Preloader

Paralog knockout profiling identifies DUSP4 and DUSP6 as a digenic dependence in MAPK pathway-driven cancers

  • 1.

    McDonald, E. R. 3rd et al. Project DRIVE: a compendium of cancer dependencies and synthetic lethal relationships uncovered by large-scale, deep RNAi screening. Cell 170, 577–592.e10 (2017).

    CAS 
    PubMed 

    Google Scholar 

  • 2.

    Behan, F. M. et al. Prioritization of cancer therapeutic targets using CRISPR–Cas9 screens. Nature 568, 511–516 (2019).

    CAS 
    PubMed 

    Google Scholar 

  • 3.

    Tsherniak, A. et al. Defining a cancer dependency map. Cell 170, 564–576.e16 (2017).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • 4.

    Chan, E. M. et al. WRN helicase is a synthetic lethal target in microsatellite unstable cancers. Nature 568, 551–556 (2019).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • 5.

    Mavrakis, K. J. et al. Disordered methionine metabolism in MTAP/CDKN2A-deleted cancers leads to dependence on PRMT5. Science 351, 1208–1213 (2016).

    CAS 
    PubMed 

    Google Scholar 

  • 6.

    Lieb, S. et al. Werner syndrome helicase is a selective vulnerability of microsatellite instability-high tumor cells. eLife 8, e43333 (2019).

    Google Scholar 

  • 7.

    Kategaya, L., Perumal, S. K., Hager, J. H. & Belmont, L. D. Werner syndrome helicase is required for the survival of cancer cells with microsatellite instability. iScience 13, 488–497 (2019).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • 8.

    Kryukov, G. V. et al. MTAP deletion confers enhanced dependency on the PRMT5 arginine methyltransferase in cancer cells. Science 351, 1214–1218 (2016).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • 9.

    De Kegel, B. & Ryan, C. J. Paralog buffering contributes to the variable essentiality of genes in cancer cell lines. PLoS Genet. 15, e1008466 (2019).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • 10.

    Kelly, M. R. et al. Combined proteomic and genetic interaction mapping reveals new RAS effector pathways and susceptibilities. Cancer Discov. 10, 1950–1967 (2020).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • 11.

    Kuzmin, E. et al. Systematic analysis of complex genetic interactions. Science 360, eaao1729 (2018).

    PubMed 
    PubMed Central 

    Google Scholar 

  • 12.

    Tong, A. H. Y. et al. Global mapping of the yeast genetic interaction network. Science 303, 808–813 (2004).

    CAS 
    PubMed 

    Google Scholar 

  • 13.

    Costanzo, M. et al. A global genetic interaction network maps a wiring diagram of cellular function. Science 353, aaf1420 (2016).

    PubMed 
    PubMed Central 

    Google Scholar 

  • 14.

    Fischer, B. et al. A map of directional genetic interactions in a metazoan cell. eLife 4, e05464 (2015).

    Google Scholar 

  • 15.

    Han, K. et al. Synergistic drug combinations for cancer identified in a CRISPR screen for pairwise genetic interactions. Nat. Biotechnol. 35, 463–474 (2017).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • 16.

    Norman, T. M. et al. Exploring genetic interaction manifolds constructed from rich single-cell phenotypes. Science 365, 786–793 (2019).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • 17.

    Najm, F. J. et al. Orthologous CRISPR–Cas9 enzymes for combinatorial genetic screens. Nat. Biotechnol. 36, 179–189 (2018).

    CAS 
    PubMed 

    Google Scholar 

  • 18.

    Horlbeck, M. A. et al. Mapping the genetic landscape of human cells. Cell 174, 953–967.e22 (2018).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • 19.

    Shen, J. P. et al. Combinatorial CRISPR–Cas9 screens for de novo mapping of genetic interactions. Nat. Methods 14, 573–576 (2017).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • 20.

    Zhao, D. et al. Combinatorial CRISPR–Cas9 metabolic screens reveal critical redox control points dependent on the KEAP1-NRF2 regulatory axis. Mol. Cell 69, 699–708.e7 (2018).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • 21.

    Hart, T. & Moffat, J. BAGEL: a computational framework for identifying essential genes from pooled library screens. BMC Bioinformatics 17, 164 (2016).

    PubMed 
    PubMed Central 

    Google Scholar 

  • 22.

    Helming, K. C. et al. ARID1B is a specific vulnerability in ARID1A-mutant cancers. Nat. Med. 20, 251–254 (2014).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • 23.

    Zamanighomi, M. et al. GEMINI: a variational Bayesian approach to identify genetic interactions from combinatorial CRISPR screens. Genome Biol. 20, 137 (2019).

    PubMed 
    PubMed Central 

    Google Scholar 

  • 24.

    Chen, X. et al. Combined PKC and MEK inhibition in uveal melanoma with GNAQ and GNA11 mutations. Oncogene 33, 4724–4734 (2014).

    CAS 
    PubMed 

    Google Scholar 

  • 25.

    O’Leary, B., Finn, R. S. & Turner, N. C. Treating cancer with selective CDK4/6 inhibitors. Nat. Rev. Clin. Oncol. 13, 417–430 (2016).

