B. et al. Area-wide integrated pest management of a Glossina palpalis gambiensis population from the Niayes area of Senegal: A review of operational research in support of an operational phased conditional approach. in. In Area-Wide Integrated Pest Management: Development and Field Application (eds Hendrichs, J. et al.) (CRC Press, 2021).

    Google Scholar 

  • Van Den Abbeele, J. et al. Enhancing tsetse fly refractoriness to trypanosome infection—A new IAEA coordinated research project. J. Invertebr. Pathol. 112, S142–S147 (2013).

    Google Scholar 

  • van den Bossche, P. et al. Effect of isometamidium chloride treatment on susceptibility of tsetse flies (Diptera: Glossinidae) to trypanosome infections. J. Med. Entomol. 43, 564–567 (2006).

    Google Scholar 

  • Bouyer, J. Does isometamidium chloride treatment protect tsetse flies from trypanosome infections during SIT campaigns?. Med. Vet. Entomol. 22, 140–143 (2008).

    CAS 
    PubMed 

    Google Scholar 

  • De Vooght, L., Caljon, G., De Ridder, K. & van den Abbeele, J. Delivery of a functional anti-trypanosome Nanobody in different tsetse fly tissues via a bacterial symbiont, Sodalis glossinidius. Microb. Cell Factories 13, 1–10 (2014).

    Google Scholar 

  • Caljon, G., De Vooght, L. & Van Den Abbeele, J. Options for the delivery of anti-pathogen molecules in arthropod vectors. J. Invertebr. Pathol. 112, S75–S82 (2013).

    CAS 
    PubMed 

    Google Scholar 

  • Demirbas-Uzel, G. et al. Combining paratransgenesis with SIT: Impact of ionizing radiation on the DNA copy number of Sodalis glossinidius in tsetse flies. BMC Microbiol. 18, 160 (2018).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Aksoy, E. et al. Analysis of multiple tsetse fly populations in Uganda reveals limited diversity and species-specific gut microbiota. Appl. Environ. Microbiol. 80, 4301–4312 (2014).

    ADS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Soumana, I. H. et al. The bacterial flora of tsetse fly midgut and its effect on trypanosome transmission. J. Invertebr. Pathol. 112, S89–S93 (2013).

    PubMed 

    Google Scholar 

  • Maudlin, I., Welburn, S. C. & Mehlitz, D. The relationship between rickettsia-like-organisms and trypanosome infections in natural populations of tsetse in Liberia. Trop. Med. Parasitol. 41, 265–267 (1990).

    CAS 
    PubMed 

    Google Scholar 

  • Doudoumis, V. et al. Tsetse-Wolbachia symbiosis: Comes of age and has great potential for pest and disease control. J. Invertebr. Pathol. 112, S94–S103 (2013).

    PubMed 

    Google Scholar 

  • Baker, R. D., Maudlin, I., Milligan, P. J. M., Molyneux, D. H. & Welburn, S. C. The possible role of Rickettsia-like organisms in trypanosomiasis epidemiology. Parasitology 100, 209–217 (1990).

    PubMed 

    Google Scholar 

  • Soumana, I. H. et al. Population dynamics of Glossina palpalis gambiensis symbionts, Sodalis glossinidius, and Wigglesworthia glossinidia, throughout host-fly development. Infect. Genet. Evol. 13, 41–48 (2013).

    Google Scholar 

  • Alam, U. et al. Wolbachia symbiont infections induce strong cytoplasmic incompatibility in the tsetse fly Glossina morsitans. PLoS Pathog. 7, e1002415 (2011).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Mbewe, N. J., Mweempwa, C., Guya, S. & Wamwiri, F. N. Microbiome frequency and their association with trypanosome infection in male Glossina morsitans centralis of Western Zambia. Vet. Parasitol. 211, 93–98 (2015).

    PubMed 

    Google Scholar 

  • Musaya, J. et al. Polymerase chain reaction identification of Trypanosoma brucei rhodesiense in wild tsetse flies from Nkhotakota Wildlife Reserve, Malawi. Malawi Med. J. J. Med. Assoc. Malawi 29, 5–9 (2017).

