Preloader

Paper-based genetic assays with bioconjugated gold nanorods and an automated readout pipeline

  • Mieszawska, A. J., Mulder, W. J., Fayad, Z. A. & Cormode, D. P. Multifunctional gold nanoparticles for diagnosis and therapy of disease. Mol. Pharm. 10(3), 831–847. https://doi.org/10.1021/mp3005885 (2013).

    CAS 
    Article 

    Google Scholar 

  • Kohout, C., Santi, C. & Polito, L. Anisotropic gold nanoparticles in biomedical applications. Int. J. Mol. Sci. 19(11), 3385. https://doi.org/10.3390/ijms19113385 (2018).

    CAS 
    Article 

    Google Scholar 

  • Yu, L. et al. Progress of gold nanomaterials for colorimetric sensing based on different strategies. Trends Anal. Chem. 127, 115880. https://doi.org/10.1016/j.trac.2020.115880 (2020).

    CAS 
    Article 

    Google Scholar 

  • Pylaev, T., Avdeeva, E. & Khlebtsov, N. Plasmonic nanoparticles and nucleic acids hybrids for targeted gene delivery, bioimaging, and molecular recognition. J. Innov. Opt. Health Sci. 14(4), 2130003. https://doi.org/10.1142/S1793545821300032 (2021).

    CAS 
    Article 

    Google Scholar 

  • Ratto, F., Matteini, P., Centi, S., Rossi, F. & Pini, R. Gold nanorods as new nanochromophores for photothermal therapies. J. Biophotonics 4(1–2), 64–73. https://doi.org/10.1002/jbio.201000002 (2011).

    CAS 
    Article 

    Google Scholar 

  • Jain, P. K., Lee, K. S., El-Sayed, I. H. & El-Sayed, M. A. Calculated absorption and scattering properties of gold nanoparticles of different size, shape, and composition: Applications in biological imaging and biomedicine. J. Phys. Chem. B 110(14), 7238–7248. https://doi.org/10.1021/jp057170o (2006).

    CAS 
    Article 

    Google Scholar 

  • Ghosh, S. K. & Pal, T. Interparticle coupling effect on the surface plasmon resonance of gold nanoparticles: From theory to applications. Chem. Rev. 107, 4797–4862. https://doi.org/10.1021/CR0680282 (2007).

    CAS 
    Article 

    Google Scholar 

  • Aubin-Tam, M.-E. Conjugation of nanoparticles to proteins. Methods Mol. Biol. 1025, 19–27. https://doi.org/10.1007/978-1-62703-462-3_3 (2013).

    CAS 
    Article 

    Google Scholar 

  • Centi, S., Ratto, F., Tatini, F., Lai, S. & Pini, R. Ready-to-use protein G-conjugated gold nanorods for biosensing and biomedical applications. J. Nanobiotechnol. 16(1), 5. https://doi.org/10.1186/s12951-017-0329-7 (2018).

    CAS 
    Article 

    Google Scholar 

  • Centi, S. et al. In vitro assessment of antibody-conjugated gold nanorods for systemic injections. J. Nanobiotechnol. 12, 55. https://doi.org/10.1186/s12951-014-0055-3 (2014).

    CAS 
    Article 

    Google Scholar 

  • Jazayeri, M. H., Amani, H., Pourfatollah, A. A., Pazoki-Toroudi, H. & Sedighimoghaddam, B. Various methods of gold nanoparticles (GNPs) conjugation to antibodies. Sens. Bio-Sens. Res. 9, 17–22. https://doi.org/10.1016/j.sbsr.2016.04.002 (2016).

    Article 

    Google Scholar 

  • Akbarzadeh Khiavi, M. et al. Enzyme-conjugated gold nanoparticles for combined enzyme and photothermal therapy of colon cancer cells. Colloids Surf. A Physicochem. Eng. Asp. 572, 333–344. https://doi.org/10.1016/j.colsurfa.2019.04.019 (2019).

    CAS 
    Article 

    Google Scholar 

  • Wang, Y., van Asdonk, K. & Zijlstra, P. A robust and general approach to quantitatively conjugate enzymes to plasmonic nanoparticles. Langmuir 35(41), 13356–13363. https://doi.org/10.1021/acs.langmuir.9b01879 (2019).

