Preloader

Overexpression of chalcone isomerase A gene in Astragalus trigonus for stimulating apigenin

  • 1.

    Harborne, J. B. & Williams, C. A. Advances in flavonoid research since 1992. Phytochemistry 55, 481–504. https://doi.org/10.1016/S0031-9422(00)00235-1 (2000).

    CAS 
    Article 
    PubMed 

    Google Scholar 

  • 2.

    Azzini, E. et al. The potential health benefits of polyphenol-rich extracts from Cichorium intybus L. studied on Caco-2 cells model. Oxid. Med. Cell. Longev. https://doi.org/10.1155/2016/1594616 (2016).

    Article 
    PubMed 

    Google Scholar 

  • 3.

    Kashyap, D. et al. Apigenin: A natural bioactive flavone-type molecule with promising therapeutic function. J. Funct. Foods. 48, 457–471. https://doi.org/10.1016/j.jff.2018.07.037 (2018).

    CAS 
    Article 

    Google Scholar 

  • 4.

    Abenavoli, L. et al. Milk thistle (Silybum marianum): A concise overview on its chemistry, pharmacological, and nutraceutical uses in liver diseases. Phytother. Res. 32, 2202–2213. https://doi.org/10.1002/ptr.6171 (2018).

    Article 
    PubMed 

    Google Scholar 

  • 5.

    Madunić, J., Madunić, I. V., Gajski, G., Popić, J. & Garaj-Vrhovac, V. Apigenin. A dietary flavonoid with diverse anticancer properties. Cancer Lett. 28, 11–22. https://doi.org/10.1016/j.canlet.2017.10.041 (2018).

    CAS 
    Article 

    Google Scholar 

  • 6.

    Aboaba, O. O., Smith, S. I. & Olude, F. O. Antibacterial effect of edible plant extract on Escherichia coli 0157, H7, part. Pak. J. Nutr. 5(4), 325–327. https://doi.org/10.3923/pjn.2006.325.327 (2006).

    Article 

    Google Scholar 

  • 7.

    Zhou, Z. et al. Apigenin inhibits cell proliferation, migration, and invasion by targeting Akt in the A549 human lung cancer cell line. Anticancer Drugs 28(4), 446–456. https://doi.org/10.1097/CAD.0000000000000479 (2017).

    CAS 
    Article 
    PubMed 

    Google Scholar 

  • 8.

    Shay, J. et al. Molecular mechanisms and therapeutic effects of (-)-epicatechin and other polyphenols in cancer, inflammation, diabetes, and neurodegeneration. Oxid. Med. Cell. Longev. 2015, 181260. https://doi.org/10.1155/2015/181260 (2015).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • 9.

    Wang, Q. Q., Cheng, N., Yi, W. B., Peng, S. M. & Zou, X. Q. Synthesis, nitric oxide release, and alpha-glucosidase inhibition of nitric oxide donating apigenin and chrysin derivatives. Bioorg. Med. Chem. 22(5), 1515–1521. https://doi.org/10.1016/j.bmc.2014.01.038 (2014).

    CAS 
    Article 
    PubMed 

    Google Scholar 

  • 10.

    Pamunuwa, G., Karunaratne, D. N. & Waisundara, V. Y. Antidiabetic properties, bioactive constituents, and other therapeutic effects of Scoparia dulcis. Evid. Based Complement Altern. Med. 2016, 8243215. https://doi.org/10.1155/2016/8243215 (2016).

    Article 

    Google Scholar 

  • 11.

    Boulos, L. Flora of Egypt (Al-Hadara Publishing, 1999).

    Google Scholar 

  • 12.

    El-Sebakhy, N. A. et al. Antimicrobial isoflavans from Astragalus species. Phytochemistry 36, 1387–1389. https://doi.org/10.1016/S0031-9422(00)89728-9 (1994).

    CAS 
    Article 
    PubMed 

    Google Scholar 

  • 13.

