PlasticOceans. Plastic Pollution Facts. https://plasticoceans.org/the-facts/ (2020).
Barnes, D. K. A., Galgani, F., Thompson, R. C. & Barlaz, M. Accumulation and fragmentation of plastic debris in global environments. Philos. Trans. R. Soc. Lond., B, Biol. Sci. 364, 1985–1998 (2009).
Google Scholar
Mendoza, A. et al. Microplastics in the Bay of Biscay: An overview. Mar. Pollut. Bull. 153, 110996 (2020).
Google Scholar
Andrady, A. L. Microplastics in the marine environment. Mar. Pollut. Bull. 62, 1596–1605 (2011).
Google Scholar
Koelmans, A. A., Besseling, E. & Shim, W. J. Nanoplastics in the aquatic environment. In Critical Review in Marine Anthropogenic Litter (eds Bergmann, N. et al.) 325–340 (SpringerLink, 2015).
Frias, J. P. G. L. & Nash, R. Microplastics: Finding a consensus on the definition. Mar. Pollut. Bull. 138, 145–147 (2019).
Google Scholar
Peng, L. et al. Micro- and nano-plastics in marine environment: Source, distribution and threats—A review. Sci. Total Environ. 698, 134254 (2020).
Google Scholar
Ribeiro, F. et al. Out of sight but not out of mind: Size fractionation of plastics bioaccumulated by field deployed oysters. J. Hazard. Mater. 2, 100021 (2021).
Wright, S. L., Thompson, R. C. & Galloway, T. S. The physical impacts of microplastics on marine organisms: A review. Environ. Pollut. 178, 483–492 (2013).
Google Scholar
Wang, J., Tan, Z., Peng, J., Qiu, Q. & Li, M. The behaviors of microplastics in the marine environment. Mar. Environ. Res. 113, 7–17 (2016).
Google Scholar
Galloway, T. S., Cole, M. & Lewis, C. Interactions of microplastic debris throughout the marine ecosystem. Nat. Ecol. Evol. 1, 1–8 (2017).
Franzellitti, S., Canesi, L., Auguste, M., Wathsala, R. H. G. R. & Fabbri, E. Microplastic exposure and effects in aquatic organisms: A physiological perspective. Environ. Toxicol. Pharmacol. 68, 37–51 (2019).
Google Scholar
Xu, S., Ma, J., Ji, R., Pan, K. & Miao, A. J. Microplastics in aquatic environments: Occurrence, accumulation, and biological effects. Sci. Total Environ. 703, 134699 (2020).
Google Scholar
Sussarellu, R. et al. Oyster reproduction is affected by exposure to polystyrene microplastics. Proc. Nat. Acad. Sci. U. S. A. 113, 2430–2435 (2016).
Google Scholar
Gaspar, T. R., Chi, R. J., Parrow, M. W. & Ringwood, A. H. Cellular bioreactivity of micro- and nano-plastic particles in oysters. Front. Mar. Sci. 5, 1–8 (2018).
Sendra, M., Carrasco-Braganza, M. I., Yeste, P. M., Vila, M. & Blasco, J. Immunotoxicity of polystyrene nanoplastics in different hemocyte subpopulations of Mytilus galloprovincialis. Sci. Rep. 10, 1–14 (2020).
Sendra, M. et al. Nanoplastics: From tissue accumulation to cell translocation into Mytilus galloprovincialis hemocytes. Resilience of immune cells exposed to nanoplastics and nanoplastics plus Vibrio splendidus combination. J. Hazard. Mater. 388, 121788 (2020).
Google Scholar
Canesi, L. et al. Evidence for immunomodulation and apoptotic processes induced by cationic polystyrene nanoparticles in the hemocytes of the marine bivalve Mytilus. Mar. Environ. Res. 111, 34–40 (2015).
Google Scholar
Paul-Pont, I. et al. Exposure of marine mussels Mytilus spp. to polystyrene microplastics: Toxicity and influence on fluoranthene bioaccumulation. Environ. Pollut. 216, 724–737 (2016).
Google Scholar
Capolupo, M., Franzellitti, S., Valbonesi, P., Lanzas, C. S. & Fabbri, E. Uptake and transcriptional effects of polystyrene microplastics in larval stages of the Mediterranean mussel Mytilus galloprovincialis. Environ. Pollut. 241, 1038–1047 (2018).
Google Scholar
González-Fernández, C. et al. Cellular responses of Pacific oyster (Crassostrea gigas) gametes exposed in vitro to polystyrene nanoparticles. Chemosphere 208, 764–772 (2018).
