Preloader

Parallel transmission in a synthetic nerve

  • Someya, T., Bao, Z. & Malliaras, G. The rise of plastic bioelectronics. Nature 540, 379–385 (2016).

    CAS 
    PubMed 
    Article 

    Google Scholar 

  • Choi, S. et al. Highly conductive, stretchable and biocompatible Ag–Au core–sheath nanowire composite for wearable and implantable bioelectronics. Nat. Nanotechnol. 13, 1048–1056 (2018).

    CAS 
    PubMed 
    Article 

    Google Scholar 

  • Lacour, S., Courtine, G. & Guck, J. Materials and technologies for soft implantable neuroprostheses. Nat. Rev. Mater. 1, 16063 (2016).

    CAS 
    Article 

    Google Scholar 

  • Yang, X. et al. Bioinspired neuron-like electronics. Nat. Mater. 18, 510–517 (2019).

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 

  • Kim, Y. et al. A bioinspired flexible organic artificial afferent nerve. Science 360, 998–1003 (2018).

    CAS 
    PubMed 
    Article 

    Google Scholar 

  • Wehner, M. et al. An integrated design and fabrication strategy for entirely soft, autonomous robots. Nature 536, 451–455 (2016).

    CAS 
    PubMed 
    Article 

    Google Scholar 

  • Karbalaei Akbari, M. & Zhuiykov, S. A bioinspired optoelectronically engineered artificial neurorobotics device with sensorimotor functionalities. Nat. Commun. 10, 3873 (2019).

    PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar 

  • Kuhnert, L., Agladze, K. I. & Krinsky, V. I. Image processing using light-sensitive chemical waves. Nature 337, 244–247 (1989).

    CAS 
    Article 

    Google Scholar 

  • Gizynski, K. & Gorecki, J. Chemical memory with states coded in light controlled oscillations of interacting Belousov–Zhabotinsky droplets. Phys. Chem. Chem. Phys. 19, 6519–6531 (2017).

    CAS 
    PubMed 
    Article 

    Google Scholar 

  • Parrilla-Gutierrez, J. M. et al. A programmable chemical computer with memory and pattern recognition. Nat. Commun. 11, 1442 (2020).

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 

  • Keene, S. T. et al. A biohybrid synapse with neurotransmitter-mediated plasticity. Nat. Mater. 19, 969–973 (2020).

    CAS 
    PubMed 
    Article 

    Google Scholar 

  • Van de Burgt, Y. et al. Organic electronics for neuromorphic computing. Nat. Electron. 1, 386–397 (2018).

    Article 

    Google Scholar 

  • Misra, N. et al. Bioelectronic silicon nanowire devices using functional membrane proteins. Proc. Natl Acad. Sci. USA 106, 13780–13784 (2009).

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 

  • Amit, M. et al. Measuring proton currents of bioinspired materials with metallic contacts. ACS Appl. Mater. Interfaces 10, 1933–1938 (2018).

    CAS 
    PubMed 
    Article 

    Google Scholar 

  • Lodish, H. et. al. Molecular Cell Biology 8th edn (W.H. Freeman, 2016).

  • Pereda, A. Electrical synapses and their functional interactions with chemical synapses. Nat. Rev. Neurosci. 15, 250–263 (2014).

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 

  • Liu, Y. et al. Soft and elastic hydrogel-based microelectronics for localized low-voltage neuromodulation. Nat. Biomed. Eng. 3, 58–68 (2019).

    CAS 
    PubMed 
    Article 

    Google Scholar 

  • Keplinger, C. et al. Stretchable, transparent, ionic conductors. Science 341, 984–987 (2013).

    CAS 
    PubMed 
    Article 

    Google Scholar 

  • Yang, C. & Suo, Z. Hydrogel ionotronics. Nat Rev Mater 3, 125–142 (2018).

    CAS 
    Article 

    Google Scholar 

  • Owens, R. M. & Malliaras, G. G. Organic electronics at the interface with biology. MRS Bull. 35, 449–456 (2010).

    CAS 
    Article 

    Google Scholar 

  • Strakosas, X., Bongo, M. & Owens, R. M. The organic electrochemical transistor for biological applications. J. Appl. Polym. Sci. 132, 41735 (2015).

    Article 
    CAS 

    Google Scholar 

  • Selberg, J., Gomez, M. & Rolandi, M. The potential for convergence between synthetic biology and bioelectronics. Cell Systems 7, 231–244 (2018).

    CAS 
    PubMed 
    Article 

    Google Scholar 

  • Kim, C. Y. et al. Soft subdermal implant capable of wireless battery charging and programmable controls for applications in optogenetics. Nat. Commun. 12, 535 (2021).

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 

  • Villar, G., Graham, A. D. & Bayley, H. A tissue-like printed material. Science 340, 48–52 (2013).