    CAS 
    Article 

    Google Scholar 

  • Zhang, J., Liu, B., Liu, H., Zhang, X. & Tan, W. Aptamer-conjugated gold nanoparticles for bioanalysis. Nanomedicine (Lond.) 8(6), 983–993. https://doi.org/10.2217/nnm.13.80 (2013).

    CAS 
    Article 

    Google Scholar 

  • Dorraj, G. S., Rassaee, M. J., Latifi, A. M., Pishgoo, B. & Tavallaei, M. Selection of DNA aptamers against human cardiac troponin I for colorimetric sensor based dot blot application. J. Biotechnol. 208, 80–86. https://doi.org/10.1016/j.jbiotec.2015.05.002 (2015).

    CAS 
    Article 

    Google Scholar 

  • Li, J. et al. Synergetic approach for simple and rapid conjugation of gold nanoparticles with oligonucleotides. ACS Appl. Mater. Interfaces 6(19), 16800–16807. https://doi.org/10.1021/am504139d (2014).

    CAS 
    Article 

    Google Scholar 

  • Jamdagni, P., Khatri, P. & Rana, J. S. Nanoparticles based DNA conjugates for detection of pathogenic microorganisms. Int. Nano Lett. 6, 139–146. https://doi.org/10.1007/s40089-015-0177-0 (2016).

    CAS 
    Article 

    Google Scholar 

  • Wang, C. H., Chang, C. W. & Peng, C. A. Gold nanorod stabilized by thiolated chitosan as photothermal absorber for cancer cell treatment. J. Nanopart. Res. 13, 2749–2758. https://doi.org/10.1007/s11051-010-0162-5 (2011).

    CAS 
    Article 

    Google Scholar 

  • Lopes, L. C. et al. Gold nanoparticles capped with polysaccharides extracted from pineapple gum: Evaluation of their hemocompatibility and electrochemical sensing properties. Talanta 223, 121634. https://doi.org/10.1016/j.talanta.2020.121634 (2021).

    CAS 
    Article 

    Google Scholar 

  • Armanetti, P. et al. Enhanced antitumoral activity and photoacoustic imaging properties of AuNP-enriched endothelial colony forming cells on melanoma. Adv. Sci. 8(4), 2001175. https://doi.org/10.1002/advs.202001175 (2020).

    CAS 
    Article 

    Google Scholar 

  • Puertas, S. et al. Designing novel nano-immunoassays: Antibody orientation versus sensitivity. J. Phys. D Appl. Phys. 43(47), 474012. https://doi.org/10.1088/0022-3727/43/47/474012 (2010).

    CAS 
    Article 

    Google Scholar 

  • Li, H. & Rothberg, L. Colorimetric detection of DNA sequences based on electrostatic interactions with unmodified gold nanoparticles. PNAS 101(39), 14036–14039. https://doi.org/10.1073/pnas.0406115101 (2004).

    CAS 
    Article 

    Google Scholar 

  • Chatterjee, K., Kuo, C. W., Chen, A. & Chen, P. Detection of residual rifampicin in urine via fluorescence quenching of gold nanoclusters on paper. J. Nanobiotechnol. 13, 46. https://doi.org/10.1186/s12951-015-0105-5 (2015).

    CAS 
    Article 

    Google Scholar 

  • Cheng, S. et al. Paper-based readout to improve the measuring accuracy of gold nanoparticle aggregation-based colorimetric biosensors. Anal. Methods 9, 5407–5413. https://doi.org/10.1039/C7AY01683B (2017).

    CAS 
    Article 

    Google Scholar 

  • Ma, X. et al. Noble metal nanoparticle-based multicolor immunoassays: An approach toward visual quantification of the analytes with the naked eye. ACS Sens. 4(4), 782–791. https://doi.org/10.1021/acssensors.9b00438 (2019).

    CAS 
    Article 

    Google Scholar 

  • Nilghaz, A. et al. Noble-metal nanoparticle-based colorimetric diagnostic assays for point-of-need applications. ACS Appl. Nano Mater. 4(12), 12808–12824. https://doi.org/10.1021/acsanm.1c01545 (2021).