    Cui, B., Nakamura, M., Kinjo, J. & Nohara, T. Chemical studies on Astragali Semen. Chem. Pharm. Bull. 41(1), 178–182. https://doi.org/10.1248/cpb.41.178 (1993).

    CAS 
    Article 

    Google Scholar 

  • 14.

    Pistelli, L. Secondary metabolites of genus Astragalus: Structure and biological activity. In: Atta‑Ur‑Rahman, editor. Studies in Natural Products Chemistry (Bioactive Natural Products, Part H) 443–545 (Elsevier, 2002).

  • 15.

    Sief-Eldein, A. G. M., El-Arabi, N. I., Sharaf, A. N., AbdAlhady, M. R. A. & Abdallah, N. A. Regeneration and genetic conservation of the endangered Astragalus trigonusplant. Biosci. Res. 15(1), 19–27 (2018).

    Google Scholar 

  • 16.

    Bedir, E., Pugh, N., Calıs, I., Pasco, D. S. & Khan, I. A. Immunostimulatory effects of cycloartane-type triterpene glycosides from Astragalus species. Biol. Pharm. Bull. 23, 834–837. https://doi.org/10.1248/bpb.23.834 (2000).

    CAS 
    Article 
    PubMed 

    Google Scholar 

  • 17.

    Yesilada, E., Bedir, E., Calis, I., Takaishi, Y. & Ohmoto, Y. Effects of triterpene saponins from Astragalus species on in vitro cytokine release. J. Ethnopharmacol. 96, 71–77 (2005).

    CAS 
    Article 

    Google Scholar 

  • 18.

    Roat, C. & Ramawat, K. G. Elicitor-induced accumulation of stilbenes in cell suspension cultures of Cayratia trifolia (L.) Domin. Plant Biotechnol. Rep. 3(2), 135–138. https://doi.org/10.1007/s11816-009-0082-y (2009).

    Article 

    Google Scholar 

  • 19.

    Poulev, A. et al. Elicitation, a new window into plant chemodiversity and phytochemical drug discovery. J. Med. Chem. 46(12), 2542–2547. https://doi.org/10.1021/jm020359t (2003).

    CAS 
    Article 
    PubMed 

    Google Scholar 

  • 20.

    Falcone-Ferreyra, M. L., Rius, S. P. & Casati, P. Flavonoids: Biosynthesis, biological functions, and biotechnological applications. Front. Plant. Sci. 3, 222. https://doi.org/10.3389/fpls.2012.00222 (2012).

    CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • 21.

    Crozier, A., Jaganath, I. B. & Clifford, M. N. Dietary phenolics: chemistry, bioavailability and effects on health. Nat. Prod. Rep. 26, 1001–1043. https://doi.org/10.1039/b802662a (2009).

    CAS 
    Article 
    PubMed 

    Google Scholar 

  • 22.

    van Tunen, A. J. et al. Cloning of the two chalcone flavanone isomerase genes from Petunia hybrida: Coordinate, light-regulated and differential expression of flavonoid genes. EMBO J. 7, 1257–1263 (1988).

    Article 

    Google Scholar 

  • 23.

    Mehdy, M. & Lamb, C. Chalcone isomerase cDNA cloning and mRNA induction by fungal elicitor, wounding and infection. EMBO J. 6, 1527–1533 (1987).

    CAS 
    Article 

    Google Scholar 

  • 24.

    Grotewold, E. & Peterson, T. Isolation and characterization of a maize gene encoding chalcone flavonone isomerase. Mol. Gen. Genet. 242, 1–8. https://doi.org/10.1007/BF00277341 (1994).

    CAS 
    Article 
    PubMed 

    Google Scholar 

  • 25.

    McKhann, H. I. & Hirsch, A. M. Isolation of chalcone synthase and chalcone isomerase cDNAs from alfalfa (Medicago sativa L.): Highest transcript levels occur in young roots and root tips. Plant. Mol. Biol. 24, 767–777. https://doi.org/10.1007/BF00029858 (1994).

