Preloader

Polystyrene nanoplastics and microplastics can act as Trojan horse carriers of benzo(a)pyrene to mussel hemocytes in vitro

  • 1.

    PlasticOceans. Plastic Pollution Facts. https://plasticoceans.org/the-facts/ (2020).

  • 2.

    Barnes, D. K. A., Galgani, F., Thompson, R. C. & Barlaz, M. Accumulation and fragmentation of plastic debris in global environments. Philos. Trans. R. Soc. Lond., B, Biol. Sci. 364, 1985–1998 (2009).

    CAS 

    Google Scholar 

  • 3.

    Mendoza, A. et al. Microplastics in the Bay of Biscay: An overview. Mar. Pollut. Bull. 153, 110996 (2020).

    CAS 
    PubMed 

    Google Scholar 

  • 4.

    Andrady, A. L. Microplastics in the marine environment. Mar. Pollut. Bull. 62, 1596–1605 (2011).

    CAS 
    PubMed 

    Google Scholar 

  • 5.

    Koelmans, A. A., Besseling, E. & Shim, W. J. Nanoplastics in the aquatic environment. In Critical Review in Marine Anthropogenic Litter (eds Bergmann, N. et al.) 325–340 (SpringerLink, 2015).

    Google Scholar 

  • 6.

    Frias, J. P. G. L. & Nash, R. Microplastics: Finding a consensus on the definition. Mar. Pollut. Bull. 138, 145–147 (2019).

    CAS 
    PubMed 

    Google Scholar 

  • 7.

    Peng, L. et al. Micro- and nano-plastics in marine environment: Source, distribution and threats—A review. Sci. Total Environ. 698, 134254 (2020).

    ADS 
    CAS 
    PubMed 

    Google Scholar 

  • 8.

    Ribeiro, F. et al. Out of sight but not out of mind: Size fractionation of plastics bioaccumulated by field deployed oysters. J. Hazard. Mater. 2, 100021 (2021).

    Google Scholar 

  • 9.

    Wright, S. L., Thompson, R. C. & Galloway, T. S. The physical impacts of microplastics on marine organisms: A review. Environ. Pollut. 178, 483–492 (2013).

    CAS 
    PubMed 

    Google Scholar 

  • 10.

    Wang, J., Tan, Z., Peng, J., Qiu, Q. & Li, M. The behaviors of microplastics in the marine environment. Mar. Environ. Res. 113, 7–17 (2016).

    CAS 
    PubMed 

    Google Scholar 

  • 11.

    Galloway, T. S., Cole, M. & Lewis, C. Interactions of microplastic debris throughout the marine ecosystem. Nat. Ecol. Evol. 1, 1–8 (2017).

    Google Scholar 

  • 12.

    Franzellitti, S., Canesi, L., Auguste, M., Wathsala, R. H. G. R. & Fabbri, E. Microplastic exposure and effects in aquatic organisms: A physiological perspective. Environ. Toxicol. Pharmacol. 68, 37–51 (2019).

    CAS 
    PubMed 

    Google Scholar 

  • 13.

    Xu, S., Ma, J., Ji, R., Pan, K. & Miao, A. J. Microplastics in aquatic environments: Occurrence, accumulation, and biological effects. Sci. Total Environ. 703, 134699 (2020).

    ADS 
    CAS 
    PubMed 

    Google Scholar 

  • 14.

    Sussarellu, R. et al. Oyster reproduction is affected by exposure to polystyrene microplastics. Proc. Nat. Acad. Sci. U. S. A. 113, 2430–2435 (2016).

    ADS 
    CAS 

    Google Scholar 

  • 15.

    Gaspar, T. R., Chi, R. J., Parrow, M. W. & Ringwood, A. H. Cellular bioreactivity of micro- and nano-plastic particles in oysters. Front. Mar. Sci. 5, 1–8 (2018).

    Google Scholar 

  • 16.

    Sendra, M., Carrasco-Braganza, M. I., Yeste, P. M., Vila, M. & Blasco, J. Immunotoxicity of polystyrene nanoplastics in different hemocyte subpopulations of Mytilus galloprovincialis. Sci. Rep. 10, 1–14 (2020).

    Google Scholar 

  • 17.

    Sendra, M. et al. Nanoplastics: From tissue accumulation to cell translocation into Mytilus galloprovincialis hemocytes. Resilience of immune cells exposed to nanoplastics and nanoplastics plus Vibrio splendidus combination. J. Hazard. Mater. 388, 121788 (2020).

