Preloader

Orthogonally induced differentiation of stem cells for the programmatic patterning of vascularized organoids and bioprinted tissues

  • Yin, X. et al. Engineering stem cell organoids. Cell Stem Cell 18, 25–38 (2016).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Takebe, T. & Wells, J. M. Organoids by design. Science 364, 956–959 (2019).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Laurent, J. et al. Convergence of microengineering and cellular self-organization towards functional tissue manufacturing. Nat. Biomed. Eng. 1, 939–956 (2017).

    CAS 
    PubMed 

    Google Scholar 

  • Brassard, J. A. & Lutolf, M. P. Engineering stem cell self-organization to build better organoids. Cell Stem Cell 24, 860–876 (2019).

    CAS 
    PubMed 

    Google Scholar 

  • Lancaster, M. A. & Knoblich, J. A. Organogenesis in a dish: modeling development and disease using organoid technologies. Science 345, 1247125 (2014).

    PubMed 
    PubMed Central 

    Google Scholar 

  • Clevers, H. Modeling development and disease with organoids. Cell 165, 1586–1597 (2016).

    CAS 
    PubMed 

    Google Scholar 

  • Lee, A. et al. 3D bioprinting of collagen to rebuild components of the human heart. Science 365, 482–487 (2019).

    CAS 
    PubMed 

    Google Scholar 

  • Lee, W. et al. Multi-layered culture of human skin fibroblasts and keratinocytes through three-dimensional freeform fabrication. Biomaterials 30, 1587–1595 (2009).

    CAS 
    PubMed 

    Google Scholar 

  • Kolesky, D. B. et al. 3D bioprinting of vascularized, heterogeneous cell-laden tissue constructs. Adv. Mater. 26, 3124–3130 (2014).

    CAS 
    PubMed 

    Google Scholar 

  • Skylar-Scott, M. A. et al. Biomanufacturing of organ-specific tissues with high cellular density and embedded vascular channels. Sci. Adv. 5, eaaw2459 (2019).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Kang, H.-W. et al. A 3D bioprinting system to produce human-scale tissue constructs with structural integrity. Nat. Biotechnol. 34, 312–319 (2016).

    CAS 
    PubMed 

    Google Scholar 

  • Gu, Q., Tomaskovic-Crook, E., Wallace, G. G. & Crook, J. M. 3D bioprinting human induced pluripotent stem cell constructs for in situ cell proliferation and successive multilineage differentiation. Adv. Healthc. Mater. 6, 1–11 (2017).

    Google Scholar 

  • Yoon, S.-J. et al. Reliability of human cortical organoid generation. Nat. Methods 16, 75–78 (2019).

    CAS 
    PubMed 

    Google Scholar 

  • Velasco, S. et al. Individual brain organoids reproducibly form cell diversity of the human cerebral cortex. Nature 570, 523–527 (2019).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Lancaster, M. A. et al. Cerebral organoids model human brain development and microcephaly. Nature 501, 373–379 (2013).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Takasato, M. et al. Kidney organoids from human iPS cells contain multiple lineages and model human nephrogenesis. Nature 526, 564–568 (2015).

    CAS 
    PubMed 

    Google Scholar 

  • Morizane, R. et al. Nephron organoids derived from human pluripotent stem cells model kidney development and injury. Nat. Biotechnol. 33, 1193–1200 (2015).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Homan, K. A. et al. Flow-enhanced vascularization and maturation of kidney organoids in vitro. Nat. Methods 16, 255–262 (2019).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Eiraku, M. et al. Self-organizing optic-cup morphogenesis in three-dimensional culture. Nature 472, 51–56 (2011).

    CAS 
    PubMed 

    Google Scholar 

  • Kelava, I. & Lancaster, M. A. Stem cell models of human brain development. Cell Stem Cell 18, 736–748 (2016).

    CAS 
    PubMed 

    Google Scholar 

  • Phipson, B. et al. Evaluation of variability in human kidney organoids. Nat. Methods 16, 79–87 (2019).