Google Scholar
González-Soto, N. et al. Impacts of dietary exposure to different sized polystyrene microplastics alone and with sorbed benzo[a]pyrene on biomarkers and whole organism responses in mussels Mytilus galloprovincialis. Sci. Total Environ. 684, 548–566 (2019).
Google Scholar
Tang, Y. et al. Immunotoxicity of microplastics and two persistent organic pollutants alone or in combination to a bivalve species. Environ. Pollut. 258, 113845 (2020).
Google Scholar
Gonçalves, J. M. & Bebianno, M. J. Nanoplastics impact on marine biota: A review. Environ. Pollut. 273, 116426 (2021).
Google Scholar
Ziccardi, L. M., Edginton, A., Hentz, K., Kulacki, K. J. & Driscoll, S. K. Microplastics as vectors for bioaccumulation of hydrophobic organic chemicals in the marine environment: A state-of-the-science review. Environ. Toxicol. Chem. 35, 1667–1676 (2016).
Google Scholar
Menéndez-Pedriza, A. & Jaumot, J. Interaction of environmental pollutants with microplastics: A critical review of sorption factors, bioaccumulation and ecotoxicological effects. Toxics 8, 40 (2020).
Google Scholar
Hirai, H. et al. Organic micropollutants in marine plastics debris from the open ocean and remote and urban beaches. Mar. Pollut. Bull. 62, 1683–1692 (2011).
Google Scholar
Camacho, M. et al. Organic pollutants in marine plastic debris from Canary Islands beaches. Sci. Total Environ. 662, 22–31 (2019).
Google Scholar
Rios-Mendoza, L. M. & Jones, P. R. Characterisation of microplastics and toxic chemicals extracted from microplastic samples from the North Pacific Gyre. Environ. Chem. 12, 611–617 (2015).
Google Scholar
Gorman, D. et al. Organic contamination of beached plastic pellets in the South Atlantic: Risk assessments can benefit by considering spatial gradients. Chemosphere 223, 608–615 (2019).
Google Scholar
Avio, C. G. et al. Pollutants bioavailability and toxicological risk from microplastics to marine mussels. Environ. Pollut. 198, 211–222 (2015).
Google Scholar
Pittura, L. et al. Microplastics as vehicles of environmental PAHs to marine organisms: Combined chemical and physical hazards to the Mediterranean mussels Mytilus galloprovincialis. Front. Mar. Sci. 5, 103 (2018).
Magara, G. et al. Effects of combined exposures of fluoranthene and polyethylene or polyhydroxybutyrate microplastics on oxidative stress biomarkers in the blue mussel (Mytilus edulis). J. Toxicol. Environ. Health A 10, 616–625 (2019).
Sun, S. et al. Immunotoxicity of petroleum hydrocarbons and microplastics alone or in combination to a bivalve species: Synergic impacts and potential toxication mechanisms. Sci. Total Environ. 728, 138852 (2020).
Google Scholar
Martínez-Álvarez, I. et al. Sorption of PAHs onto polystyrene microplastics depending on particle size. Toxics, submitted.
Dong, X., Sun, D., Liu, G., Cao, C. & Jiang, X. Aqueous foam stabilized by hydrophobically modified cellulose and alkyl polyoxyethyl sulfate complex in the presence and absence of electrolytes. Colloids Surf. A 345, 58–64 (2009).
Google Scholar
Song, Z. et al. Fate and transport of nanoplastics in complex natural aquifer media: Effect of particle size and surface functionalization. Sci. Total Environ. 669, 120–128 (2019).
Google Scholar
Wang, X. et al. A review of microplastics aggregation in aquatic environment: Influence factors, analytical methods, and environmental implications. J. Hazard. Mater. 402, 123496 (2021).
Google Scholar
Singh, N., Tiwari, E., Khandelwala, N. & Darbha, G. K. Understanding the stability of nanoplastics in aqueous environments: Effect of ionic strength, temperature, dissolved organic matter, clay, and heavy metals. Environ. Sci.: Nano 6, 2968 (2019).
Google Scholar
Liu, J. et al. Polystyrene nanoplastics-enhanced contaminant transport: Role of irreversible adsorption in glassy polymeric domain. Environ. Sci. Technol. 52, 2677–2685 (2018).
Google Scholar
Fiorentino, I. et al. Energy independent uptake and release of polystyrene nanoparticles in primary mammalian cell cultures. Exp. Cell Res. 330, 240–247 (2015).
