Mieszawska, A. J., Mulder, W. J., Fayad, Z. A. & Cormode, D. P. Multifunctional gold nanoparticles for diagnosis and therapy of disease. Mol. Pharm. 10(3), 831–847. https://doi.org/10.1021/mp3005885 (2013).
Google Scholar
Kohout, C., Santi, C. & Polito, L. Anisotropic gold nanoparticles in biomedical applications. Int. J. Mol. Sci. 19(11), 3385. https://doi.org/10.3390/ijms19113385 (2018).
Google Scholar
Yu, L. et al. Progress of gold nanomaterials for colorimetric sensing based on different strategies. Trends Anal. Chem. 127, 115880. https://doi.org/10.1016/j.trac.2020.115880 (2020).
Google Scholar
Pylaev, T., Avdeeva, E. & Khlebtsov, N. Plasmonic nanoparticles and nucleic acids hybrids for targeted gene delivery, bioimaging, and molecular recognition. J. Innov. Opt. Health Sci. 14(4), 2130003. https://doi.org/10.1142/S1793545821300032 (2021).
Google Scholar
Ratto, F., Matteini, P., Centi, S., Rossi, F. & Pini, R. Gold nanorods as new nanochromophores for photothermal therapies. J. Biophotonics 4(1–2), 64–73. https://doi.org/10.1002/jbio.201000002 (2011).
Google Scholar
Jain, P. K., Lee, K. S., El-Sayed, I. H. & El-Sayed, M. A. Calculated absorption and scattering properties of gold nanoparticles of different size, shape, and composition: Applications in biological imaging and biomedicine. J. Phys. Chem. B 110(14), 7238–7248. https://doi.org/10.1021/jp057170o (2006).
Google Scholar
Ghosh, S. K. & Pal, T. Interparticle coupling effect on the surface plasmon resonance of gold nanoparticles: From theory to applications. Chem. Rev. 107, 4797–4862. https://doi.org/10.1021/CR0680282 (2007).
Google Scholar
Aubin-Tam, M.-E. Conjugation of nanoparticles to proteins. Methods Mol. Biol. 1025, 19–27. https://doi.org/10.1007/978-1-62703-462-3_3 (2013).
Google Scholar
Centi, S., Ratto, F., Tatini, F., Lai, S. & Pini, R. Ready-to-use protein G-conjugated gold nanorods for biosensing and biomedical applications. J. Nanobiotechnol. 16(1), 5. https://doi.org/10.1186/s12951-017-0329-7 (2018).
Google Scholar
Centi, S. et al. In vitro assessment of antibody-conjugated gold nanorods for systemic injections. J. Nanobiotechnol. 12, 55. https://doi.org/10.1186/s12951-014-0055-3 (2014).
Google Scholar
Jazayeri, M. H., Amani, H., Pourfatollah, A. A., Pazoki-Toroudi, H. & Sedighimoghaddam, B. Various methods of gold nanoparticles (GNPs) conjugation to antibodies. Sens. Bio-Sens. Res. 9, 17–22. https://doi.org/10.1016/j.sbsr.2016.04.002 (2016).
Google Scholar
Akbarzadeh Khiavi, M. et al. Enzyme-conjugated gold nanoparticles for combined enzyme and photothermal therapy of colon cancer cells. Colloids Surf. A Physicochem. Eng. Asp. 572, 333–344. https://doi.org/10.1016/j.colsurfa.2019.04.019 (2019).
Google Scholar
Wang, Y., van Asdonk, K. & Zijlstra, P. A robust and general approach to quantitatively conjugate enzymes to plasmonic nanoparticles. Langmuir 35(41), 13356–13363. https://doi.org/10.1021/acs.langmuir.9b01879 (2019).
Google Scholar
Zhang, J., Liu, B., Liu, H., Zhang, X. & Tan, W. Aptamer-conjugated gold nanoparticles for bioanalysis. Nanomedicine (Lond.) 8(6), 983–993. https://doi.org/10.2217/nnm.13.80 (2013).
Google Scholar
Dorraj, G. S., Rassaee, M. J., Latifi, A. M., Pishgoo, B. & Tavallaei, M. Selection of DNA aptamers against human cardiac troponin I for colorimetric sensor based dot blot application. J. Biotechnol. 208, 80–86. https://doi.org/10.1016/j.jbiotec.2015.05.002 (2015).