    CAS 
    Article 

    Google Scholar 

  • de la Rica, R. & Stevens, M. M. Plasmonic ELISA for the detection of analytes at ultralow concentrations with the naked eye. Nat. Protoc. 8, 1759–1764. https://doi.org/10.1038/nprot.2013.085 (2013).

    CAS 
    Article 

    Google Scholar 

  • Bui, M.-P.N., Ahmed, S. & Abbas, A. Single-digit pathogen and attomolar detection with the naked eye using liposome-amplified plasmonic immunoassay. Nano Lett. 15(9), 6239–6246. https://doi.org/10.1021/acs.nanolett.5b02837 (2015).

    CAS 
    Article 

    Google Scholar 

  • Liu, H. et al. A wash-free homogeneous colorimetric immunoassay method. Theranostics. 6(1), 54–64. https://doi.org/10.7150/thno.13159 (2016).

    CAS 
    Article 

    Google Scholar 

  • Koczula, K. M. & Gallotta, A. Lateral flow assays. Essays Biochem. 60, 111–120. https://doi.org/10.1042/EBC20150012 (2016).

    Article 

    Google Scholar 

  • Kim, H., Chung, D.-R. & Kang, M. A new point-of-care test for the diagnosis of infectious diseases based on multiplex lateral flow immunoassays. Analyst 144, 2460–2466. https://doi.org/10.1039/C8AN02295J (2019).

    CAS 
    Article 

    Google Scholar 

  • Joseph, V. et al. SERS enhancement of gold nanospheres of defined size. J. Raman Spectrosc. 42, 1736–1742. https://doi.org/10.1002/jrs.2939 (2011).

    CAS 
    Article 

    Google Scholar 

  • Jääskeläinen, A. E. et al. Evaluation of three rapid lateral flow antigen detection tests for the diagnosis of SARS-CoV-2 infection. J. Clin. Virol. 137, 104785. https://doi.org/10.1016/j.jcv.2021.104785 (2021).

    CAS 
    Article 

    Google Scholar 

  • Kim, D. et al. Development and clinical evaluation of an immunochromatography-based rapid antigen test (GenBody™ COVAG025) for COVID-19 diagnosis. Viruses 13(5), 796. https://doi.org/10.3390/v13050796 (2021).

    CAS 
    Article 

    Google Scholar 

  • Bordi, L. et al. Frequency and duration of SARS-CoV-2 shedding in oral fluid samples assessed by a modified commercial rapid molecular assay. Viruses 12(10), 1184. https://doi.org/10.3390/v12101184 (2020).

    CAS 
    Article 

    Google Scholar 

  • Aveyard, J., Mehrabi, M., Cossins, A., Braven, H. & Wilson, R. One step visual detection of PCR products with gold nanoparticles and a nucleic acid lateral flow (NALF) device. Chem. Commun. https://doi.org/10.1039/b708859k (2007).

    Article 

    Google Scholar 

  • Nagatani, N. et al. Detection of influenza virus using a lateral flow immunoassay for amplified DNA by a microfluidic RT-PCR chip. Analyst 137(15), 3422–3426. https://doi.org/10.1039/c2an16294f (2012).

    CAS 
    Article 

    Google Scholar 

  • Nihonyanagi, S. et al. Clinical usefulness of multiplex PCR lateral flow in MRSA detection: A novel, rapid genetic testing method. Inflammation 35(3), 927–934. https://doi.org/10.1007/s10753-011-9395-4 (2012).

    CAS 
    Article 

    Google Scholar 

  • Prompamorn, P. et al. The development of loop-mediated isothermal amplification combined with lateral flow dipstick for detection of Vibrio parahaemolyticus. Lett. Appl. Microbiol. 52(4), 344–351. https://doi.org/10.1111/j.1472-765X.2011.03007.x (2011).

    CAS 
    Article 

    Google Scholar 

  • Roskos, K. et al. Simple system for isothermal DNA amplification coupled to lateral flow detection. PLoS ONE 8(7), e69355. https://doi.org/10.1371/journal.pone.0069355 (2013).

