Blokhina, O., Virolainen, E. & Fagerstedt, K. V. Antioxidants, oxidative damage and oxygen deprivation stress: A review. Ann. Bot. 91(2), 179–194 (2003).
Google Scholar
Finkel, T. & Holbrook, N. J. Oxidants, oxidative stress and the biology of ageing. Nature 408(6809), 239 (2000).
Google Scholar
Seifried, H. E., Anderson, D. E., Fisher, E. I. & Milner, J. A. A review of the interaction among dietary antioxidants and reactive oxygen species. J. Nutr. Biochem. 18(9), 567–579 (2007).
Google Scholar
Stief, T. W. The physiology and pharmacology of singlet oxygen. Med. Hypotheses. 60(4), 567–572 (2003).
Google Scholar
Valko, M. et al. Free radicals and antioxidants in normal physiological functions and human disease. Int. J. Biochem. Cell Biol. 39(1), 44–84 (2007).
Google Scholar
Wickens, A. P. Ageing and the free radical theory. Respir. Physiol. 128(3), 379–391 (2001).
Google Scholar
Aruoma, O. I. Free radicals, antioxidants and international nutrition. Asia Pac. J. Clin. Nutr. 8(1), 53–63 (1999).
Google Scholar
Wade, C. R., Jackson, P. G., Highton, J. & van Rij, A. M. Lipid peroxidation and malondialdehyde in the synovial fluid and plasma of patients with rheumatoid arthritis. Clin. Chim. Acta. 164(3), 245–250 (1987).
Google Scholar
Ye, S., Liu, F., Wang, J., Wang, H. & Zhang, M. Antioxidant activities of an exopolysaccharide isolated and purified from marine Pseudomonas PF-6. Carbohydr. Polym. 87(1), 764–770 (2012).
Google Scholar
Liu, F., Ooi, V. E. C. & Chang, S. T. Free radical scavenging activities of mushroom polysaccharide extracts. Life Sci. 60(10), 763–771 (1997).
Google Scholar
Aruoma, O. I. Free radicals, oxidative stress, and antioxidants in human health and disease. J. Am. Oil Chem. Soc. 75(2), 199–212 (1998).
Google Scholar
Cai, L., Zou, S., Liang, D. & Luan, L. Structural characterization, antioxidant and hepatoprotective activities of polysaccharides from Sophorae tonkinensis Radix. Carbohydr. Polym. 184, 354–365 (2018).
Google Scholar
Chanda, S. & Dave, R. In vitro models for antioxidant activity evaluation and some medicinal plants possessing antioxidant properties: An overview. Afr. J. Microbiol. Res. 3(13), 981–996 (2009).
Fan, J. et al. Antioxidant activities of the polysaccharides of Chuanminshen violaceum. Carbohydr. Polym. 157, 629–636 (2017).
Google Scholar
Huang, L. et al. Effect of high-pressure microfluidization treatment on the physicochemical properties and antioxidant activities of polysaccharide from Mesona chinensis Benth. Carbohydr. Polym. 200, 191–199 (2018).
Google Scholar
Li, C. et al. Flavonoid composition and antioxidant activity of tree peony (Paeonia section Moutan) yellow flowers. J. Agric. Food Chem. 57(18), 8496–8503 (2009).
Google Scholar
Maity, P. et al. Structural, immunological, and antioxidant studies of β-glucan from edible mushroom Entoloma lividoalbum. Carbohydr. Polym. 123, 350–358 (2015).
Google Scholar
Mau, J. L., Lin, H. C. & Chen, C. C. Antioxidant properties of several medicinal mushrooms. J. Agric. Food Chem. 50(21), 6072–6077 (2002).
Google Scholar
Nandi, A. K. et al. Antioxidant and immunostimulant β-glucan from edible mushroom Russula albonigra (Krombh.) Fr. Carbohydr. Polym. 99, 774–782 (2014).