    CAS 
    Article 
    PubMed 

    Google Scholar 

  • 26.

    Blyden, E. R., Doerner, P. W., Lamb, C. J. & Dixon, R. A. Sequence analysis of a chalcone isomerase cDNA of Phaseolus vulgaris L. Plant Mol. Biol. 16, 167–169. https://doi.org/10.1007/BF00017927 (1991).

    CAS 
    Article 
    PubMed 

    Google Scholar 

  • 27.

    Chia, Y. C., The, S. & Mohamed, Z. Isolation and characterization of Chalcone Isomerase (CHI) gene from Boesenbergia rotunda. S. Afr. J. Bot. 130(475), 482. https://doi.org/10.1016/j.sajb.2020.01.010 (2020).

    CAS 
    Article 

    Google Scholar 

  • 28.

    Wood, A. J. & Davies, E. A cDNA encoding chalcone isomerase from aged pea epicotyls. Plant Physiol. 104(4), 1465–1466. https://doi.org/10.1104/pp.104.4.1465 (1994).

    CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • 29.

    Li, F., Jin, Z., Qu, W., Zhao, D. & Ma, F. Cloning of a cDNA encoding the Saussurea medusa chalcone isomerase and its expression in transgenic tobacco. Plant Physiol. Biochem. 44, 455–461. https://doi.org/10.1016/j.plaphy.2006.08.006 (2006).

    CAS 
    Article 
    PubMed 

    Google Scholar 

  • 30.

    Muir, S. et al. Overexpression of petunia chalcone isomerase in tomato results in fruit containing increased levels of flavonols. Nat. Biotechnol. 19(5), 470–474. https://doi.org/10.1038/88150 (2001).

    CAS 
    Article 
    PubMed 

    Google Scholar 

  • 31.

    Su, W.W. & Lee, K.T. Plant cell and hairy root cultures—Process characteristics, products, and applications. In: Shang-Tian Y (Ed.). Bioprocessing for Value-Added Products from Renewable Resources-New Technologies and Applications 263–292 (Elsevier, 2007).

  • 32.

    Moscatiello, R., Baldan, B. & Navazio, L. Plant suspension cultures. In: Frans JM (Ed.). Plant mineral Nutrients Series: Methods Molecular Biology 77–93 (Humana Press, Springer, 2013).

  • 33.

    Smetanska, I. Production of secondary metabolites using plant cell cultures. In: Stahl U, Donalies UE, Nevoigt E (Eds.) Food Biotechnology. Advances in biochemical engineering/biotechnology, vol 111, 187–228 (Springer, 2008).

  • 34.

    Han, J. Y., Wang, H. Y. & Choi, Y. E. Production of dammarenediol-II triterpene in a cell suspension culture of transgenic tobacco. Plant Cell Rep. 33, 225–233. https://doi.org/10.1007/s00299-013-1523-1 (2014).

    CAS 
    Article 
    PubMed 

    Google Scholar 

  • 35.

    Misra, R. C., Maiti, P., Chanotiya, C. S., Shanker, K. & Ghosh, S. Methyl jasmonate-elicited transcriptional responses and pentacyclic triterpene biosynthesis in sweet basil. Plant Physiol. 164(2), 1028–1044. https://doi.org/10.1104/pp.113.232884 (2014).

    CAS 
    Article 
    PubMed 

    Google Scholar 

  • 36.

    Kamalipourazad, M., Sharif, M., Maivan, H. Z., Behmanesh, M. & Chashmi, N. A. Induction of aromatic amino acids and phenylpropanoid compounds in Scrophularia striata Boiss. cell culture in response to chitosan-induced oxidative stress. Plant Physiol. Biochem. 107, 374–384. https://doi.org/10.1016/j.plaphy.2016.06.034 (2016).

    CAS 
    Article 
    PubMed 

    Google Scholar 

  • 37.