    CAS 
    PubMed 

    Google Scholar 

  • 18.

    Canesi, L. et al. Evidence for immunomodulation and apoptotic processes induced by cationic polystyrene nanoparticles in the hemocytes of the marine bivalve Mytilus. Mar. Environ. Res. 111, 34–40 (2015).

    CAS 
    PubMed 

    Google Scholar 

  • 19.

    Paul-Pont, I. et al. Exposure of marine mussels Mytilus spp. to polystyrene microplastics: Toxicity and influence on fluoranthene bioaccumulation. Environ. Pollut. 216, 724–737 (2016).

    CAS 
    PubMed 

    Google Scholar 

  • 20.

    Capolupo, M., Franzellitti, S., Valbonesi, P., Lanzas, C. S. & Fabbri, E. Uptake and transcriptional effects of polystyrene microplastics in larval stages of the Mediterranean mussel Mytilus galloprovincialis. Environ. Pollut. 241, 1038–1047 (2018).

    CAS 
    PubMed 

    Google Scholar 

  • 21.

    González-Fernández, C. et al. Cellular responses of Pacific oyster (Crassostrea gigas) gametes exposed in vitro to polystyrene nanoparticles. Chemosphere 208, 764–772 (2018).

    ADS 
    PubMed 

    Google Scholar 

  • 22.

    González-Soto, N. et al. Impacts of dietary exposure to different sized polystyrene microplastics alone and with sorbed benzo[a]pyrene on biomarkers and whole organism responses in mussels Mytilus galloprovincialis. Sci. Total Environ. 684, 548–566 (2019).

    ADS 
    PubMed 

    Google Scholar 

  • 23.

    Tang, Y. et al. Immunotoxicity of microplastics and two persistent organic pollutants alone or in combination to a bivalve species. Environ. Pollut. 258, 113845 (2020).

    CAS 
    PubMed 

    Google Scholar 

  • 24.

    Gonçalves, J. M. & Bebianno, M. J. Nanoplastics impact on marine biota: A review. Environ. Pollut. 273, 116426 (2021).

    PubMed 

    Google Scholar 

  • 25.

    Ziccardi, L. M., Edginton, A., Hentz, K., Kulacki, K. J. & Driscoll, S. K. Microplastics as vectors for bioaccumulation of hydrophobic organic chemicals in the marine environment: A state-of-the-science review. Environ. Toxicol. Chem. 35, 1667–1676 (2016).

    CAS 
    PubMed 

    Google Scholar 

  • 26.

    Menéndez-Pedriza, A. & Jaumot, J. Interaction of environmental pollutants with microplastics: A critical review of sorption factors, bioaccumulation and ecotoxicological effects. Toxics 8, 40 (2020).

    PubMed Central 

    Google Scholar 

  • 27.

    Hirai, H. et al. Organic micropollutants in marine plastics debris from the open ocean and remote and urban beaches. Mar. Pollut. Bull. 62, 1683–1692 (2011).

    CAS 
    PubMed 

    Google Scholar 

  • 28.

    Camacho, M. et al. Organic pollutants in marine plastic debris from Canary Islands beaches. Sci. Total Environ. 662, 22–31 (2019).

    ADS 
    CAS 
    PubMed 

    Google Scholar 

  • 29.

    Rios-Mendoza, L. M. & Jones, P. R. Characterisation of microplastics and toxic chemicals extracted from microplastic samples from the North Pacific Gyre. Environ. Chem. 12, 611–617 (2015).

    CAS 

    Google Scholar 

  • 30.

    Gorman, D. et al. Organic contamination of beached plastic pellets in the South Atlantic: Risk assessments can benefit by considering spatial gradients. Chemosphere 223, 608–615 (2019).

    ADS 
    CAS 
    PubMed 

    Google Scholar 

  • 31.

    Avio, C. G. et al. Pollutants bioavailability and toxicological risk from microplastics to marine mussels. Environ. Pollut. 198, 211–222 (2015).

    CAS 
    PubMed 

    Google Scholar 

  • 32.

    Pittura, L. et al. Microplastics as vehicles of environmental PAHs to marine organisms: Combined chemical and physical hazards to the Mediterranean mussels Mytilus galloprovincialis. Front. Mar. Sci. 5, 103 (2018).

    Google Scholar 

  • 33.