    CAS 
    Article 

    Google Scholar 

  • Jauset-Rubio, M. et al. Ultrasensitive, rapid and inexpensive detection of DNA using paper based lateral flow assay. Sci. Rep. 6, 37732. https://doi.org/10.1038/srep37732 (2016).

    CAS 
    Article 

    Google Scholar 

  • Bulgakov, V. P., Shkryl, Y. N., Veremeichik, G. N., Gorpenchenko, T. Y. & Inyushkina, Y. V. Application of agrobacterium rol genes in plant biotechnology: A natural phenomenon of secondary metabolism regulation. In Genetic Transformation (ed. Alvarez, M.) (IntechOpen, 2011).

    Google Scholar 

  • Bulgakov, V. P. Functions of rol genes in plant secondary metabolism. Biotechnol. Adv. 26(4), 318–324. https://doi.org/10.1016/j.biotechadv.2008.03.001 (2008).

    CAS 
    Article 

    Google Scholar 

  • Bogani, P., Liò, P., Intrieri, M. C. & Buiatti, M. A physiological and molecular analysis of the genus Nicotiana. Mol. Phylogenet. Evol. 7, 62–70. https://doi.org/10.1006/mpev.1996.0356 (1997).

    CAS 
    Article 

    Google Scholar 

  • Intrieri, M. C. & Buiatti, M. The horizontal transfer of Agrobacterium rhizogenes genes and the evolution of the genus Nicotiana. Mol. Phylogenet. Evol. 20, 100–110. https://doi.org/10.1006/mpev.2001.0927 (2001).

    CAS 
    Article 

    Google Scholar 

  • Aoki, S. & Syōno, K. Horizontal gene transfer and mutation: Ngrol genes in the genome of Nicotiana glauca. Proc. Natl. Acad. Sci. U.S.A. 96(23), 13229–13234. https://doi.org/10.1073/pnas.96.23.13229 (1999).

    CAS 
    Article 

    Google Scholar 

  • Hu, M. et al. Gold nanostructures: Engineering their plasmonic properties for biomedical applications. Chem. Soc. Rev. 35(11), 1084–1094. https://doi.org/10.1039/b517615h (2006).

    CAS 
    Article 

    Google Scholar 

  • Ratto, F. et al. CW laser-induced photothermal conversion and shape transformation of gold nanodogbones in hydrated chitosan films. J. Nanopart. Res. 13, 4337–4348. https://doi.org/10.1007/s11051-011-0380-5 (2011).

    CAS 
    Article 

    Google Scholar 

  • Huff, T. B. et al. Hyperthermic effects of gold nanorods on tumor cells. Nanomedicine 2(1), 125–132. https://doi.org/10.2217/17435889.2.1.125 (2007).

    CAS 
    Article 

    Google Scholar 

  • Hauck, T. S., Jennings, T. L., Yatsenko, T., Kumaradas, J. C. & Chan, W. C. W. Enhancing the toxicity of cancer chemotherapeutics with gold nanorod hyperthermia. Adv. Mater. 20, 3832–3838. https://doi.org/10.1002/adma.200800921 (2008).

    CAS 
    Article 

    Google Scholar 

  • Manohar, S., Ungureanu, C. & Van Leeuwen, T. G. Gold nanorods as molecular contrast agents in photoacoustic imaging: The promises and the caveats. Contrast Media Mol. Imaging 6, 389–400. https://doi.org/10.1002/cmmi.454 (2011).

    CAS 
    Article 

    Google Scholar 

  • Ratto, F. et al. Plasmonic particles that hit hypoxic cells. Adv. Funct. Mater. 25(2), 316–323. https://doi.org/10.1002/adfm.201402118 (2015).

    CAS 
    Article 

    Google Scholar 

  • Ratto, F. et al. A robust design for cellular vehicles of gold nanorods for multimodal imaging. Adv. Funct. Mater. 26(4), 7954–7954. https://doi.org/10.1002/adfm.201600836 (2016).

    CAS 
    Article 

    Google Scholar 

  • van der Werf, C. et al. Diagnostic yield in sudden unexplained death and aborted cardiac arrest in the young: the experience of a tertiary referral center in The Netherlands. Heart Rhythm 7(10), 1383–1389. https://doi.org/10.1016/j.hrthm.2010.05.036 (2010).