    Wang, J., Qian, J., Yao, L. & Lu, Y. Enhanced production of flvonoids by methyl jasmonate elicitation in cell suspension culture of Hypericum perforatum. Bioresour. Bioprocess. 2, 5. https://doi.org/10.1186/s40643-014-0033-5 (2015).

    Article 

    Google Scholar 

  • 38.

    Saeed, S., Ali, H., Khan, T., Kayani, W. & Khan, M. A. Impacts of methyl jasmonate and phenyl acetic acid on biomass accumulation and antioxidant potential in adventitious roots of Ajuga bracteosa Wall ex Benth., a high valued endangered medicinal plant. Physiol. Mol. Biol. Plants 23, 229–237. https://doi.org/10.1007/s12298-016-0406-7 (2017).

    CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • 39.

    Ali, H., Khan, M. A., Kayani, W. K., Khan, T. & Khan, R. S. Thidiazuron regulated growth, secondary metabolism and essential oil profiles in shoot cultures of Ajuga bracteosa. Ind. Crops Prod. 121, 418–427. https://doi.org/10.1016/j.indcrop.2018.05.043 (2018).

    CAS 
    Article 

    Google Scholar 

  • 40.

    Forkmann, G. Flavonoids as flower pigments: The formation of the natural spectrum and its extension by genetic engineering. Plant Breed. 106, 1–26. https://doi.org/10.1111/j.1439-0523.1991.tb00474.x (1991).

    CAS 
    Article 

    Google Scholar 

  • 41.

    George, E. F., Hall, M. A. & Klerk, G.J.D. The components of plant tissue culture media I: macro-and micro-nutrients. In: George, F., Hall, M. A., De Klerk G. (Eds.) Plant propagation by tissue culture 65–113 (Springer, 2008). https://doi.org/10.1007/978-1-4020-5005-3 .

  • 42.

    Vasil, I. K. & Hildebrandt, A. C. Growth and chlorophyll production in plant callus tissues grown in vitro. Planta 68, 69–82. https://doi.org/10.1007/BF00385372 (1966).

    CAS 
    Article 
    PubMed 

    Google Scholar 

  • 43.

    Oksman-Caldentey, K. M. & Inzé, D. Plant cell factories in the postgenomic era: New ways to produce designer secondary metabolites. Trends Plant Sci. 9, 433–440. https://doi.org/10.1016/j.tplants.2004.07.006 (2004).

    CAS 
    Article 
    PubMed 

    Google Scholar 

  • 44.

    Zhao, J., Zheng, S. H., Fujita, K. & Sakai, K. Jasmonate and ethylene signaling and their interaction are integral parts of the elicitor signalling pathway leading to β-thujaplicin biosynthesis in Cupressus lusitanica cell cultures. J. Exp. Bot. 55(399), 1003–1012. https://doi.org/10.1093/jxb/erh127 (2004).

    CAS 
    Article 
    PubMed 

    Google Scholar 

  • 45.

    Dao, T. T. H., Linthorst, H. J. M. & Verpoorte, R. Chalcone synthase and its functions in plant resistance. Phytochem. Rev. 10, 397–412. https://doi.org/10.1007/s11101-011-9211-7 (2011).

    CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • 46.

    Shih, C., Chu, I. K., Yip, W. K. & Lo, C. Differential expression of two flavonoid 3′-Hydroxylase cDNAs involved in biosynthesis of anthocyanin pigments and 3-deoxyanthocyanidin phytoalexins in sorghum. Plant Cell Physiol. 47(10), 1412–1419. https://doi.org/10.1093/pcp/pcl003 (2006).

    CAS 
    Article 
    PubMed 

    Google Scholar 

  • 47.

    Druka, A. et al. Chalcone isomerase gene from rice (Oryza sativa) and barley (Hordeum vulgare): Physical, genetic and mutation mapping. Gene 302, 171–178. https://doi.org/10.1016/s0378-1119(02)01105-8 (2003).