    Magara, G. et al. Effects of combined exposures of fluoranthene and polyethylene or polyhydroxybutyrate microplastics on oxidative stress biomarkers in the blue mussel (Mytilus edulis). J. Toxicol. Environ. Health A 10, 616–625 (2019).

    Google Scholar 

  • 34.

    Sun, S. et al. Immunotoxicity of petroleum hydrocarbons and microplastics alone or in combination to a bivalve species: Synergic impacts and potential toxication mechanisms. Sci. Total Environ. 728, 138852 (2020).

    ADS 
    CAS 
    PubMed 

    Google Scholar 

  • 35.

    Martínez-Álvarez, I. et al. Sorption of PAHs onto polystyrene microplastics depending on particle size. Toxics, submitted.

  • 36.

    Dong, X., Sun, D., Liu, G., Cao, C. & Jiang, X. Aqueous foam stabilized by hydrophobically modified cellulose and alkyl polyoxyethyl sulfate complex in the presence and absence of electrolytes. Colloids Surf. A 345, 58–64 (2009).

    CAS 

    Google Scholar 

  • 37.

    Song, Z. et al. Fate and transport of nanoplastics in complex natural aquifer media: Effect of particle size and surface functionalization. Sci. Total Environ. 669, 120–128 (2019).

    ADS 
    CAS 
    PubMed 

    Google Scholar 

  • 38.

    Wang, X. et al. A review of microplastics aggregation in aquatic environment: Influence factors, analytical methods, and environmental implications. J. Hazard. Mater. 402, 123496 (2021).

    CAS 
    PubMed 

    Google Scholar 

  • 39.

    Singh, N., Tiwari, E., Khandelwala, N. & Darbha, G. K. Understanding the stability of nanoplastics in aqueous environments: Effect of ionic strength, temperature, dissolved organic matter, clay, and heavy metals. Environ. Sci.: Nano 6, 2968 (2019).

    CAS 

    Google Scholar 

  • 40.

    Liu, J. et al. Polystyrene nanoplastics-enhanced contaminant transport: Role of irreversible adsorption in glassy polymeric domain. Environ. Sci. Technol. 52, 2677–2685 (2018).

    ADS 
    CAS 
    PubMed 

    Google Scholar 

  • 41.

    Fiorentino, I. et al. Energy independent uptake and release of polystyrene nanoparticles in primary mammalian cell cultures. Exp. Cell Res. 330, 240–247 (2015).

    CAS 
    PubMed 

    Google Scholar 

  • 42.

    Moore, M. N. et al. Antagonistic cytoprotective effects of C60 fullerene nanoparticles in simultaneous exposure to benzo[a]pyrene in a molluscan animal model. Sci. Total Environ. 755, 142355 (2021).

    ADS 
    CAS 
    PubMed 

    Google Scholar 

  • 43.

    Behzadi, S. et al. Cellular uptake of nanoparticles: Journey inside the cell. Chem. Soc. Rev. 46, 4218–4244 (2017).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • 44.

    Cajaraville, M. P. & Pal, S. G. Morphofunctional study of the haemocytes of the bivalve mollusc Mytilus galloprovincialis with emphasis on the endolysosomal compartment. Cell Struct. Funct. 20, 355–367 (1995).

    CAS 
    PubMed 

    Google Scholar 

  • 45.

    Lehner, R., Weder, C., Petri-Fink, A. & Rothen-Rutishauser, B. Emergence of nanoplastic in the environment and possible impact on human health. Environ. Sci. Technol. 53, 1748–1765 (2019).

    ADS 
    CAS 
    PubMed 

    Google Scholar 

  • 46.

    Banerjee, A. & Shelver, W. L. Micro- and nanoplastic induced cellular toxicity in mammals: A review. Sci. Total Environ. 755, 142518 (2021).

    ADS 
    CAS 
    PubMed 

    Google Scholar 

  • 47.

    Rejman, J., Oberle, V., Zuhorn, I. S. & Hoekstra, D. Size-dependent internalization of particles via the pathways of clathrin- and caveolae-mediated endocytosis. Biochem. J. 377, 159–169 (2004).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • 48.

    Johnston, H. J. et al. Evaluating the uptake and intracellular fate of polystyrene nanoparticles by primary and hepatocyte cell lines in vitro. Toxicol. Appl. Pharmacol. 242, 66–78 (2010).