Google Scholar
Moore, M. N. et al. Antagonistic cytoprotective effects of C60 fullerene nanoparticles in simultaneous exposure to benzo[a]pyrene in a molluscan animal model. Sci. Total Environ. 755, 142355 (2021).
Google Scholar
Behzadi, S. et al. Cellular uptake of nanoparticles: Journey inside the cell. Chem. Soc. Rev. 46, 4218–4244 (2017).
Google Scholar
Cajaraville, M. P. & Pal, S. G. Morphofunctional study of the haemocytes of the bivalve mollusc Mytilus galloprovincialis with emphasis on the endolysosomal compartment. Cell Struct. Funct. 20, 355–367 (1995).
Google Scholar
Lehner, R., Weder, C., Petri-Fink, A. & Rothen-Rutishauser, B. Emergence of nanoplastic in the environment and possible impact on human health. Environ. Sci. Technol. 53, 1748–1765 (2019).
Google Scholar
Banerjee, A. & Shelver, W. L. Micro- and nanoplastic induced cellular toxicity in mammals: A review. Sci. Total Environ. 755, 142518 (2021).
Google Scholar
Rejman, J., Oberle, V., Zuhorn, I. S. & Hoekstra, D. Size-dependent internalization of particles via the pathways of clathrin- and caveolae-mediated endocytosis. Biochem. J. 377, 159–169 (2004).
Google Scholar
Johnston, H. J. et al. Evaluating the uptake and intracellular fate of polystyrene nanoparticles by primary and hepatocyte cell lines in vitro. Toxicol. Appl. Pharmacol. 242, 66–78 (2010).
Google Scholar
Kuhn, D. A. et al. Different endocytotic uptake mechanisms for nanoparticles in epithelial cells and macrophages. Beilstein J. Nanotechnol. 5, 1625–1636 (2014).
Google Scholar
Gedda, M., Babele, P., Zahra, K. & Madhukar, P. Epigenetic aspects of engineered nanomaterials: Is the collateral damage inevitable?. Front. Bioeng. Biotechnol. 7, 228 (2019).
Google Scholar
Batel, A., Linti, F., Scherer, M., Erdinger, L. & Braunbeck, T. The transfer of benzo[a]pyrene from microplastics to Artemia nauplii and further to zebrafish via a trophic food web experiment—CYP1A induction and visual tracking of persistent organic pollutants. Environ. Toxicol. Chem. 35, 1656–1666 (2016).
Google Scholar
Salvati, A. et al. Experimental and theoretical comparison of intracellular import of polymeric nanoparticles and small molecules: Toward models of uptake kinetics. Nanomedicine 7, 818–826 (2011).
Google Scholar
Fröhlich, et al. Action of polystyrene nanoparticles of different sizes on lysosomal function and integrity. Part. Fibre Toxicol. 9, 26 (2012).
Google Scholar
Wu, B., Wu, X., Liu, S., Wang, Z. & Chen, L. Size-dependent effects of polystyrene microplastics on cytotoxicity and efflux pump inhibition in human Caco-2 cells. Chemosphere 221, 333–341 (2019).
Google Scholar
Stock, V. et al. Uptake and effects of orally ingested polystyrene microplastic particles in vitro and in vivo. Arch. Toxicol. 93, 1817–1833 (2019).
Google Scholar
Sharifi, S. et al. Toxicity of nanomaterials. Chem. Soc. Rev. 41, 2323–2343 (2012).
Google Scholar
Hwang, J., Choi, D., Han, S., Choi, J. & Honga, J. An assessment of the toxicity of polypropylene microplastics in human derived cells. Sci. Total Environ. 684, 657–669 (2019).
Google Scholar
Gómez-Mendikute, A., Etxeberria, A., Olabarrieta, I. & Cajaraville, M. P. Oxygen radicals production and actin filament disruption in bivalve haemocytes treated with benzo(a)pyrene. Mar. Environ. Res. 54, 431–436 (2002).
Google Scholar
Gómez-Mendikute, A. & Cajaraville, M. P. Comparative effects of cadmium, copper, paraquat and benzo[a]pyrene on the actin cytoskeleton and production of reactive oxygen species (ROS) in mussel haemocytes. Toxicol. In Vitro 17, 539–546 (2003).