    CAS 
    Article 
    PubMed 

    Google Scholar 

  • 48.

    Zhou, L. et al. Overexpression of Ps-CHI1, a homologue of the chalcone isomerase gene from tree peony (Paeonia suffruticosa), reduces the intensity of flower pigmentation in transgenic tobacco. Plant Cell Tissue Organ Cult. 16, 285–295. https://doi.org/10.1007/s11240-013-0403-2 (2014).

    CAS 
    Article 

    Google Scholar 

  • 49.

    Wansang, L. & Jiarui, L. Co-expression of onion chalcone isomerase in Del/Ros1-expressing tomato enhances anthocyanin and flavonol production. Plant Cell Tissue Organ Cult. 128, 113–124. https://doi.org/10.1007/s11240-016-1090-6 (2016).

    CAS 
    Article 

    Google Scholar 

  • 50.

    Xu, L. & Dietrich, P. Astragalus. Flora of China. 10. eFloras.org (Missouri Botanical Garden, St. Louis, MO & Harvard University Herbaria, 2018).

  • 51.

    Boulos, L. Flora of Egypt Cheklist: Revised Annonated Edition (Alhadara Publishing, 2009).

  • 52.

    Dessoky, E. S., Ismail, R. M., Elarabi, N. I., Abdelhadi, A. A. & Abdallah, N. A. Improvement of sugarcane for borer resistance using Agrobacterium mediated transformation of cry1Ac gene. GM Crops Food 12(1), 47–56. https://doi.org/10.1080/21645698.2020.1809318 (2021).

    Article 
    PubMed 

    Google Scholar 

  • 53.

    Moghaieb, R. E. A., Ahmed, D. S., Gaber, A. & Abdelhadi, A. A. Overexpression of bacterial katE gene improves the resistance of modified tomato plant against Fusarium oxysporum f. sp. lycopersici. GM Crops Food 12(1), 315–327. https://doi.org/10.1080/21645698.2021.1903374 (2021).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • 54.

    Murashige, T. & Skoog, F. a revised medium for rapid growth and bio assays with Tobacco tissue cultures. Physiol. Plant. 15(3), 473–497. https://doi.org/10.1111/j.1399-3054.1962.tb08052.x (1962).

    CAS 
    Article 

    Google Scholar 

  • 55.

    Rogers, S. & Bendich, O. Extraction of DNA from milligram amounts of fresh, herbarium and mummified plant tissues. Plant Mol. Biol. 5, 69–76. https://doi.org/10.1007/BF00020088 (1985).

    CAS 
    Article 
    PubMed 

    Google Scholar 

  • 56.

    Sambrook, J., Fritschi, E. F. & Maniatis, T. Molecular cloning: A laboratory manual (Cold Spring Harbor Laboratory Press, 1989).

    Google Scholar 

  • 57.

    Arya, D. & Patni, V. Comparative analysis of total flavonoids and quercetin content in vivo and in vitro and enhancement of quercetin via precursor feeding in pluchea lanceolata oliver & hiern. Int. J. Pharm. Pharm. Sci. 5(3), 617–621 (2013).

    CAS 

    Google Scholar 

  • 58.

    Park, M. S. & Choi, P. S. Plant regeneration from hypocotyls explants of Astragalus sinicus L. J. Plant Biotechnol. 42(4), 396–400. https://doi.org/10.5010/JPB.2015.42.4.396 (2015).

    Article 

    Google Scholar 

  • 59.

    Zhang, Q., Zhou, M. M., Chen, P. L., Cao, Y. Y. & Tan, X. L. Optimization of ultrasonicassisted enzymatic hydrolysis for the extraction of luteolin and apigenin from celery. J. Food Sci. 76(5), 680–685. https://doi.org/10.1111/j.1750-3841.2011.02174.x (2011).

    CAS 
    Article 

    Google Scholar 

  • Source link