    CAS 
    PubMed 

    Google Scholar 

  • 49.

    Kuhn, D. A. et al. Different endocytotic uptake mechanisms for nanoparticles in epithelial cells and macrophages. Beilstein J. Nanotechnol. 5, 1625–1636 (2014).

    PubMed 
    PubMed Central 

    Google Scholar 

  • 50.

    Gedda, M., Babele, P., Zahra, K. & Madhukar, P. Epigenetic aspects of engineered nanomaterials: Is the collateral damage inevitable?. Front. Bioeng. Biotechnol. 7, 228 (2019).

    PubMed 
    PubMed Central 

    Google Scholar 

  • 51.

    Batel, A., Linti, F., Scherer, M., Erdinger, L. & Braunbeck, T. The transfer of benzo[a]pyrene from microplastics to Artemia nauplii and further to zebrafish via a trophic food web experiment—CYP1A induction and visual tracking of persistent organic pollutants. Environ. Toxicol. Chem. 35, 1656–1666 (2016).

    CAS 
    PubMed 

    Google Scholar 

  • 52.

    Salvati, A. et al. Experimental and theoretical comparison of intracellular import of polymeric nanoparticles and small molecules: Toward models of uptake kinetics. Nanomedicine 7, 818–826 (2011).

    CAS 
    PubMed 

    Google Scholar 

  • 53.

    Fröhlich, et al. Action of polystyrene nanoparticles of different sizes on lysosomal function and integrity. Part. Fibre Toxicol. 9, 26 (2012).

    PubMed 
    PubMed Central 

    Google Scholar 

  • 54.

    Wu, B., Wu, X., Liu, S., Wang, Z. & Chen, L. Size-dependent effects of polystyrene microplastics on cytotoxicity and efflux pump inhibition in human Caco-2 cells. Chemosphere 221, 333–341 (2019).

    ADS 
    CAS 
    PubMed 

    Google Scholar 

  • 55.

    Stock, V. et al. Uptake and effects of orally ingested polystyrene microplastic particles in vitro and in vivo. Arch. Toxicol. 93, 1817–1833 (2019).

    CAS 
    PubMed 

    Google Scholar 

  • 56.

    Sharifi, S. et al. Toxicity of nanomaterials. Chem. Soc. Rev. 41, 2323–2343 (2012).

    CAS 
    PubMed 

    Google Scholar 

  • 57.

    Hwang, J., Choi, D., Han, S., Choi, J. & Honga, J. An assessment of the toxicity of polypropylene microplastics in human derived cells. Sci. Total Environ. 684, 657–669 (2019).

    ADS 
    CAS 
    PubMed 

    Google Scholar 

  • 58.

    Gómez-Mendikute, A., Etxeberria, A., Olabarrieta, I. & Cajaraville, M. P. Oxygen radicals production and actin filament disruption in bivalve haemocytes treated with benzo(a)pyrene. Mar. Environ. Res. 54, 431–436 (2002).

    PubMed 

    Google Scholar 

  • 59.

    Gómez-Mendikute, A. & Cajaraville, M. P. Comparative effects of cadmium, copper, paraquat and benzo[a]pyrene on the actin cytoskeleton and production of reactive oxygen species (ROS) in mussel haemocytes. Toxicol. In Vitro 17, 539–546 (2003).

    PubMed 

    Google Scholar 

  • 60.

    Ji, Y., Wang, Y., Shen, D., Kang, Q. & Chen, L. Mucin corona delays intracellular trafficking and alleviates cytotoxicity of nanoplastic-benzopyrene combined contaminant. J. Hazard. Mater. 406, 124306 (2021).

    CAS 
    PubMed 

    Google Scholar 

  • 61.

    Rossi, G., Barnoud, J. & Monticelli, L. Polystyrene nanoparticles perturb lipid membranes. J. Phys. Chem. Lett. 5, 241–246 (2014).

    CAS 
    PubMed 

    Google Scholar 

  • 62.

    Jiménez, M., Aranda, F. J., Teruel, J. A. & Ortiz, A. The chemical toxic benzo[a]pyrene perturbs the physical organization of phosphatidylcholine membranes. Environ. Toxicol. Chem. 2, 787–793 (2002).

    Google Scholar 

  • 63.

    Katsumiti, A., Gilliland, D., Arostegui, I. & Cajaraville, M. P. Cytotoxicity and cellular mechanisms involved in the toxicity of CdS quantum dots in hemocytes and gill cells of the mussel Mytilus galloprovincialis. Aquat. Toxicol. 153, 39–52 (2014).