Google Scholar
Patra, S. et al. heteroglycan from the mycelia of Pleurotus ostreatus: Structure determination and study of antioxidant properties. Carbohydr. Res. 368, 16–21 (2013).
Google Scholar
Sun, H., Mu, T., Xi, L. & Song, Z. Effects of domestic cooking methods on polyphenols and antioxidant activity of sweet potato leaves. J. Agric. Food Chem. 62(36), 8982–8989 (2014).
Google Scholar
Dilna, S. V. et al. Characterization of an exopolysaccharide with potential health-benefit properties from a probiotic Lactobacillus plantarum RJF 4. LWT: Food Sci. Technol. 64(2), 1179–1186 (2015).
Google Scholar
Saravanan, C., Kavitake, D., Kandasamy, S., Devi, P. B. & Shetty, P. H. Production, partial characterization and antioxidant properties of exopolysaccharide α-d-glucan produced by Leuconostoc lactis KC117496 isolated from an idli batter. J. Food Sci. Technol. 56(1), 159–166 (2019).
Google Scholar
Adebayo-Tayo, B., Ishola, R. & Oyewunmi, T. Characterization, antioxidant and immunomodulatory potential on exopolysaccharide produced by wild type and mutant Weissella confusa strains. Biotechnol. Rep. 19, e00271 (2018).
Adesulu-Dahunsi, A. T. et al. Extracellular polysaccharide from Weissella confusa OF126: Production, optimization, and characterization. Int. J. Biol. Macromol. 111, 514–525 (2018).
Google Scholar
Adesulu-Dahunsi, A. T., Sanni, A. I. & Jeyaram, K. Production, characterization and In vitro antioxidant activities of exopolysaccharide from Weissella cibaria GA44. LWT: Food Sci. Technol. 87, 432–442 (2018).
Google Scholar
Benhouna, I. S. et al. Exopolysaccharide produced by Weissella confusa: Chemical characterisation, rheology and bioactivity. Int. Dairy J. 90, 88–94 (2019).
Google Scholar
Ye, G., Chen, Y., Wang, C., Yang, R. & Bin, X. Purification and characterization of exopolysaccharide produced by Weissella cibaria YB-1 from pickle Chinese cabbage. Int. J. Biol. Macromol. 120, 1315–1321 (2018).
Google Scholar
Zhu, Y. et al. Purification, characterization and antioxidant activity of the exopolysaccharide from Weissella cibaria SJ14 isolated from Sichuan paocai. Int. J. Biol. Macromol. 115, 820–828 (2018).
Google Scholar
An, J. et al. In vitro antioxidant activities of Rhodobacter sphaeroides and protective effect on Caco-2 cell line model. Appl. Microbiol. Biotechnol. 103(2), 917–927 (2019).
Google Scholar
Wang, K. et al. Physicochemical characteristics and in vitro and in vivo antioxidant activity of a cell-bound exopolysaccharide produced by Lactobacillus fermentum S1. Int. J. Biol. Macromol. 139, 252–261 (2019).
Google Scholar
Święciło, A. et al. Application of growth tests employing a Δsod1 mutant of Saccharomyces cerevisiae to study the antioxidant activity of berry fruit extracts. LWT: Food Sci. Technol. 94, 96–102 (2018).
Liu, J. et al. In vitro and in vivo antioxidant activity of exopolysaccharides from endophytic bacterium Paenibacillus polymyxa EJS-3. Carbohydr. Polym. 82(4), 1278–1283 (2010).
Google Scholar
Gao, Y. et al. Antioxidant activity evaluation of dietary flavonoid hyperoside using Saccharomyces cerevisiae as a model. Molecules 24(4), 788 (2019).
Google Scholar
Li, H., Wang, L. & Luo, Y. Composition analysis by UPLC-PDA-ESI (−)-HRMS and antioxidant activity using saccharomyces cerevisiae model of herbal teas and green teas from Hainan. Molecules 23(10), 2550 (2018).
