Someya, T., Bao, Z. & Malliaras, G. The rise of plastic bioelectronics. Nature 540, 379–385 (2016).
Google Scholar
Choi, S. et al. Highly conductive, stretchable and biocompatible Ag–Au core–sheath nanowire composite for wearable and implantable bioelectronics. Nat. Nanotechnol. 13, 1048–1056 (2018).
Google Scholar
Lacour, S., Courtine, G. & Guck, J. Materials and technologies for soft implantable neuroprostheses. Nat. Rev. Mater. 1, 16063 (2016).
Google Scholar
Yang, X. et al. Bioinspired neuron-like electronics. Nat. Mater. 18, 510–517 (2019).
Google Scholar
Kim, Y. et al. A bioinspired flexible organic artificial afferent nerve. Science 360, 998–1003 (2018).
Google Scholar
Wehner, M. et al. An integrated design and fabrication strategy for entirely soft, autonomous robots. Nature 536, 451–455 (2016).
Google Scholar
Karbalaei Akbari, M. & Zhuiykov, S. A bioinspired optoelectronically engineered artificial neurorobotics device with sensorimotor functionalities. Nat. Commun. 10, 3873 (2019).
Google Scholar
Kuhnert, L., Agladze, K. I. & Krinsky, V. I. Image processing using light-sensitive chemical waves. Nature 337, 244–247 (1989).
Google Scholar
Gizynski, K. & Gorecki, J. Chemical memory with states coded in light controlled oscillations of interacting Belousov–Zhabotinsky droplets. Phys. Chem. Chem. Phys. 19, 6519–6531 (2017).
Google Scholar
Parrilla-Gutierrez, J. M. et al. A programmable chemical computer with memory and pattern recognition. Nat. Commun. 11, 1442 (2020).
Google Scholar
Keene, S. T. et al. A biohybrid synapse with neurotransmitter-mediated plasticity. Nat. Mater. 19, 969–973 (2020).
Google Scholar
Van de Burgt, Y. et al. Organic electronics for neuromorphic computing. Nat. Electron. 1, 386–397 (2018).
Google Scholar
Misra, N. et al. Bioelectronic silicon nanowire devices using functional membrane proteins. Proc. Natl Acad. Sci. USA 106, 13780–13784 (2009).
Google Scholar
Amit, M. et al. Measuring proton currents of bioinspired materials with metallic contacts. ACS Appl. Mater. Interfaces 10, 1933–1938 (2018).
Google Scholar
Lodish, H. et. al. Molecular Cell Biology 8th edn (W.H. Freeman, 2016).
Pereda, A. Electrical synapses and their functional interactions with chemical synapses. Nat. Rev. Neurosci. 15, 250–263 (2014).
Google Scholar
Liu, Y. et al. Soft and elastic hydrogel-based microelectronics for localized low-voltage neuromodulation. Nat. Biomed. Eng. 3, 58–68 (2019).
Google Scholar
Keplinger, C. et al. Stretchable, transparent, ionic conductors. Science 341, 984–987 (2013).
Google Scholar
Yang, C. & Suo, Z. Hydrogel ionotronics. Nat Rev Mater 3, 125–142 (2018).
Google Scholar
Owens, R. M. & Malliaras, G. G. Organic electronics at the interface with biology. MRS Bull. 35, 449–456 (2010).
Google Scholar
Strakosas, X., Bongo, M. & Owens, R. M. The organic electrochemical transistor for biological applications. J. Appl. Polym. Sci. 132, 41735 (2015).
Google Scholar
Selberg, J., Gomez, M. & Rolandi, M. The potential for convergence between synthetic biology and bioelectronics. Cell Systems 7, 231–244 (2018).
Google Scholar
Kim, C. Y. et al. Soft subdermal implant capable of wireless battery charging and programmable controls for applications in optogenetics. Nat. Commun. 12, 535 (2021).
Google Scholar
Villar, G., Graham, A. D. & Bayley, H. A tissue-like printed material. Science 340, 48–52 (2013).
Google Scholar
Booth, M. J. et al. Light-activated communication in synthetic tissues. Sci. Adv. 2, e1600056 (2016).