Google Scholar
Li, J. et al. Synergetic approach for simple and rapid conjugation of gold nanoparticles with oligonucleotides. ACS Appl. Mater. Interfaces 6(19), 16800–16807. https://doi.org/10.1021/am504139d (2014).
Google Scholar
Jamdagni, P., Khatri, P. & Rana, J. S. Nanoparticles based DNA conjugates for detection of pathogenic microorganisms. Int. Nano Lett. 6, 139–146. https://doi.org/10.1007/s40089-015-0177-0 (2016).
Google Scholar
Wang, C. H., Chang, C. W. & Peng, C. A. Gold nanorod stabilized by thiolated chitosan as photothermal absorber for cancer cell treatment. J. Nanopart. Res. 13, 2749–2758. https://doi.org/10.1007/s11051-010-0162-5 (2011).
Google Scholar
Lopes, L. C. et al. Gold nanoparticles capped with polysaccharides extracted from pineapple gum: Evaluation of their hemocompatibility and electrochemical sensing properties. Talanta 223, 121634. https://doi.org/10.1016/j.talanta.2020.121634 (2021).
Google Scholar
Armanetti, P. et al. Enhanced antitumoral activity and photoacoustic imaging properties of AuNP-enriched endothelial colony forming cells on melanoma. Adv. Sci. 8(4), 2001175. https://doi.org/10.1002/advs.202001175 (2020).
Google Scholar
Puertas, S. et al. Designing novel nano-immunoassays: Antibody orientation versus sensitivity. J. Phys. D Appl. Phys. 43(47), 474012. https://doi.org/10.1088/0022-3727/43/47/474012 (2010).
Google Scholar
Li, H. & Rothberg, L. Colorimetric detection of DNA sequences based on electrostatic interactions with unmodified gold nanoparticles. PNAS 101(39), 14036–14039. https://doi.org/10.1073/pnas.0406115101 (2004).
Google Scholar
Chatterjee, K., Kuo, C. W., Chen, A. & Chen, P. Detection of residual rifampicin in urine via fluorescence quenching of gold nanoclusters on paper. J. Nanobiotechnol. 13, 46. https://doi.org/10.1186/s12951-015-0105-5 (2015).
Google Scholar
Cheng, S. et al. Paper-based readout to improve the measuring accuracy of gold nanoparticle aggregation-based colorimetric biosensors. Anal. Methods 9, 5407–5413. https://doi.org/10.1039/C7AY01683B (2017).
Google Scholar
Ma, X. et al. Noble metal nanoparticle-based multicolor immunoassays: An approach toward visual quantification of the analytes with the naked eye. ACS Sens. 4(4), 782–791. https://doi.org/10.1021/acssensors.9b00438 (2019).
Google Scholar
Nilghaz, A. et al. Noble-metal nanoparticle-based colorimetric diagnostic assays for point-of-need applications. ACS Appl. Nano Mater. 4(12), 12808–12824. https://doi.org/10.1021/acsanm.1c01545 (2021).
Google Scholar
de la Rica, R. & Stevens, M. M. Plasmonic ELISA for the detection of analytes at ultralow concentrations with the naked eye. Nat. Protoc. 8, 1759–1764. https://doi.org/10.1038/nprot.2013.085 (2013).
Google Scholar
Bui, M.-P.N., Ahmed, S. & Abbas, A. Single-digit pathogen and attomolar detection with the naked eye using liposome-amplified plasmonic immunoassay. Nano Lett. 15(9), 6239–6246. https://doi.org/10.1021/acs.nanolett.5b02837 (2015).
Google Scholar
Liu, H. et al. A wash-free homogeneous colorimetric immunoassay method. Theranostics. 6(1), 54–64. https://doi.org/10.7150/thno.13159 (2016).
Google Scholar
Koczula, K. M. & Gallotta, A. Lateral flow assays. Essays Biochem. 60, 111–120. https://doi.org/10.1042/EBC20150012 (2016).
Google Scholar
Kim, H., Chung, D.-R. & Kang, M. A new point-of-care test for the diagnosis of infectious diseases based on multiplex lateral flow immunoassays. Analyst 144, 2460–2466. https://doi.org/10.1039/C8AN02295J (2019).
Google Scholar
Joseph, V. et al. SERS enhancement of gold nanospheres of defined size. J. Raman Spectrosc. 42, 1736–1742. https://doi.org/10.1002/jrs.2939 (2011).