    Article 

    Google Scholar 

  • Wijaya, A., Schaffer, S. B., Pallares, I. G. & Hamad-Schifferli, K. Selective release of multiple DNA oligonucleotides from gold nanorods. ACS Nano 3(1), 80–86. https://doi.org/10.1021/nn800702n (2009).

    CAS 
    Article 

    Google Scholar 

  • Mehtala, J. G. et al. Citrate-stabilized gold nanorods. Langmuir 30, 13727–13730. https://doi.org/10.1021/la5029542 (2014).

    CAS 
    Article 

    Google Scholar 

  • Wang, J. et al. siRNA delivery using dithiocarbamate-anchored oligonucleotides on gold nanorods. Bioconjug. Chem. 30(2), 443–453. https://doi.org/10.1021/acs.bioconjchem.8b00723 (2019).

    CAS 
    Article 

    Google Scholar 

  • Khlebtsov, B. & Khlebtsov, N. Surface-enhanced raman scattering-based lateral-flow immunoassay. Nanomaterials (Basel) 10(11), 2228. https://doi.org/10.3390/nano10112228 (2020).

    CAS 
    Article 

    Google Scholar 

  • Yan, S. et al. SERS-based lateral flow assay combined with machine learning for highly sensitive quantitative analysis of Escherichia coli O157:H7. Anal. Bioanal. Chem. 412(28), 7881–7890. https://doi.org/10.1007/s00216-020-02921-0 (2020).

    CAS 
    Article 

    Google Scholar 

  • Jo, Y. J. et al. Quantitative phase imaging and artificial intelligence: A review. IEEE J. Sel. Top. Quantum Electron. 25(1), 1–14. https://doi.org/10.1109/JSTQE.2018.2859234 (2019).

    MathSciNet 
    Article 

    Google Scholar 

  • Oszwald, A., Wasinger, G., Pradere, B., Shariat, S. F. & Compérat, E. M. Artificial intelligence in prostate histopathology: Where are we in 2021? Curr. Opin. Urol. 31(4), 430–435. https://doi.org/10.1097/MOU.0000000000000883 (2021).

    Article 

    Google Scholar 

  • Yoshida, H. et al. Automated histological classification of whole slide images of colorectal biopsy specimens. Oncotarget 8(53), 90719–90729. https://doi.org/10.18632/oncotarget.21819 (2017).

    Article 

    Google Scholar 

  • Luo, H. et al. Real-time artificial intelligence for detection of upper gastrointestinal cancer by endoscopy: A multicentre, case-control, diagnostic study. Lancet Oncol. 20(12), 1645–1654. https://doi.org/10.1016/S1470-2045(19)30637-0 (2019).

    CAS 
    Article 

    Google Scholar 

  • Repici, A. et al. Efficacy of real-time computer-aided detection of colorectal neoplasia in a randomized trial. Gastroenterology 159(2), 512–520. https://doi.org/10.1053/j.gastro.2020.04.062 (2020).

    Article 

    Google Scholar 

  • Carrio, A., Sampedro, C., Sanchez-Lopez, J. L., Pimienta, M. & Campoy, P. Automated low-cost smartphone-based lateral flow saliva test reader for drugs-of-abuse detection. Sensors 15(11), 29569–29593. https://doi.org/10.3390/s151129569 (2015).

    Article 

    Google Scholar 

  • Foysal, K. H., Seo, S. E., Kim, M. J., Kwon, O. S. & Chong, J. W. Analyte quantity detection from lateral flow assay using a smartphone. Sensors 19(21), 4812. https://doi.org/10.3390/s19214812 (2019).

    CAS 
    Article 

    Google Scholar 

  • Yan, W. et al. Machine learning approach to enhance the performance of MNP-labeled lateral flow immunoassay. Nano-Micro Lett. https://doi.org/10.1007/s40820-019-0239-3 (2019).

    Article 

    Google Scholar 

  • Tania, M. H. et al. Intelligent image-based colourimetric tests using machine learning framework for lateral flow assays. Expert Syst. Appl. 139, 112843. https://doi.org/10.1016/j.eswa.2019.112843 (2020).

