Harborne, J. B. & Williams, C. A. Advances in flavonoid research since 1992. Phytochemistry 55, 481–504. https://doi.org/10.1016/S0031-9422(00)00235-1 (2000).
Google Scholar
Azzini, E. et al. The potential health benefits of polyphenol-rich extracts from Cichorium intybus L. studied on Caco-2 cells model. Oxid. Med. Cell. Longev. https://doi.org/10.1155/2016/1594616 (2016).
Google Scholar
Kashyap, D. et al. Apigenin: A natural bioactive flavone-type molecule with promising therapeutic function. J. Funct. Foods. 48, 457–471. https://doi.org/10.1016/j.jff.2018.07.037 (2018).
Google Scholar
Abenavoli, L. et al. Milk thistle (Silybum marianum): A concise overview on its chemistry, pharmacological, and nutraceutical uses in liver diseases. Phytother. Res. 32, 2202–2213. https://doi.org/10.1002/ptr.6171 (2018).
Google Scholar
Madunić, J., Madunić, I. V., Gajski, G., Popić, J. & Garaj-Vrhovac, V. Apigenin. A dietary flavonoid with diverse anticancer properties. Cancer Lett. 28, 11–22. https://doi.org/10.1016/j.canlet.2017.10.041 (2018).
Google Scholar
Aboaba, O. O., Smith, S. I. & Olude, F. O. Antibacterial effect of edible plant extract on Escherichia coli 0157, H7, part. Pak. J. Nutr. 5(4), 325–327. https://doi.org/10.3923/pjn.2006.325.327 (2006).
Google Scholar
Zhou, Z. et al. Apigenin inhibits cell proliferation, migration, and invasion by targeting Akt in the A549 human lung cancer cell line. Anticancer Drugs 28(4), 446–456. https://doi.org/10.1097/CAD.0000000000000479 (2017).
Google Scholar
Shay, J. et al. Molecular mechanisms and therapeutic effects of (-)-epicatechin and other polyphenols in cancer, inflammation, diabetes, and neurodegeneration. Oxid. Med. Cell. Longev. 2015, 181260. https://doi.org/10.1155/2015/181260 (2015).
Google Scholar
Wang, Q. Q., Cheng, N., Yi, W. B., Peng, S. M. & Zou, X. Q. Synthesis, nitric oxide release, and alpha-glucosidase inhibition of nitric oxide donating apigenin and chrysin derivatives. Bioorg. Med. Chem. 22(5), 1515–1521. https://doi.org/10.1016/j.bmc.2014.01.038 (2014).
Google Scholar
Pamunuwa, G., Karunaratne, D. N. & Waisundara, V. Y. Antidiabetic properties, bioactive constituents, and other therapeutic effects of Scoparia dulcis. Evid. Based Complement Altern. Med. 2016, 8243215. https://doi.org/10.1155/2016/8243215 (2016).
Google Scholar
Boulos, L. Flora of Egypt (Al-Hadara Publishing, 1999).
El-Sebakhy, N. A. et al. Antimicrobial isoflavans from Astragalus species. Phytochemistry 36, 1387–1389. https://doi.org/10.1016/S0031-9422(00)89728-9 (1994).
Google Scholar
Cui, B., Nakamura, M., Kinjo, J. & Nohara, T. Chemical studies on Astragali Semen. Chem. Pharm. Bull. 41(1), 178–182. https://doi.org/10.1248/cpb.41.178 (1993).
Google Scholar
Pistelli, L. Secondary metabolites of genus Astragalus: Structure and biological activity. In: Atta‑Ur‑Rahman, editor. Studies in Natural Products Chemistry (Bioactive Natural Products, Part H) 443–545 (Elsevier, 2002).
Sief-Eldein, A. G. M., El-Arabi, N. I., Sharaf, A. N., AbdAlhady, M. R. A. & Abdallah, N. A. Regeneration and genetic conservation of the endangered Astragalus trigonusplant. Biosci. Res. 15(1), 19–27 (2018).
Bedir, E., Pugh, N., Calıs, I., Pasco, D. S. & Khan, I. A. Immunostimulatory effects of cycloartane-type triterpene glycosides from Astragalus species. Biol. Pharm. Bull. 23, 834–837. https://doi.org/10.1248/bpb.23.834 (2000).