    PubMed 

    Google Scholar 

  • 26.

    Park, E. et al. Architecture of autoinhibited and active BRAF–MEK1–14-3-3 complexes. Nature 575, 545–550 (2019).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • 27.

    Camps, M., Nichols, A. & Arkinstall, S. Dual specificity phosphatases: a gene family for control of MAP kinase function. FASEB J. 14, 6–16 (2000).

    CAS 
    PubMed 

    Google Scholar 

  • 28.

    Kidger, A. M. & Keyse, S. M. The regulation of oncogenic Ras/ERK signalling by dual-specificity mitogen activated protein kinase phosphatases (MKPs). Semin. Cell Dev. Biol. 50, 125–132 (2016).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • 29.

    Unni, A. M., Lockwood, W. W., Zejnullahu, K., Lee-Lin, S.-Q. & Varmus, H. Evidence that synthetic lethality underlies the mutual exclusivity of oncogenic KRAS and EGFR mutations in lung adenocarcinoma. eLife 4, e06907 (2015).

    Google Scholar 

  • 30.

    Leung, G. P. et al. Hyperactivation of MAPK signaling is deleterious to RAS/RAF-mutant melanoma. Mol. Cancer Res. 17, 199–211 (2019).

    CAS 
    PubMed 

    Google Scholar 

  • 31.

    Brenan, L. et al. Phenotypic characterization of a comprehensive set of MAPK1/ERK2 missense mutants. Cell Rep. 17, 1171–1183 (2016).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • 32.

    Goetz, E. M., Ghandi, M., Treacy, D. J., Wagle, N. & Garraway, L. A. ERK mutations confer resistance to mitogen-activated protein kinase pathway inhibitors. Cancer Res. 74, 7079–7089 (2014).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • 33.

    Sanchez-Vega, F. et al. Oncogenic signaling pathways in The Cancer Genome Atlas. Cell 173, 321–337.e10 (2018).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • 34.

    Unni, A. M. et al. Hyperactivation of ERK by multiple mechanisms is toxic to RTK-RAS mutation-driven lung adenocarcinoma cells. eLife 7, e33718 (2018).

    Google Scholar 

  • 35.

    Liu, S., Sun, J.-P., Zhou, B. & Zhang, Z.-Y. Structural basis of docking interactions between ERK2 and MAP kinase phosphatase 3. Proc. Natl Acad. Sci. USA 103, 5326–5331 (2006).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • 36.

    Peng, D.-J., Zhou, J.-Y. & Wu, G. S. Post-translational regulation of mitogen-activated protein kinase phosphatase-2 (MKP-2) by ERK. Cell Cycle 9, 4650–4655 (2010).

    CAS 
    PubMed 

    Google Scholar 

  • 37.

    Nazarian, R. et al. Melanomas acquire resistance to B-RAF(V600E) inhibition by RTK or N-RAS upregulation. Nature 468, 973–977 (2010).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • 38.

    Villanueva, J. et al. Acquired resistance to BRAF inhibitors mediated by a RAF kinase switch in melanoma can be overcome by cotargeting MEK and IGF-1R/PI3K. Cancer Cell 18, 683–695 (2010).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • 39.

    Corcoran, R. B. et al. EGFR-mediated re-activation of MAPK signaling contributes to insensitivity of BRAF-mutant colorectal cancers to RAF inhibition with vemurafenib. Cancer Discov. 2, 227–235 (2012).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • 40.

    Hatzivassiliou, G. et al. RAF inhibitors prime wild-type RAF to activate the MAPK pathway and enhance growth. Nature 464, 431–435 (2010).

    CAS 
    PubMed 

    Google Scholar 

  • 41.

    Das Thakur, M. et al. Modelling vemurafenib resistance in melanoma reveals a strategy to forestall drug resistance. Nature 494, 251–255 (2013).

    CAS 
    PubMed 

    Google Scholar 

  • 42.

    Johannessen, C. M. et al. COT drives resistance to RAF inhibition through MAP kinase pathway reactivation. Nature 468, 968–972 (2010).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • 43.

    Wagle, N. et al. Dissecting therapeutic resistance to RAF inhibition in melanoma by tumor genomic profiling. J. Clin. Oncol. 29, 3085–3096 (2011).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • 44.

    Konieczkowski, D. J., Johannessen, C. M. & Garraway, L. A. A convergence-based framework for cancer drug resistance. Cancer Cell 33, 801–815 (2018).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • 45.

    Viswanathan, S. R. et al. Genome-scale analysis identifies paralog lethality as a vulnerability of chromosome 1p loss in cancer. Nat. Genet. 50, 937–943 (2018).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • 46.

    Benjamini, Y. & Hochberg, Y. Controlling the false discovery rate: a practical and powerful approach to multiple testing. J. R. Stat. Soc. Series B Stat. Methodol. 57, 289–300 (1995).

    Google Scholar 

  • 47.

    Doench, J. G. et al. Optimized sgRNA design to maximize activity and minimize off-target effects of CRISPR–Cas9. Nat. Biotechnol. 34, 184–191 (2016).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Source link