    Google Scholar 

  • Malele, I. I. et al. Multiple Trypanosoma infections are common amongst Glossina species in the new farming areas of Rufiji district, Tanzania. Parasit. Vectors 4, 217 (2011).

    PubMed 
    PubMed Central 

    Google Scholar 

  • Ngonyoka, A. et al. Patterns of tsetse abundance and trypanosome infection rates among habitats of surveyed villages in Maasai steppe of northern Tanzania. Infect. Dis. Poverty 6, 126 (2017).

    PubMed 
    PubMed Central 

    Google Scholar 

  • Lefrançois, T. et al. Polymerase chain reaction characterization of trypanosomes in Glossina morsitans submorsitans and G. tachinoides collected on the game ranch of Nazinga, Burkina Faso. Acta Trop. 72, 65–77 (1999).

    PubMed 

    Google Scholar 

  • Djohan, V. et al. Detection and identification of pathogenic trypanosome species in tsetse flies along the Comoé River in Côte d’Ivoire. Parasite Paris Fr. 22, 18 (2015).

    Google Scholar 

  • Nayupe, S. F. et al. The use of molecular technology to investigate trypanosome infections in tsetse flies at Liwonde Wild Life Reserve. Malawi Med. J. J. Med. Assoc. Malawi 31, 233–237 (2019).

    Google Scholar 

  • Karshima, S. N., Ajogi, I. & Mohammed, G. Eco-epidemiology of porcine trypanosomosis in Karim Lamido, Nigeria: Prevalence, seasonal distribution, tsetse density and infection rates. Parasit. Vectors 9, 448 (2016).

    PubMed 
    PubMed Central 

    Google Scholar 

  • Simo, G. et al. Molecular identification of Wolbachia and Sodalis glossinidius in the midgut of Glossina fuscipes quanzensis from the Democratic Republic of Congo. Parasite Paris Fr. 26, 5 (2019).

    Google Scholar 

  • Odeniran, P. O., Macleod, E. T., Ademola, I. O. & Welburn, S. C. Endosymbionts interaction with trypanosomes in Palpalis group of Glossina captured in southwest Nigeria. Parasitol. Int. 70, 64–69 (2019).

    PubMed 

    Google Scholar 

  • Couey, H. M. & Chew, V. Confidence limits and sample size in quarantine research. J. Econ. Entomol. 79, 887–890 (1986).

    Google Scholar 

  • Geiger, A., Ravel, S., Frutos, R. & Cuny, G. Sodalis glossinidius (Enterobacteriaceae) and vectorial competence of Glossina palpalis gambiensis and Glossina morsitans morsitans for Trypanosoma congolense savannah type. Curr. Microbiol. 51, 35–40 (2005).

    CAS 
    PubMed 

    Google Scholar 

  • Geiger, A., Cuny, G. & Frutos, R. Two tsetse fly species, Glossina palpalis gambiensis and Glossina morsitans morsitans, carry genetically distinct populations of the secondary symbiont Sodalis glossinidius. Appl. Environ. Microbiol. 71, 8941–8943 (2005).

    ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Geiger, A. et al. Differential expression of midgut proteins in Trypanosoma brucei gambiense-stimulated versus non-stimulated Glossina palpalis gambiensis flies. Front. Microbiol. 6, 444 (2015).

    PubMed 
    PubMed Central 

    Google Scholar 

  • Haines, L. R., Hancock, R. E. W. & Pearson, T. W. Cationic antimicrobial peptide killing of African trypanosomes and Sodalis glossinidius, a bacterial symbiont of the insect vector of sleeping sickness. Vector-Borne Zoonotic Dis. 3, 175–186 (2003).

    PubMed 

    Google Scholar 

  • Challier, A. & Laveissière, C. Un nouveau piege pour la capture des glossines (Glossina: Diptera, Muscidae): Description et essais sur le terrain. Cah. ORSTOM Sér. Entomol. Médicale Parasitol. 11, 251–262 (1973).