Google Scholar
Yesilada, E., Bedir, E., Calis, I., Takaishi, Y. & Ohmoto, Y. Effects of triterpene saponins from Astragalus species on in vitro cytokine release. J. Ethnopharmacol. 96, 71–77 (2005).
Google Scholar
Roat, C. & Ramawat, K. G. Elicitor-induced accumulation of stilbenes in cell suspension cultures of Cayratia trifolia (L.) Domin. Plant Biotechnol. Rep. 3(2), 135–138. https://doi.org/10.1007/s11816-009-0082-y (2009).
Google Scholar
Poulev, A. et al. Elicitation, a new window into plant chemodiversity and phytochemical drug discovery. J. Med. Chem. 46(12), 2542–2547. https://doi.org/10.1021/jm020359t (2003).
Google Scholar
Falcone-Ferreyra, M. L., Rius, S. P. & Casati, P. Flavonoids: Biosynthesis, biological functions, and biotechnological applications. Front. Plant. Sci. 3, 222. https://doi.org/10.3389/fpls.2012.00222 (2012).
Google Scholar
Crozier, A., Jaganath, I. B. & Clifford, M. N. Dietary phenolics: chemistry, bioavailability and effects on health. Nat. Prod. Rep. 26, 1001–1043. https://doi.org/10.1039/b802662a (2009).
Google Scholar
van Tunen, A. J. et al. Cloning of the two chalcone flavanone isomerase genes from Petunia hybrida: Coordinate, light-regulated and differential expression of flavonoid genes. EMBO J. 7, 1257–1263 (1988).
Google Scholar
Mehdy, M. & Lamb, C. Chalcone isomerase cDNA cloning and mRNA induction by fungal elicitor, wounding and infection. EMBO J. 6, 1527–1533 (1987).
Google Scholar
Grotewold, E. & Peterson, T. Isolation and characterization of a maize gene encoding chalcone flavonone isomerase. Mol. Gen. Genet. 242, 1–8. https://doi.org/10.1007/BF00277341 (1994).
Google Scholar
McKhann, H. I. & Hirsch, A. M. Isolation of chalcone synthase and chalcone isomerase cDNAs from alfalfa (Medicago sativa L.): Highest transcript levels occur in young roots and root tips. Plant. Mol. Biol. 24, 767–777. https://doi.org/10.1007/BF00029858 (1994).
Google Scholar
Blyden, E. R., Doerner, P. W., Lamb, C. J. & Dixon, R. A. Sequence analysis of a chalcone isomerase cDNA of Phaseolus vulgaris L. Plant Mol. Biol. 16, 167–169. https://doi.org/10.1007/BF00017927 (1991).
Google Scholar
Chia, Y. C., The, S. & Mohamed, Z. Isolation and characterization of Chalcone Isomerase (CHI) gene from Boesenbergia rotunda. S. Afr. J. Bot. 130(475), 482. https://doi.org/10.1016/j.sajb.2020.01.010 (2020).
Google Scholar
Wood, A. J. & Davies, E. A cDNA encoding chalcone isomerase from aged pea epicotyls. Plant Physiol. 104(4), 1465–1466. https://doi.org/10.1104/pp.104.4.1465 (1994).
Google Scholar
Li, F., Jin, Z., Qu, W., Zhao, D. & Ma, F. Cloning of a cDNA encoding the Saussurea medusa chalcone isomerase and its expression in transgenic tobacco. Plant Physiol. Biochem. 44, 455–461. https://doi.org/10.1016/j.plaphy.2006.08.006 (2006).
Google Scholar
Muir, S. et al. Overexpression of petunia chalcone isomerase in tomato results in fruit containing increased levels of flavonols. Nat. Biotechnol. 19(5), 470–474. https://doi.org/10.1038/88150 (2001).
Google Scholar
Su, W.W. & Lee, K.T. Plant cell and hairy root cultures—Process characteristics, products, and applications. In: Shang-Tian Y (Ed.). Bioprocessing for Value-Added Products from Renewable Resources-New Technologies and Applications 263–292 (Elsevier, 2007).