Google Scholar
Jääskeläinen, A. E. et al. Evaluation of three rapid lateral flow antigen detection tests for the diagnosis of SARS-CoV-2 infection. J. Clin. Virol. 137, 104785. https://doi.org/10.1016/j.jcv.2021.104785 (2021).
Google Scholar
Kim, D. et al. Development and clinical evaluation of an immunochromatography-based rapid antigen test (GenBody™ COVAG025) for COVID-19 diagnosis. Viruses 13(5), 796. https://doi.org/10.3390/v13050796 (2021).
Google Scholar
Bordi, L. et al. Frequency and duration of SARS-CoV-2 shedding in oral fluid samples assessed by a modified commercial rapid molecular assay. Viruses 12(10), 1184. https://doi.org/10.3390/v12101184 (2020).
Google Scholar
Aveyard, J., Mehrabi, M., Cossins, A., Braven, H. & Wilson, R. One step visual detection of PCR products with gold nanoparticles and a nucleic acid lateral flow (NALF) device. Chem. Commun. https://doi.org/10.1039/b708859k (2007).
Google Scholar
Nagatani, N. et al. Detection of influenza virus using a lateral flow immunoassay for amplified DNA by a microfluidic RT-PCR chip. Analyst 137(15), 3422–3426. https://doi.org/10.1039/c2an16294f (2012).
Google Scholar
Nihonyanagi, S. et al. Clinical usefulness of multiplex PCR lateral flow in MRSA detection: A novel, rapid genetic testing method. Inflammation 35(3), 927–934. https://doi.org/10.1007/s10753-011-9395-4 (2012).
Google Scholar
Prompamorn, P. et al. The development of loop-mediated isothermal amplification combined with lateral flow dipstick for detection of Vibrio parahaemolyticus. Lett. Appl. Microbiol. 52(4), 344–351. https://doi.org/10.1111/j.1472-765X.2011.03007.x (2011).
Google Scholar
Roskos, K. et al. Simple system for isothermal DNA amplification coupled to lateral flow detection. PLoS ONE 8(7), e69355. https://doi.org/10.1371/journal.pone.0069355 (2013).
Google Scholar
Jauset-Rubio, M. et al. Ultrasensitive, rapid and inexpensive detection of DNA using paper based lateral flow assay. Sci. Rep. 6, 37732. https://doi.org/10.1038/srep37732 (2016).
Google Scholar
Bulgakov, V. P., Shkryl, Y. N., Veremeichik, G. N., Gorpenchenko, T. Y. & Inyushkina, Y. V. Application of agrobacterium rol genes in plant biotechnology: A natural phenomenon of secondary metabolism regulation. In Genetic Transformation (ed. Alvarez, M.) (IntechOpen, 2011).
Bulgakov, V. P. Functions of rol genes in plant secondary metabolism. Biotechnol. Adv. 26(4), 318–324. https://doi.org/10.1016/j.biotechadv.2008.03.001 (2008).
Google Scholar
Bogani, P., Liò, P., Intrieri, M. C. & Buiatti, M. A physiological and molecular analysis of the genus Nicotiana. Mol. Phylogenet. Evol. 7, 62–70. https://doi.org/10.1006/mpev.1996.0356 (1997).
Google Scholar
Intrieri, M. C. & Buiatti, M. The horizontal transfer of Agrobacterium rhizogenes genes and the evolution of the genus Nicotiana. Mol. Phylogenet. Evol. 20, 100–110. https://doi.org/10.1006/mpev.2001.0927 (2001).
Google Scholar
Aoki, S. & Syōno, K. Horizontal gene transfer and mutation: Ngrol genes in the genome of Nicotiana glauca. Proc. Natl. Acad. Sci. U.S.A. 96(23), 13229–13234. https://doi.org/10.1073/pnas.96.23.13229 (1999).
Google Scholar
Hu, M. et al. Gold nanostructures: Engineering their plasmonic properties for biomedical applications. Chem. Soc. Rev. 35(11), 1084–1094. https://doi.org/10.1039/b517615h (2006).
Google Scholar
Ratto, F. et al. CW laser-induced photothermal conversion and shape transformation of gold nanodogbones in hydrated chitosan films. J. Nanopart. Res. 13, 4337–4348. https://doi.org/10.1007/s11051-011-0380-5 (2011).