    CAS 
    PubMed 

    Google Scholar 

  • 64.

    Katsumiti, A. & Cajaraville, M. P. In vitro toxicity testing with bivalve mollusc and fish cells for the risk assessment of nanoparticles in the aquatic environment. In Ecotoxicology of Nanoparticles in Aquatic Systems (eds Blasco, J. & Corsi, I.) 62–98 (Science Publishers CRC Press/Taylor & Francis Group, 2019).

    Google Scholar 

  • 65.

    May, R. C. & Machesky, L. M. Phagocytosis and the actin cytoskeleton. J. Cell Sci. 114, 1061–1077 (2001).

    CAS 
    PubMed 

    Google Scholar 

  • 66.

    Revel, M. et al. Tissue-specific biomarker responses in the blue mussel Mytilus spp. exposed to a mixture of microplastics at environmentally relevant concentrations. Front. Environ. Sci. 7, 1–14 (2019).

    Google Scholar 

  • 67.

    Cajaraville, M. P., Pal, S. G. & Robledo, Y. Light and electron microscopical localization of lysosomal acid hydrolases in bivalve haemocytes by enzyme cytochemistry. Acta Histochem. Cytochem. 28, 409–416 (1995).

    CAS 

    Google Scholar 

  • 68.

    Espinosa, C., García, J. M., Esteban, M. A. & Cuesta, A. In vitro effects of virgin microplastics on fish head-kidney leucocyte activities. Environ. Pollut. 235, 30–38 (2018).

    CAS 
    PubMed 

    Google Scholar 

  • 69.

    Banni, M. et al. Assessing the impact of benzo[a]pyrene on marine mussels: Application of a novel targeted low density microarray complementing classical biomarker responses. PLoS ONE 12, e0178460 (2017).

    PubMed 
    PubMed Central 

    Google Scholar 

  • 70.

    Canova, S. et al. Tissue dose, DNA adducts, oxidative DNA damage and CYP1A-immunopositive proteins in mussels exposed to waterborne benzo[a]pyrene. Mutat. Res. 399, 17–30 (1998).

    CAS 
    PubMed 

    Google Scholar 

  • 71.

    Tung, E. W., Philbrook, N. A., Belanger, C. L., Ansari, S. & Winn, L. M. Benzo[a]pyrene increases DNA double strand break repair in vitro and in vivo: A possible mechanism for benzo[a]pyrene-induced toxicity. Mutat. Res. 760, 64–69 (2014).

    CAS 

    Google Scholar 

  • 72.

    Bihari, N., Batel, R. & Zahn, R. K. DNA damage determination by the alkaline elution technique in the haemolymph of mussel Mytilus galloprovincialis treated with benzo[a]pyrene and 4-nitroquinoline-N-oxide. Aquat. Toxicol. 18, 13–22 (1990).

    CAS 

    Google Scholar 

  • 73.

    Ribeiro, F. et al. Microplastics effects in Scrobicularia plana. Mar. Pollut. Bull. 122, 379–391 (2017).

    CAS 
    PubMed 

    Google Scholar 

  • 74.

    Brandts, I. et al. Effects of nanoplastics on Mytilus galloprovincialis after individual and combined exposure with carbamazepine. Sci. Total Environ. 643, 775–784 (2018).

    ADS 
    CAS 
    PubMed 

    Google Scholar 

  • 75.

    Maria, V. L., Gomes, T., Barreira, L. & Bebianno, M. J. Impact of benzo(a)pyrene, Cu and their mixture on the proteomic response of Mytilus galloprovincialis. Aquat. Toxicol. 144–145, 284–295 (2013).

    PubMed 

    Google Scholar 

  • 76.

    Bellas, J. et al. Combined use of chemical, biochemical and physiological variables in mussels for the assessment of marine pollution along the N-NW Spanish Coast. Mar. Environ. Res. 96, 105–117 (2013).

    PubMed 

    Google Scholar 

  • 77.

    Katsumiti, A., Tomovska, R. & Cajaraville, M. P. Intracellular localization and toxicity of graphene oxide and reduced graphene oxide nanoplatelets to mussel hemocytes in vitro. Aquat. Toxicol. 188, 138–147 (2017).

    CAS 
    PubMed 

    Google Scholar 

  • Source link