    Article 

    Google Scholar 

  • Hurst, S. J., Lytton-Jean, A. K. R. & Mirkin, C. A. Maximizing DNA loading on a range of gold nanoparticle sizes. Anal. Chem. 78(24), 8313–8318. https://doi.org/10.1021/ac0613582 (2006).

    CAS 
    Article 

    Google Scholar 

  • Zhang, X., Servos, M. R. & Liu, J. Surface science of DNA adsorption onto citrate-capped gold nanoparticles. Langmuir 28(8), 3896–3902. https://doi.org/10.1021/la205036p (2012).

    CAS 
    Article 

    Google Scholar 

  • Doyle, J. J. & Doyle, J. L. A rapid procedure for DNA purification from small quantities of fresh leaf tissue. Phytochem. Bull. 19, 11–15 (1987).

    Google Scholar 

  • Clarke, J. D. Cetyltrimethyl ammonium bromide (CTAB) DNA miniprep for plant DNA isolation. Cold Spring Harb. Protoc. 2009(3), 5177. https://doi.org/10.1101/pdb.prot5177 (2009).

    Article 

    Google Scholar 

  • Healey, A., Furtado, A., Cooper, T. & Henry, R. J. Protocol: A simple method for extracting next-generation sequencing quality genomic DNA from recalcitrant plant species. Plant Methods 10, 21. https://doi.org/10.1186/1746-4811-10-21 (2014).

    CAS 
    Article 

    Google Scholar 

  • Serwer, P. Agarose gels: Properties and use for electrophoresis. Electrophoresis 4(6), 375–382. https://doi.org/10.1002/elps.1150040602 (1983).

    CAS 
    Article 

    Google Scholar 

  • Zimm, B. H. & Levene, S. D. Problems and prospects in the theory of gel electrophoresis of DNA. Q. Rev. Biophys. 25(2), 171–204. https://doi.org/10.1017/s0033583500004662 (1992).

    CAS 
    Article 

    Google Scholar 

  • Lide, D. R. CRC Handbook of Chemistry and Physics (CRC Press, 2005).

    Google Scholar 

  • Höltke, H. J. et al. The digoxigenin (DIG) system for non-radioactive labeling and detection of nucleic acids—An overview. Cell. Mol. Biol. 41(7), 883–905 (1995).

    Google Scholar 

  • Deegan, R. D. et al. Capillary flow as the cause of ring stains from dried liquid drops. Nature 389, 827–829. https://doi.org/10.1038/39827 (1997).

    CAS 
    Article 

    Google Scholar 

  • Ye, X., Zheng, C., Chen, J., Gao, Y. & Murray, C. B. Using binary surfactant mixtures to simultaneously improve the dimensional tunability and monodispersity in the seeded growth of gold nanorods. Nano Lett. 13(2), 765–771. https://doi.org/10.1021/nl304478h (2013).

    CAS 
    Article 

    Google Scholar 

  • Wilson, C. G., Sisco, P. N., Gadala-Maria, F. A., Murphy, C. J. & Goldsmith, E. C. Polyelectrolyte-coated gold nanorods and their interactions with type I collagen. Biomaterials 30(29), 5639–5648. https://doi.org/10.1016/j.biomaterials.2009.07.011 (2009).

    CAS 
    Article 

    Google Scholar 

  • Cardarelli, M. et al. Agrobacterium rhizogenes TDNA gene capable of inducing hairy root phenotype. Mol. Gen. Genet. 209, 475–480. https://doi.org/10.1007/BF00331152 (1987).

    CAS 
    Article 

    Google Scholar 

  • Schmitz, G. G., Walter, T., Seibl, R. & Kessler, C. Nonradioactive labeling of oligonucleotides in vitro with the hapten digoxigenin by tailing with terminal transferase. Anal. Biochem. 192(1), 222–231. https://doi.org/10.1016/0003-2697(91)90212-c (1991).

    CAS 
    Article 

    Google Scholar 

  • Pedregosa, F. et al. Scikit-learn: Machine learning in python. J. Mach. Learn. Res. 12(85), 2825–2830 (2011).

    MathSciNet 
    MATH 

    Google Scholar 

  • Source link