Google Scholar
Huff, T. B. et al. Hyperthermic effects of gold nanorods on tumor cells. Nanomedicine 2(1), 125–132. https://doi.org/10.2217/17435889.2.1.125 (2007).
Google Scholar
Hauck, T. S., Jennings, T. L., Yatsenko, T., Kumaradas, J. C. & Chan, W. C. W. Enhancing the toxicity of cancer chemotherapeutics with gold nanorod hyperthermia. Adv. Mater. 20, 3832–3838. https://doi.org/10.1002/adma.200800921 (2008).
Google Scholar
Manohar, S., Ungureanu, C. & Van Leeuwen, T. G. Gold nanorods as molecular contrast agents in photoacoustic imaging: The promises and the caveats. Contrast Media Mol. Imaging 6, 389–400. https://doi.org/10.1002/cmmi.454 (2011).
Google Scholar
Ratto, F. et al. Plasmonic particles that hit hypoxic cells. Adv. Funct. Mater. 25(2), 316–323. https://doi.org/10.1002/adfm.201402118 (2015).
Google Scholar
Ratto, F. et al. A robust design for cellular vehicles of gold nanorods for multimodal imaging. Adv. Funct. Mater. 26(4), 7954–7954. https://doi.org/10.1002/adfm.201600836 (2016).
Google Scholar
van der Werf, C. et al. Diagnostic yield in sudden unexplained death and aborted cardiac arrest in the young: the experience of a tertiary referral center in The Netherlands. Heart Rhythm 7(10), 1383–1389. https://doi.org/10.1016/j.hrthm.2010.05.036 (2010).
Google Scholar
Wijaya, A., Schaffer, S. B., Pallares, I. G. & Hamad-Schifferli, K. Selective release of multiple DNA oligonucleotides from gold nanorods. ACS Nano 3(1), 80–86. https://doi.org/10.1021/nn800702n (2009).
Google Scholar
Mehtala, J. G. et al. Citrate-stabilized gold nanorods. Langmuir 30, 13727–13730. https://doi.org/10.1021/la5029542 (2014).
Google Scholar
Wang, J. et al. siRNA delivery using dithiocarbamate-anchored oligonucleotides on gold nanorods. Bioconjug. Chem. 30(2), 443–453. https://doi.org/10.1021/acs.bioconjchem.8b00723 (2019).
Google Scholar
Khlebtsov, B. & Khlebtsov, N. Surface-enhanced raman scattering-based lateral-flow immunoassay. Nanomaterials (Basel) 10(11), 2228. https://doi.org/10.3390/nano10112228 (2020).
Google Scholar
Yan, S. et al. SERS-based lateral flow assay combined with machine learning for highly sensitive quantitative analysis of Escherichia coli O157:H7. Anal. Bioanal. Chem. 412(28), 7881–7890. https://doi.org/10.1007/s00216-020-02921-0 (2020).
Google Scholar
Jo, Y. J. et al. Quantitative phase imaging and artificial intelligence: A review. IEEE J. Sel. Top. Quantum Electron. 25(1), 1–14. https://doi.org/10.1109/JSTQE.2018.2859234 (2019).
Google Scholar
Oszwald, A., Wasinger, G., Pradere, B., Shariat, S. F. & Compérat, E. M. Artificial intelligence in prostate histopathology: Where are we in 2021? Curr. Opin. Urol. 31(4), 430–435. https://doi.org/10.1097/MOU.0000000000000883 (2021).
Google Scholar
Yoshida, H. et al. Automated histological classification of whole slide images of colorectal biopsy specimens. Oncotarget 8(53), 90719–90729. https://doi.org/10.18632/oncotarget.21819 (2017).
Google Scholar
Luo, H. et al. Real-time artificial intelligence for detection of upper gastrointestinal cancer by endoscopy: A multicentre, case-control, diagnostic study. Lancet Oncol. 20(12), 1645–1654. https://doi.org/10.1016/S1470-2045(19)30637-0 (2019).
Google Scholar
Repici, A. et al. Efficacy of real-time computer-aided detection of colorectal neoplasia in a randomized trial. Gastroenterology 159(2), 512–520. https://doi.org/10.1053/j.gastro.2020.04.062 (2020).
Google Scholar
Carrio, A., Sampedro, C., Sanchez-Lopez, J. L., Pimienta, M. & Campoy, P. Automated low-cost smartphone-based lateral flow saliva test reader for drugs-of-abuse detection. Sensors 15(11), 29569–29593. https://doi.org/10.3390/s151129569 (2015).