Moscatiello, R., Baldan, B. & Navazio, L. Plant suspension cultures. In: Frans JM (Ed.). Plant mineral Nutrients Series: Methods Molecular Biology 77–93 (Humana Press, Springer, 2013).
Smetanska, I. Production of secondary metabolites using plant cell cultures. In: Stahl U, Donalies UE, Nevoigt E (Eds.) Food Biotechnology. Advances in biochemical engineering/biotechnology, vol 111, 187–228 (Springer, 2008).
Han, J. Y., Wang, H. Y. & Choi, Y. E. Production of dammarenediol-II triterpene in a cell suspension culture of transgenic tobacco. Plant Cell Rep. 33, 225–233. https://doi.org/10.1007/s00299-013-1523-1 (2014).
Google Scholar
Misra, R. C., Maiti, P., Chanotiya, C. S., Shanker, K. & Ghosh, S. Methyl jasmonate-elicited transcriptional responses and pentacyclic triterpene biosynthesis in sweet basil. Plant Physiol. 164(2), 1028–1044. https://doi.org/10.1104/pp.113.232884 (2014).
Google Scholar
Kamalipourazad, M., Sharif, M., Maivan, H. Z., Behmanesh, M. & Chashmi, N. A. Induction of aromatic amino acids and phenylpropanoid compounds in Scrophularia striata Boiss. cell culture in response to chitosan-induced oxidative stress. Plant Physiol. Biochem. 107, 374–384. https://doi.org/10.1016/j.plaphy.2016.06.034 (2016).
Google Scholar
Wang, J., Qian, J., Yao, L. & Lu, Y. Enhanced production of flvonoids by methyl jasmonate elicitation in cell suspension culture of Hypericum perforatum. Bioresour. Bioprocess. 2, 5. https://doi.org/10.1186/s40643-014-0033-5 (2015).
Google Scholar
Saeed, S., Ali, H., Khan, T., Kayani, W. & Khan, M. A. Impacts of methyl jasmonate and phenyl acetic acid on biomass accumulation and antioxidant potential in adventitious roots of Ajuga bracteosa Wall ex Benth., a high valued endangered medicinal plant. Physiol. Mol. Biol. Plants 23, 229–237. https://doi.org/10.1007/s12298-016-0406-7 (2017).
Google Scholar
Ali, H., Khan, M. A., Kayani, W. K., Khan, T. & Khan, R. S. Thidiazuron regulated growth, secondary metabolism and essential oil profiles in shoot cultures of Ajuga bracteosa. Ind. Crops Prod. 121, 418–427. https://doi.org/10.1016/j.indcrop.2018.05.043 (2018).
Google Scholar
Forkmann, G. Flavonoids as flower pigments: The formation of the natural spectrum and its extension by genetic engineering. Plant Breed. 106, 1–26. https://doi.org/10.1111/j.1439-0523.1991.tb00474.x (1991).
Google Scholar
George, E. F., Hall, M. A. & Klerk, G.J.D. The components of plant tissue culture media I: macro-and micro-nutrients. In: George, F., Hall, M. A., De Klerk G. (Eds.) Plant propagation by tissue culture 65–113 (Springer, 2008). https://doi.org/10.1007/978-1-4020-5005-3 .
Vasil, I. K. & Hildebrandt, A. C. Growth and chlorophyll production in plant callus tissues grown in vitro. Planta 68, 69–82. https://doi.org/10.1007/BF00385372 (1966).
Google Scholar
Oksman-Caldentey, K. M. & Inzé, D. Plant cell factories in the postgenomic era: New ways to produce designer secondary metabolites. Trends Plant Sci. 9, 433–440. https://doi.org/10.1016/j.tplants.2004.07.006 (2004).
Google Scholar
Zhao, J., Zheng, S. H., Fujita, K. & Sakai, K. Jasmonate and ethylene signaling and their interaction are integral parts of the elicitor signalling pathway leading to β-thujaplicin biosynthesis in Cupressus lusitanica cell cultures. J. Exp. Bot. 55(399), 1003–1012. https://doi.org/10.1093/jxb/erh127 (2004).