    Google Scholar 

  • Lancien, J. Description du piege monoconique utilise pour l’elimination des glossines en Republique Populaire du Congo. Cah. ORSTOM Sér. Entomol. Médicale Parasitol. 19, 235–238 (1981).

    Google Scholar 

  • Laveissière, C. & Grébaut, P. The trapping of tsetse flies (Diptera: Glossinidae). Improvement of a model: The Vavoua trap. Trop. Med. Parasitol. Off. Organ Dtsch. Tropenmedizinische Ges. Dtsch. Ges. Tech. Zusammenarbeit GTZ 41, 185–192 (1990).

  • Brightwell, B. et al. A new trap to Glossina pallidipes. Trop. Pest Manag. 33, 151–159 (1987).

    Google Scholar 

  • Brightwell, R., Dransfield, R. D. & Kyorku, C. Development of a low-cost tsetse trap and odour baits for Glossina pallidipes and G. longipennis in Kenya. Med. Vet. Entomol. 5, 153–164 (1991).

    CAS 
    PubMed 

    Google Scholar 

  • Hargrove, J. E. & Langley, P. A. Sterilizing tsetse (Diptera: Glossinidae) in the field: A successful trial. Bull. Entomol. Res. 80, 397–403 (1990).

    Google Scholar 

  • Mihok, S. The development of a multipurpose trap (the Nzi) for tsetse and other biting flies. Bull. Entomol. Res. 92, 385–403 (2002).

    CAS 
    PubMed 

    Google Scholar 

  • Kappmeier, K. A newly developed odour-baited ‘H trap’ for the live collection of Glossina brevipalpis and Glossina austeni (Diptera: Glossinidae) in South Africa. Onderstepoort J. Vet. Res. 67, 15–26 (2000).

    CAS 
    PubMed 

    Google Scholar 

  • Baker, M. D. & Krafsur, E. S. Identification and properties of microsatellite markers in tsetse flies Glossina morsitans sensu lato (Diptera: Glossinidae). Mol. Ecol. Notes 1, 234–236 (2001).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Njiru, Z. K. et al. The use of ITS1 rDNA PCR in detecting pathogenic African trypanosomes. Parasitol. Res. 95, 186–192 (2005).

    CAS 
    PubMed 

    Google Scholar 

  • Toh, H. et al. Massive genome erosion and functional adaptations provide insights into the symbiotic lifestyle of Sodalis glossinidius in the tsetse host. Genome Res. 16, 149–156 (2006).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Weiss, B. L., Maltz, M. & Aksoy, S. Obligate symbionts activate immune system development in the tsetse fly. J. Immunol. 188, 3395–3403 (2012).

    CAS 
    PubMed 

    Google Scholar 

  • R Core Team. R: A Language and Environment for Statistical Computing. (R Foundation for Statistical Computing, 2021).

  • Baier, T. & Neuwirth, E. Excel: COM: R. Comput. Stat. 22, 91–108 (2007).

    MathSciNet 
    MATH 

    Google Scholar 

  • RStudio Team. RStudio: Integrated Development Environment for R. (RStudio, Inc., 2016).

  • Wickham, H. ggplot2: Elegant Graphics for Data Analysis (Springer, 2016).

    MATH 

    Google Scholar 

  • Sarkar, D. Lattice: Multivariate Data Visualization with R. (Springer Science & Business Media, 2008).

  • Fox, J. & Weisberg, S. An R Companion to Applied Regression, 2nd ed. (Sage, 2019).

  • Jeffrey B. Arnold. ggthemes: Extra Themes, Scales and Geoms for ‘ggplot2’. R package version 4.2.4. (2021).

  • Venables, W. N. & Ripley, B. D. Modern Applied Statistics with S. (Springer, 2002).

  • Clarke, K. R. & Gorley, R. N. Getting started with PRIMER v7. Accessed Nov 2021. http://updates.primer-e.com/primer7/manuals/Getting_started_with_PRIMER_7.pdf. (2016).

  • Anderson, M. J. A new method for non-parametric multivariate analysis of variance. Austral Ecol. 26, 32–46 (2001).

    Google Scholar 

  • Source link