Google Scholar
Holden, M. A., Needham, D. & Bayley, H. Functional bionetworks from nanoliter water droplets. J. Am. Chem. Soc. 129, 8650–8655 (2007).
Google Scholar
Restrepo Schild, V. et al. Light-patterned current generation in a droplet bilayer array. Sci. Rep. 7, 46585 (2017).
Google Scholar
Jones, G. et al. Autonomous droplet architectures. Artif. Life 21, 195–204 (2015).
Google Scholar
Dupin, A. & Simmel, F. C. Signalling and differentiation in emulsion-based multi-compartmentalized in vitro gene circuits. Nat. Chem. 11, 32–39 (2019).
Google Scholar
Chow, B. Y. et al. High-performance genetically targetable optical neural silencing by light-driven proton pumps. Nature 463, 98–102 (2010).
Google Scholar
Yanoff, M. & Sassani, J. W. Ocular Pathology 8th edn 494 (Elsevier, 2020).
Bada Juarez, J. F. et al. Structures of the archaerhodopsin-3 transporter reveal that disordering of internal water networks underpins receptor sensitization. Nat. Commun. 12, 629 (2021).
Google Scholar
Ernst, O. P. et al. Microbial and animal rhodopsins: structures, functions and molecular mechanisms. Chem. Rev. 8, 126–163 (2014).
Google Scholar
Bamberg, E. et al. Photocurrents generated by bacteriorhodopsin on planar bilayer membranes. Eur. Biophys. J. 5, 277–292 (1979).
Google Scholar
Inoue, K. et al. Converting a light-driven proton pump into a light-gated proton channel. J. Am. Chem. Soc. 137, 3291–3299 (2015).
Google Scholar
Huang, K.-S., Bayley, H. & Khorana, H. G. Delipidation of bacteriorhodopsin and reconstitution with exogenous phospholipid. Proc. Natl Acad. Sci. USA 77, 323–327 (1980).
Google Scholar
Ming, M. et al. pH dependence of light-driven proton pumping by an archaerhodopsin from Tibet: comparison with bacteriorhodopsin. Biophys. J. 90, 3322–3332 (2006).
Google Scholar
Bean, B. The action potential in mammalian central neurons. Nat. Rev. Neurosci. 8, 451–465 (2007).
Google Scholar
Burnstock, G. Historical review: ATP as a neurotransmitter. Trends Pharmacol. Sci. 27, 166–176 (2006).
Google Scholar
Soto, E., Ortega-Ramírez, A. & Vega, R. Protons as messengers of intercellular communication in the nervous system. Front. Cell. Neurosci. 12, 342 (2018).
Google Scholar
Du, J., Hossain, Z. & Mandal, J. Protons: a neurotransmitter in the brain. Edorium J. Cell Biol. 3, 1–3 (2017).
Google Scholar
Guerra-Gomes, S., Sousa, N., Pinto, L. & Oliveira, J. F. Functional roles of astrocyte calcium elevations: from synapses to behaviour. Front. Cell. Neurosci. 11, 427 (2018).
Google Scholar
Tunuguntla, R. et al. Lipid bilayer composition can influence the orientation of proteorhodopsin in artificial membranes. Biophys. J. 105, 1388–1396 (2013).
Google Scholar
Yoshimura, K. & Kouyama, T. Structural role of bacterioruberin in the trimeric structure of archearhodopsin-2. J. Mol. Biol. 375, 1267–1281 (2008).
Google Scholar
Graham, A. D. et al. High-resolution patterned cellular constructs by droplet-based 3D printing. Sci. Rep. 7, 7004 (2017).
Google Scholar
Alcinesio, A., Krishna Kumar, R. & Bayley, H. Functional multivesicular structures with controlled architecture from 3D-printed droplet networks. ChemSystemsChem 4, e202100036 (2021).
Jeong, D.-W. et al. Enhanced stability of freestanding lipid bilayer and its stability criteria. Sci. Rep. 6, 38158 (2016).
Google Scholar
Preibisch, S., Saalfeld, S. & Tomancak, P. Globally optimal stitching of tiled 3D microscopic image acquisitions. Bioinformatics 25, 1463–1465 (2009).
Google Scholar

