Preloader

Precise genomic deletions using paired prime editing

  • 1.

    Knott, G. J. & Doudna, J. A. CRISPR–Cas guides the future of genetic engineering. Science 361, 866–869 (2018).

    CAS 
    Article 

    Google Scholar 

  • 2.

    Cong, L. et al. Multiplex genome engineering using CRISPR/Cas systems. Science 339, 819–823 (2013).

    CAS 
    Article 

    Google Scholar 

  • 3.

    Canver, M. C. et al. Characterization of genomic deletion efficiency mediated by clustered regularly interspaced short palindromic repeats (CRISPR)/Cas9 nuclease system in mammalian cells. J. Biol. Chem. 289, 21312–21324 (2014).

    Article 

    Google Scholar 

  • 4.

    Byrne, S. M., Ortiz, L., Mali, P., Aach, J. & Church, G. M. Multi-kilobase homozygous targeted gene replacement in human induced pluripotent stem cells. Nucleic Acids Res. 43, e21 (2015).

    Article 

    Google Scholar 

  • 5.

    Gasperini, M. et al. CRISPR/Cas9-mediated scanning for regulatory elements required for HPRT1 expression via thousands of large, programmed genomic deletions. Am. J. Hum. Genet. 101, 192–205 (2017).

    CAS 
    Article 

    Google Scholar 

  • 6.

    Gasperini, M. et al. A genome-wide framework for mapping gene regulation via cellular genetic screens. Cell 176, 1516 (2019).

    CAS 
    Article 

    Google Scholar 

  • 7.

    Kosicki, M., Tomberg, K. & Bradley, A. Repair of double-strand breaks induced by CRISPR–Cas9 leads to large deletions and complex rearrangements. Nat. Biotechnol. 36, 765–771 (2018).

    CAS 
    Article 

    Google Scholar 

  • 8.

    Zuccaro, M. V. et al. Allele-specific chromosome removal after Cas9 cleavage in human embryos. Cell https://doi.org/10.1016/j.cell.2020.10.025 (2020).

  • 9.

    Mehta, A. & Haber, J. E. Sources of DNA double-strand breaks and models of recombinational DNA repair. Cold Spring Harb. Perspect. Biol. 6, a016428 (2014).

    Article 

    Google Scholar 

  • 10.

    Diao, Y. et al. A tiling-deletion-based genetic screen for cis-regulatory element identification in mammalian cells. Nat. Methods 14, 629–635 (2017).

    CAS 
    Article 

    Google Scholar 

  • 11.

    Zhu, S. et al. Genome-scale deletion screening of human long non-coding RNAs using a paired-guide RNA CRISPR–Cas9 library. Nat. Biotechnol. 34, 1279–1286 (2016).

    CAS 
    Article 

    Google Scholar 

  • 12.

    Khosravi, M. A. et al. Targeted deletion of BCL11A gene by CRISPR–Cas9 system for fetal hemoglobin reactivation: a promising approach for gene therapy of beta thalassemia disease. Eur. J. Pharmacol. 854, 398–405 (2019).

    CAS 
    Article 

    Google Scholar 

  • 13.

    Dastidar, S. et al. Efficient CRISPR/Cas9-mediated editing of trinucleotide repeat expansion in myotonic dystrophy patient-derived iPS and myogenic cells. Nucleic Acids Res. 46, 8275–8298 (2018).

    CAS 
    Article 

    Google Scholar 

  • 14.

    Anzalone, A. V. et al. Search-and-replace genome editing without double-strand breaks or donor DNA. Nature 576, 149–157 (2019).

    CAS 
    Article 

    Google Scholar 

  • 15.

    Lin, Q. et al. Prime genome editing in rice and wheat. Nat. Biotechnol. 38, 582–585 (2020).

    CAS 
    Article 

    Google Scholar 

  • 16.

    Kivioja, T. et al. Counting absolute numbers of molecules using unique molecular identifiers. Nat. Methods 9, 72–74 (2011).

    Article 

    Google Scholar 

  • 17.

    Dominissini, D. et al. Topology of the human and mouse m6A RNA methylomes revealed by m6A-seq. Nature 485, 201–206 (2012).

    CAS 
    Article 

    Google Scholar 

  • 18.

    Watry, H. L. et al. Rapid, precise quantification of large DNA excisions and inversions by ddPCR. Sci. Rep. 10, 14896 (2020).

    CAS 
    Article 

    Google Scholar 

  • 19.