Google Scholar
Ji, Y., Wang, Y., Shen, D., Kang, Q. & Chen, L. Mucin corona delays intracellular trafficking and alleviates cytotoxicity of nanoplastic-benzopyrene combined contaminant. J. Hazard. Mater. 406, 124306 (2021).
Google Scholar
Rossi, G., Barnoud, J. & Monticelli, L. Polystyrene nanoparticles perturb lipid membranes. J. Phys. Chem. Lett. 5, 241–246 (2014).
Google Scholar
Jiménez, M., Aranda, F. J., Teruel, J. A. & Ortiz, A. The chemical toxic benzo[a]pyrene perturbs the physical organization of phosphatidylcholine membranes. Environ. Toxicol. Chem. 2, 787–793 (2002).
Katsumiti, A., Gilliland, D., Arostegui, I. & Cajaraville, M. P. Cytotoxicity and cellular mechanisms involved in the toxicity of CdS quantum dots in hemocytes and gill cells of the mussel Mytilus galloprovincialis. Aquat. Toxicol. 153, 39–52 (2014).
Google Scholar
Katsumiti, A. & Cajaraville, M. P. In vitro toxicity testing with bivalve mollusc and fish cells for the risk assessment of nanoparticles in the aquatic environment. In Ecotoxicology of Nanoparticles in Aquatic Systems (eds Blasco, J. & Corsi, I.) 62–98 (Science Publishers CRC Press/Taylor & Francis Group, 2019).
May, R. C. & Machesky, L. M. Phagocytosis and the actin cytoskeleton. J. Cell Sci. 114, 1061–1077 (2001).
Google Scholar
Revel, M. et al. Tissue-specific biomarker responses in the blue mussel Mytilus spp. exposed to a mixture of microplastics at environmentally relevant concentrations. Front. Environ. Sci. 7, 1–14 (2019).
Cajaraville, M. P., Pal, S. G. & Robledo, Y. Light and electron microscopical localization of lysosomal acid hydrolases in bivalve haemocytes by enzyme cytochemistry. Acta Histochem. Cytochem. 28, 409–416 (1995).
Google Scholar
Espinosa, C., García, J. M., Esteban, M. A. & Cuesta, A. In vitro effects of virgin microplastics on fish head-kidney leucocyte activities. Environ. Pollut. 235, 30–38 (2018).
Google Scholar
Banni, M. et al. Assessing the impact of benzo[a]pyrene on marine mussels: Application of a novel targeted low density microarray complementing classical biomarker responses. PLoS ONE 12, e0178460 (2017).
Google Scholar
Canova, S. et al. Tissue dose, DNA adducts, oxidative DNA damage and CYP1A-immunopositive proteins in mussels exposed to waterborne benzo[a]pyrene. Mutat. Res. 399, 17–30 (1998).
Google Scholar
Tung, E. W., Philbrook, N. A., Belanger, C. L., Ansari, S. & Winn, L. M. Benzo[a]pyrene increases DNA double strand break repair in vitro and in vivo: A possible mechanism for benzo[a]pyrene-induced toxicity. Mutat. Res. 760, 64–69 (2014).
Google Scholar
Bihari, N., Batel, R. & Zahn, R. K. DNA damage determination by the alkaline elution technique in the haemolymph of mussel Mytilus galloprovincialis treated with benzo[a]pyrene and 4-nitroquinoline-N-oxide. Aquat. Toxicol. 18, 13–22 (1990).
Google Scholar
Ribeiro, F. et al. Microplastics effects in Scrobicularia plana. Mar. Pollut. Bull. 122, 379–391 (2017).
Google Scholar
Brandts, I. et al. Effects of nanoplastics on Mytilus galloprovincialis after individual and combined exposure with carbamazepine. Sci. Total Environ. 643, 775–784 (2018).
Google Scholar
Maria, V. L., Gomes, T., Barreira, L. & Bebianno, M. J. Impact of benzo(a)pyrene, Cu and their mixture on the proteomic response of Mytilus galloprovincialis. Aquat. Toxicol. 144–145, 284–295 (2013).
Google Scholar
Bellas, J. et al. Combined use of chemical, biochemical and physiological variables in mussels for the assessment of marine pollution along the N-NW Spanish Coast. Mar. Environ. Res. 96, 105–117 (2013).
Google Scholar
Katsumiti, A., Tomovska, R. & Cajaraville, M. P. Intracellular localization and toxicity of graphene oxide and reduced graphene oxide nanoplatelets to mussel hemocytes in vitro. Aquat. Toxicol. 188, 138–147 (2017).
Google Scholar