Google Scholar
Foysal, K. H., Seo, S. E., Kim, M. J., Kwon, O. S. & Chong, J. W. Analyte quantity detection from lateral flow assay using a smartphone. Sensors 19(21), 4812. https://doi.org/10.3390/s19214812 (2019).
Google Scholar
Yan, W. et al. Machine learning approach to enhance the performance of MNP-labeled lateral flow immunoassay. Nano-Micro Lett. https://doi.org/10.1007/s40820-019-0239-3 (2019).
Google Scholar
Tania, M. H. et al. Intelligent image-based colourimetric tests using machine learning framework for lateral flow assays. Expert Syst. Appl. 139, 112843. https://doi.org/10.1016/j.eswa.2019.112843 (2020).
Google Scholar
Hurst, S. J., Lytton-Jean, A. K. R. & Mirkin, C. A. Maximizing DNA loading on a range of gold nanoparticle sizes. Anal. Chem. 78(24), 8313–8318. https://doi.org/10.1021/ac0613582 (2006).
Google Scholar
Zhang, X., Servos, M. R. & Liu, J. Surface science of DNA adsorption onto citrate-capped gold nanoparticles. Langmuir 28(8), 3896–3902. https://doi.org/10.1021/la205036p (2012).
Google Scholar
Doyle, J. J. & Doyle, J. L. A rapid procedure for DNA purification from small quantities of fresh leaf tissue. Phytochem. Bull. 19, 11–15 (1987).
Clarke, J. D. Cetyltrimethyl ammonium bromide (CTAB) DNA miniprep for plant DNA isolation. Cold Spring Harb. Protoc. 2009(3), 5177. https://doi.org/10.1101/pdb.prot5177 (2009).
Google Scholar
Healey, A., Furtado, A., Cooper, T. & Henry, R. J. Protocol: A simple method for extracting next-generation sequencing quality genomic DNA from recalcitrant plant species. Plant Methods 10, 21. https://doi.org/10.1186/1746-4811-10-21 (2014).
Google Scholar
Serwer, P. Agarose gels: Properties and use for electrophoresis. Electrophoresis 4(6), 375–382. https://doi.org/10.1002/elps.1150040602 (1983).
Google Scholar
Zimm, B. H. & Levene, S. D. Problems and prospects in the theory of gel electrophoresis of DNA. Q. Rev. Biophys. 25(2), 171–204. https://doi.org/10.1017/s0033583500004662 (1992).
Google Scholar
Lide, D. R. CRC Handbook of Chemistry and Physics (CRC Press, 2005).
Höltke, H. J. et al. The digoxigenin (DIG) system for non-radioactive labeling and detection of nucleic acids—An overview. Cell. Mol. Biol. 41(7), 883–905 (1995).
Deegan, R. D. et al. Capillary flow as the cause of ring stains from dried liquid drops. Nature 389, 827–829. https://doi.org/10.1038/39827 (1997).
Google Scholar
Ye, X., Zheng, C., Chen, J., Gao, Y. & Murray, C. B. Using binary surfactant mixtures to simultaneously improve the dimensional tunability and monodispersity in the seeded growth of gold nanorods. Nano Lett. 13(2), 765–771. https://doi.org/10.1021/nl304478h (2013).
Google Scholar
Wilson, C. G., Sisco, P. N., Gadala-Maria, F. A., Murphy, C. J. & Goldsmith, E. C. Polyelectrolyte-coated gold nanorods and their interactions with type I collagen. Biomaterials 30(29), 5639–5648. https://doi.org/10.1016/j.biomaterials.2009.07.011 (2009).
Google Scholar
Cardarelli, M. et al. Agrobacterium rhizogenes TDNA gene capable of inducing hairy root phenotype. Mol. Gen. Genet. 209, 475–480. https://doi.org/10.1007/BF00331152 (1987).
Google Scholar
Schmitz, G. G., Walter, T., Seibl, R. & Kessler, C. Nonradioactive labeling of oligonucleotides in vitro with the hapten digoxigenin by tailing with terminal transferase. Anal. Biochem. 192(1), 222–231. https://doi.org/10.1016/0003-2697(91)90212-c (1991).
Google Scholar
Pedregosa, F. et al. Scikit-learn: Machine learning in python. J. Mach. Learn. Res. 12(85), 2825–2830 (2011).
Google Scholar