Google Scholar
Meng, D., Zhang, P., Li, S., Ho, C. T. & Zhao, H. Antioxidant activity evaluation of dietary phytochemicals using Saccharomyces cerevisiae as a model. J. Funct. Foods. 38, 36–44 (2017).
Google Scholar
Subhaswaraj, P., Sowmya, M., Bhavana, V., Dyavaiah, M. & Siddhardha, B. Determination of antioxidant activity of Hibiscus sabdariffa and Croton caudatus in Saccharomyces cerevisiae model system. J. Food Sci. Technol. 54(9), 2728–2736 (2017).
Google Scholar
Kavitake, D., Devi, P. B., Singh, S. P. & Shetty, P. H. Characterization of a novel galactan produced by Weissella confusa KR780676 from an acidic fermented food. Int. J. Biol. Macromol. 86, 681–689 (2016).
Google Scholar
Sharma, S., Kandasamy, S., Kavitake, D. & Shetty, P. H. Probiotic characterization and antioxidant properties of Weissella confusa KR780676, isolated from an Indian fermented food. LWT: Food Sci. Technol. 97, 53–60 (2018).
Google Scholar
Sreejayan, N., Rao, M. N. A., Priyadarsini, K. I. & Devasagayam, T. P. A. Inhibition of radiation-induced lipid peroxidation by curcumin. Int. J. Pharm. 151(1), 127–130 (1997).
Google Scholar
Yang, H., Wu, Y., Gan, C., Yue, T. & Yuan, Y. Characterization and antioxidant activity of a novel polysaccharide from Pholidota chinensis Lindl. Carbohydr. Polym. 138, 327–334 (2016).
Google Scholar
Sá, R. A. D. et al. Brazilian propolis protects Saccharomyces cerevisiae cells against oxidative stress. Braz. J. Microbiol. 44(3), 993–1000 (2013).
Google Scholar
Mendes, V. et al. Effect of myricetin, pyrogallol, and phloroglucinol on yeast resistance to oxidative stress. Oxid. Med. Cell Longev. https://doi.org/10.1155/2015/782504 (2015).
Google Scholar
Cortés-Rojo, C. et al. Elucidation of the effects of lipoperoxidation on the mitochondrial electron transport chain using yeast mitochondria with manipulated fatty acid content. J. Bioenerg. Biomembr. 41(1), 15 (2009).
Google Scholar
Cherian, D. A. et al. Malondialdehyde as a marker of oxidative stress in periodontitis patients. J. Pharm. Bioallied Sci. 11, S297 (2019).
Google Scholar
Ghani, M. A., Barril, C., Bedgood, D. R. Jr. & Prenzler, P. D. Measurement of antioxidant activity with the thiobarbituric acid reactive substances assay. Food Chem. 230, 195–207 (2017).
Google Scholar
SJ, S., Veerabhadrappa, B., Subramaniyan, S. & Dyavaiah, M. Astaxanthin enhances the longevity of Saccharomyces cerevisiae by decreasing oxidative stress and apoptosis. FEMS Yeast Res. 19(1), foy113 (2019).
Azad, G. K. et al. (2014) Ebselen induces reactive oxygen species (ROS)-mediated cytotoxicity in Saccharomyces cerevisiae with inhibition of glutamate dehydrogenase being a target. FEBS Open Bio. 4, 77–89 (2014).
Google Scholar
Pereira, M. D., Eleutherio, E. C. & Panek, A. D. Acquisition of tolerance against oxidative damage in Saccharomyces cerevisiae. BMC Microbiol. 1(1), 1–10 (2001).
Alugoju, P., Janardhanshetty, S. S., Subaramanian, S., Periyasamy, L. & Dyavaiah, M. Quercetin protects yeast Saccharomyces cerevisiae pep4 mutant from oxidative and apoptotic stress and extends chronological lifespan. Curr. Microbiol. 75(5), 519–530 (2018).
Google Scholar
Ferreira, T. C., de Moraes, L. M. P. & Campos, É. G. Cell density-dependent linoleic acid toxicity to Saccharomyces cerevisiae. FEMS Yeast Res. 11(5), 408–417 (2011).