    Verkerk, A. J. et al. Identification of a gene (FMR-1) containing a CGG repeat coincident with a breakpoint cluster region exhibiting length variation in fragile X syndrome. Cell 65, 905–914 (1991).

    CAS 
    Article 

    Google Scholar 

  • 20.

    Tippens, N. D. et al. Transcription imparts architecture, function and logic to enhancer units. Nat. Genet. 52, 1067–1075 (2020).

    Article 

    Google Scholar 

  • 21.

    Mandal, P. K. et al. Efficient ablation of genes in human hematopoietic stem and effector cells using CRISPR/Cas9. Cell Stem Cell 15, 643–652 (2014).

    CAS 
    Article 

    Google Scholar 

  • 22.

    Walton, R. T., Christie, K. A., Whittaker, M. N. & Kleinstiver, B. P. Unconstrained genome targeting with near-PAMless engineered CRISPR–Cas9 variants. Science 368, 290–296 (2020).

    CAS 
    Article 

    Google Scholar 

  • 23.

    Kweon, J. et al. Engineered prime editors with PAM flexibility. Mol. Ther. https://doi.org/10.1016/j.ymthe.2021.02.022 (2021).

  • 24.

    Leibowitz, M. L. et al. Chromothripsis as an on-target consequence of CRISPR–Cas9 genome editing. Nat. Genet. https://doi.org/10.1038/s41588-021-00838-7 (2021).

  • 25.

    Schene, I. F. et al. Prime editing for functional repair in patient-derived disease models. Nat. Commun. https://doi.org/10.1101/2020.06.09.139782 (2020).

  • 26.

    Owens, D. D. G. et al. Microhomologies are prevalent at Cas9-induced larger deletions. Nucleic Acids Res. 47, 7402–7417 (2019).

    CAS 
    Article 

    Google Scholar 

  • 27.

    Kim, D. Y. et al. Unbiased investigation of specificities of prime editing systems in human cells. Nucleic Acids Res. https://doi.org/10.1093/nar/gkaa764 (2020).

  • 28.

    El-Brolosy, M. A. et al. Genetic compensation triggered by mutant mRNA degradation. Nature 568, 193–197 (2019).

    CAS 
    Article 

    Google Scholar 

  • 29.

    Ma, Z. et al. PTC-bearing mRNA elicits a genetic compensation response via Upf3a and COMPASS components. Nature 568, 259–263 (2019).

    CAS 
    Article 

    Google Scholar 

  • 30.

    Concordet, J.-P. & Haeussler, M. CRISPOR: intuitive guide selection for CRISPR/Cas9 genome editing experiments and screens. Nucleic Acids Res. 46, W242–W245 (2018).

    CAS 
    Article 

    Google Scholar 

  • 31.

    Doench, J. G. et al. Optimized sgRNA design to maximize activity and minimize off-target effects of CRISPR–Cas9. Nat. Biotechnol. 34, 184–191 (2016).

    CAS 
    Article 

    Google Scholar 

  • 32.

    Kim, H. K. et al. Predicting the efficiency of prime editing guide RNAs in human cells. Nat. Biotechnol. https://doi.org/10.1038/s41587-020-0677-y (2020).

  • 33.

    McKenna, A. & Shendure, J. FlashFry: a fast and flexible tool for large-scale CRISPR target design. BMC Biol. 16, 74 (2018).

    Article 

    Google Scholar 

  • 34.

    Hsu, P. D. et al. DNA targeting specificity of RNA-guided Cas9 nucleases. Nat. Biotechnol. 31, 827–832 (2013).

    CAS 
    Article 

    Google Scholar 

  • 35.

    Chen, W. et al. Massively parallel profiling and predictive modeling of the outcomes of CRISPR/Cas9-mediated double-strand break repair. Nucleic Acids Res. 47, 7989–8003 (2019).

    CAS 
    Article 

    Google Scholar 

  • 36.

    Zhang, J., Kobert, K., Flouri, T. & Stamatakis, A. PEAR: a fast and accurate Illumina Paired-End reAd mergeR. Bioinformatics 30, 614–620 (2014).

    CAS 
    Article 

    Google Scholar 

  • 37.

    Clement, K. et al. CRISPResso2 provides accurate and rapid genome editing sequence analysis. Nat. Biotechnol. 37, 224–226 (2019).

    CAS 
    Article 

    Google Scholar 

  • Source link