Google Scholar
Dao, T. T. H., Linthorst, H. J. M. & Verpoorte, R. Chalcone synthase and its functions in plant resistance. Phytochem. Rev. 10, 397–412. https://doi.org/10.1007/s11101-011-9211-7 (2011).
Google Scholar
Shih, C., Chu, I. K., Yip, W. K. & Lo, C. Differential expression of two flavonoid 3′-Hydroxylase cDNAs involved in biosynthesis of anthocyanin pigments and 3-deoxyanthocyanidin phytoalexins in sorghum. Plant Cell Physiol. 47(10), 1412–1419. https://doi.org/10.1093/pcp/pcl003 (2006).
Google Scholar
Druka, A. et al. Chalcone isomerase gene from rice (Oryza sativa) and barley (Hordeum vulgare): Physical, genetic and mutation mapping. Gene 302, 171–178. https://doi.org/10.1016/s0378-1119(02)01105-8 (2003).
Google Scholar
Zhou, L. et al. Overexpression of Ps-CHI1, a homologue of the chalcone isomerase gene from tree peony (Paeonia suffruticosa), reduces the intensity of flower pigmentation in transgenic tobacco. Plant Cell Tissue Organ Cult. 16, 285–295. https://doi.org/10.1007/s11240-013-0403-2 (2014).
Google Scholar
Wansang, L. & Jiarui, L. Co-expression of onion chalcone isomerase in Del/Ros1-expressing tomato enhances anthocyanin and flavonol production. Plant Cell Tissue Organ Cult. 128, 113–124. https://doi.org/10.1007/s11240-016-1090-6 (2016).
Google Scholar
Xu, L. & Dietrich, P. Astragalus. Flora of China. 10. eFloras.org (Missouri Botanical Garden, St. Louis, MO & Harvard University Herbaria, 2018).
Boulos, L. Flora of Egypt Cheklist: Revised Annonated Edition (Alhadara Publishing, 2009).
Dessoky, E. S., Ismail, R. M., Elarabi, N. I., Abdelhadi, A. A. & Abdallah, N. A. Improvement of sugarcane for borer resistance using Agrobacterium mediated transformation of cry1Ac gene. GM Crops Food 12(1), 47–56. https://doi.org/10.1080/21645698.2020.1809318 (2021).
Google Scholar
Moghaieb, R. E. A., Ahmed, D. S., Gaber, A. & Abdelhadi, A. A. Overexpression of bacterial katE gene improves the resistance of modified tomato plant against Fusarium oxysporum f. sp. lycopersici. GM Crops Food 12(1), 315–327. https://doi.org/10.1080/21645698.2021.1903374 (2021).
Google Scholar
Murashige, T. & Skoog, F. a revised medium for rapid growth and bio assays with Tobacco tissue cultures. Physiol. Plant. 15(3), 473–497. https://doi.org/10.1111/j.1399-3054.1962.tb08052.x (1962).
Google Scholar
Rogers, S. & Bendich, O. Extraction of DNA from milligram amounts of fresh, herbarium and mummified plant tissues. Plant Mol. Biol. 5, 69–76. https://doi.org/10.1007/BF00020088 (1985).
Google Scholar
Sambrook, J., Fritschi, E. F. & Maniatis, T. Molecular cloning: A laboratory manual (Cold Spring Harbor Laboratory Press, 1989).
Arya, D. & Patni, V. Comparative analysis of total flavonoids and quercetin content in vivo and in vitro and enhancement of quercetin via precursor feeding in pluchea lanceolata oliver & hiern. Int. J. Pharm. Pharm. Sci. 5(3), 617–621 (2013).
Google Scholar
Park, M. S. & Choi, P. S. Plant regeneration from hypocotyls explants of Astragalus sinicus L. J. Plant Biotechnol. 42(4), 396–400. https://doi.org/10.5010/JPB.2015.42.4.396 (2015).
Google Scholar
Zhang, Q., Zhou, M. M., Chen, P. L., Cao, Y. Y. & Tan, X. L. Optimization of ultrasonicassisted enzymatic hydrolysis for the extraction of luteolin and apigenin from celery. J. Food Sci. 76(5), 680–685. https://doi.org/10.1111/j.1750-3841.2011.02174.x (2011).
Google Scholar