Google Scholar
Cao, S. et al. A mitochondria-dependent pathway mediates the apoptosis of GSE-induced yeast. PLoS One 7(3), e32943 (2012).
Google Scholar
Madeo, F., Fröhlich, E. & Fröhlich, K. U. A yeast mutant showing diagnostic markers of early and late apoptosis. J. Cell Biol. 139(3), 729–734 (1997).
Google Scholar
Fabrizio, P. et al. SOD2 functions downstream of Sch9 to extend longevity in yeast. Genetics 163(1), 35–46 (2003).
Google Scholar
Ross, E. M. & Maxwell, P. H. Low doses of DNA damaging agents extend Saccharomyces cerevisiae chronological lifespan by promoting entry into quiescence. Exp. Gerontol. 108, 189–200 (2018).
Google Scholar
Devi, P. B., Kavitake, D. & Shetty, P. H. Physico-chemical characterization of galactan exopolysaccharide produced by Weissella confusa KR780676. Int. J. Biol. Macromol. 93, 822–828 (2016).
Google Scholar
Kavitake, D., Balyan, S., Devi, P. B. & Shetty, P. H. Interface between food grade flavour and water soluble galactan biopolymer to form a stable water-in-oil-in-water emulsion. Int. J. Biol. Macromol. 135, 445–452 (2019).
Google Scholar
Kavitake, D., Balyan, S., Devi, P. B. & Shetty, P. H. Evaluation of oil-in-water (O/W) emulsifying properties of galactan exopolysaccharide from Weissella confusa KR780676. J. Food Sci. Technol. 57(4), 1579–1585 (2020).
Google Scholar
Alam, M. N., Bristi, N. J. & Rafiquzzaman, M. Review on in vivo and in vitro methods evaluation of antioxidant activity. Saudi Pharm. J. 21(2), 143–152 (2013).
Google Scholar
Musa, K. H., Abdullah, A., Kuswandi, B. & Hidayat, M. A. A novel high throughput method based on the DPPH dry reagent array for determination of antioxidant activity. Food Chem. 141(4), 4102–4106 (2013).
Google Scholar
Marcocci, L., Maguire, J. J., Droylefaix, M. T. & Packer, L. The nitric oxide-scavenging properties of Ginkgo biloba extract EGb 761. Biochem. Biophys. Res. Commun. 201(2), 748–755 (1994).
Google Scholar
Zhang, L. et al. Antioxidant activity of an exopolysaccharide isolated from Lactobacillus plantarum C88. Int. J. Biol. Macromol. 54, 270–275 (2013).
Google Scholar
Liu, J. et al. Production, characterization and antioxidant activities in vitro of exopolysaccharides from endophytic bacterium Paenibacillus polymyxa EJS-3. Carbohydr. Polym. 78(2), 275–281 (2009).
Google Scholar
Li, W. et al. Structural characterization and anticancer activity of cell-bound exopolysaccharide from Lactobacillus helveticus MB2–1. J. Agric. Food Chem. 63(13), 3454–3463 (2015).
Google Scholar
Poljsak, B., Šuput, D. & Milisav, I. Achieving the balance between ROS and antioxidants: When to use the synthetic antioxidants. Oxid. Med. Cell. Longev. 956792. https://doi.org/10.1155/2013/956792 (2013).
Moscovici, M. Present and future medical applications of microbial exopolysaccharides. Front. Microbiol. 6, 1012. https://doi.org/10.3389/fmicb.2015.01012 (2015).
Weydert, C. J. & Cullen, J. J. Measurement of superoxide dismutase, catalase and glutathione peroxidase in cultured cells and tissue. Nat. Protoc. 5(1), 51–66 (2010).
Google Scholar
Wu, J., Zhang, Y., Ye, L. & Wang, C. The anti-cancer effects and mechanisms of lactic acid bacteria exopolysaccharides in vitro: A review. Carbohydr. Polym. 253, 117308 (2021).