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 

  • Booth, M. J. et al. Light-activated communication in synthetic tissues. Sci. Adv. 2, e1600056 (2016).

    PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar 

  • Holden, M. A., Needham, D. & Bayley, H. Functional bionetworks from nanoliter water droplets. J. Am. Chem. Soc. 129, 8650–8655 (2007).

    CAS 
    PubMed 
    Article 

    Google Scholar 

  • Restrepo Schild, V. et al. Light-patterned current generation in a droplet bilayer array. Sci. Rep. 7, 46585 (2017).

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 

  • Jones, G. et al. Autonomous droplet architectures. Artif. Life 21, 195–204 (2015).

    PubMed 
    Article 

    Google Scholar 

  • Dupin, A. & Simmel, F. C. Signalling and differentiation in emulsion-based multi-compartmentalized in vitro gene circuits. Nat. Chem. 11, 32–39 (2019).

    CAS 
    PubMed 
    Article 

    Google Scholar 

  • Chow, B. Y. et al. High-performance genetically targetable optical neural silencing by light-driven proton pumps. Nature 463, 98–102 (2010).

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 

  • Yanoff, M. & Sassani, J. W. Ocular Pathology 8th edn 494 (Elsevier, 2020).

  • Bada Juarez, J. F. et al. Structures of the archaerhodopsin-3 transporter reveal that disordering of internal water networks underpins receptor sensitization. Nat. Commun. 12, 629 (2021).

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 

  • Ernst, O. P. et al. Microbial and animal rhodopsins: structures, functions and molecular mechanisms. Chem. Rev. 8, 126–163 (2014).

    Article 
    CAS 

    Google Scholar 

  • Bamberg, E. et al. Photocurrents generated by bacteriorhodopsin on planar bilayer membranes. Eur. Biophys. J. 5, 277–292 (1979).

    CAS 

    Google Scholar 

  • Inoue, K. et al. Converting a light-driven proton pump into a light-gated proton channel. J. Am. Chem. Soc. 137, 3291–3299 (2015).

    CAS 
    PubMed 
    Article 

    Google Scholar 

  • Huang, K.-S., Bayley, H. & Khorana, H. G. Delipidation of bacteriorhodopsin and reconstitution with exogenous phospholipid. Proc. Natl Acad. Sci. USA 77, 323–327 (1980).

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 

  • Ming, M. et al. pH dependence of light-driven proton pumping by an archaerhodopsin from Tibet: comparison with bacteriorhodopsin. Biophys. J. 90, 3322–3332 (2006).

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 

  • Bean, B. The action potential in mammalian central neurons. Nat. Rev. Neurosci. 8, 451–465 (2007).

    CAS 
    PubMed 
    Article 

    Google Scholar 

  • Burnstock, G. Historical review: ATP as a neurotransmitter. Trends Pharmacol. Sci. 27, 166–176 (2006).

    CAS 
    PubMed 
    Article 

    Google Scholar 

  • Soto, E., Ortega-Ramírez, A. & Vega, R. Protons as messengers of intercellular communication in the nervous system. Front. Cell. Neurosci. 12, 342 (2018).

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 

  • Du, J., Hossain, Z. & Mandal, J. Protons: a neurotransmitter in the brain. Edorium J. Cell Biol. 3, 1–3 (2017).

    CAS 

    Google Scholar 

  • Guerra-Gomes, S., Sousa, N., Pinto, L. & Oliveira, J. F. Functional roles of astrocyte calcium elevations: from synapses to behaviour. Front. Cell. Neurosci. 11, 427 (2018).

    PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar 

  • Tunuguntla, R. et al. Lipid bilayer composition can influence the orientation of proteorhodopsin in artificial membranes. Biophys. J. 105, 1388–1396 (2013).

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 

  • Yoshimura, K. & Kouyama, T. Structural role of bacterioruberin in the trimeric structure of archearhodopsin-2. J. Mol. Biol. 375, 1267–1281 (2008).

    CAS 
    PubMed 
    Article 

    Google Scholar 

  • Graham, A. D. et al. High-resolution patterned cellular constructs by droplet-based 3D printing. Sci. Rep. 7, 7004 (2017).

    PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar 

  • Alcinesio, A., Krishna Kumar, R. & Bayley, H. Functional multivesicular structures with controlled architecture from 3D-printed droplet networks. ChemSystemsChem 4, e202100036 (2021).

  • Jeong, D.-W. et al. Enhanced stability of freestanding lipid bilayer and its stability criteria. Sci. Rep. 6, 38158 (2016).

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 

  • Preibisch, S., Saalfeld, S. & Tomancak, P. Globally optimal stitching of tiled 3D microscopic image acquisitions. Bioinformatics 25, 1463–1465 (2009).

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 

  • Source link