Google Scholar
Zhang, L. et al. Antioxidant activity of an exopolysaccharide isolated from Lactobacillus plantarum C88. Int. J. Biol. Macromol. 54, 270–275 (2013).
Google Scholar
Ayala, A., Muñoz, M. F. & Argüelles, S. Lipid peroxidation: Production, metabolism, and signaling mechanisms of malondialdehyde and 4-hydroxy-2-nonenal. Oxid. Med. Cell. Longev. 360438. https://doi.org/10.1155/2014/360438 (2014).
Yang, H. et al. Two novel exopolysaccharides from Bacillus amyloliquefaciens C-1: Antioxidation and effect on oxidative stress. Curr. Microbiol. 70, 298–306 (2015).
Google Scholar
Park, M. H., Jo, M., Kim, Y. R., Lee, C. K. & Hong, J. T. Roles of peroxiredoxins in cancer, neurodegenerative diseases and inflammatory diseases. Pharmacol. Ther. 163, 1–23 (2016).
Google Scholar
Gostimskaya, I. & Grant, C. M. Yeast mitochondrial glutathione is an essential antioxidant with mitochondrial thioredoxin providing a back-up system. Free Radic. Biol. Med. 94, 55–65 (2016).
Google Scholar
Pannala, V. R., Bazil, J. N., Camara, A. K. S. & Dash, R. K. A biophysically based mathematical model for the catalytic mechanism of glutathione reductase. Free Radic. Biol. Med. 65, 1385–1397 (2013).
Google Scholar
Ballatori, N. et al. Glutathione dysregulation and the etiology and progression of human diseases. Biol. Chem. 390, 191–214 (2009).
Google Scholar
Wu, G., Fang, Y. Z., Yang, S., Lupton, J. R. & Turner, N. D. Glutathione metabolism and its implications for health. J. Nutr. 134, 489–492 (2004).
Google Scholar
Lewinska, A. & Bartosz, G. Yeast flavohemoglobin protects against nitrosative stress and controls ferric reductase activity. Redox Rep. 11, 231–239 (2006).
Google Scholar
Cassanova, N., O’Brien, K. M., Stahl, B. T., McClure, T. & Poyton, R. O. Yeast flavohemoglobin, a nitric oxide oxidoreductase, is located in both the cytosol and the mitochondrial matrix. J. Biol. Chem. 280, 7645–7653 (2005).
Google Scholar
Kleinknecht, A. et al. C-terminal tyrosine residue modifications modulate the protective phosphorylation of serine 129 of α-synuclein in a yeast model of parkinson’s disease. PLoS Genet. 12, e1006098 (2016).
Google Scholar
Guaragnella, N. et al. The role of mitochondria in yeast programmed cell death. Front. Oncol. 2, 70 (2012).
Google Scholar
Woolford, C. A. et al. The PEP4 gene encodes an aspartyl protease implicated in the posttranslational regulation of Saccharomyces cerevisiae vacuolar hydrolases. Mol. Cell. Biol. 6(7), 2500–2510 (1986).
Google Scholar
Hughes, K. R. et al. Bifidobacterium breve reduces apoptotic epithelial cell shedding in an exopolysaccharide and MyD88-dependent manner. Open Biol. 7, 160155 (2017).
Google Scholar
Dumitrescu, L. et al. Oxidative stress and the microbiota-gut-brain axis. Oxid. Med. Cell. Longev. 2406594 (2018). https://doi.org/10.1155/2018/2406594.
Li, H. et al. Food-derived antioxidant polysaccharides and their pharmacological potential in neurodegenerative diseases. Nutrients 9, 778 (2017).
Google Scholar
Sudharshan, S. J. & Dyavaiah, M. Astaxanthin protects oxidative stress mediated DNA damage and enhances longevity in Saccharomyces cerevisiae. Biogerontology 22, 81–100 (2021).
Google Scholar