    CAS 

    Google Scholar 

  • Morita, R. et al. ETS transcription factor ETV2 directly converts human fibroblasts into functional endothelial cells. Proc. Natl Acad. Sci. USA 112, 160–165 (2015).

    CAS 
    PubMed 

    Google Scholar 

  • Elcheva, I. et al. Direct induction of haematoendothelial programs in human pluripotent stem cells by transcriptional regulators. Nat. Commun. 5, 4372 (2014).

    CAS 
    PubMed 

    Google Scholar 

  • Busskamp, V. et al. Rapid neurogenesis through transcriptional activation in human stem cells. Mol. Syst. Biol. 10, 760 (2014).

    PubMed 
    PubMed Central 

    Google Scholar 

  • Sekiya, S. & Suzuki, A. Direct conversion of mouse fibroblasts to hepatocyte-like cells by defined factors. Nature 475, 390–393 (2011).

    CAS 
    PubMed 

    Google Scholar 

  • Huang, P. et al. Induction of functional hepatocyte-like cells from mouse fibroblasts by defined factors. Nature 475, 386–389 (2011).

    CAS 
    PubMed 

    Google Scholar 

  • Guye, P. et al. Genetically engineering self-organization of human pluripotent stem cells into a liver bud-like tissue using Gata6. Nat. Commun. 7, 10243 (2016).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Cakir, B. et al. Engineering of human brain organoids with a functional vascular-like system. Nat. Methods 16, 1169–1175 (2019).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Ng, A. H. M. et al. A comprehensive library of human transcription factors for cell fate engineering. Nat. Biotechnol. 39, 510–519 (2021).

    CAS 
    PubMed 

    Google Scholar 

  • Kim, D.-S. et al. Robust enhancement of neural differentiation from human ES and iPS cells regardless of their innate difference in differentiation propensity. Stem Cell Rev. Rep. 6, 270–281 (2010).

    CAS 
    PubMed 

    Google Scholar 

  • Chambers, S. M. et al. Highly efficient neural conversion of human ES and iPS cells by dual inhibition of SMAD signaling. Nat. Biotechnol. 27, 275–280 (2009).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Matsushita, M. et al. Neural differentiation of human embryonic stem cells induced by the transgene-mediated overexpression of single transcription factors. Biochem. Biophys. Res. Commun. 490, 296–301 (2017).

    CAS 
    PubMed 

    Google Scholar 

  • Gu, M. Efficient differentiation of human pluripotent stem cells to endothelial cells. Curr. Protoc. Hum. Genet. 98, e64 (2018).

    Google Scholar 

  • Shi, Y. et al. Vascularized human cortical organoids (vOrganoids) model cortical development in vivo. PLoS Biol. 18, 1–29 (2020).

    Google Scholar 

  • Steinberg, M. S. On the mechanism of tissue reconstruction by dissociated cells. I. Population kinetics, differential adhesiveness, and the absence of directed migration. Proc. Natl Acad. Sci. USA 48, 1577–1582 (1962).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Goldberg, J. S. & Hirschi, K. K. Diverse roles of the vasculature within the neural stem cell niche. Regen. Med. 4, 879–897 (2009).

    PubMed 

    Google Scholar 

  • Takahashi, T. et al. Angiogenesis in the developing spinal cord: blood vessel exclusion from neural progenitor region is mediated by VEGF and its antagonists. PLoS ONE 10, e0116119 (2015).

    PubMed 
    PubMed Central 

    Google Scholar 

  • Qian, X. et al. Brain-region-specific organoids using mini-bioreactors for modeling ZIKV exposure. Cell 165, 1238–1254 (2016).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Cederquist, G. Y. et al. Specification of positional identity in forebrain organoids. Nat. Biotechnol. 37, 436–444 (2019).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Pasca, A. M. et al. Functional cortical neurons and astrocytes from human pluripotent stem cells in 3D culture. Nat. Methods 12, 671–678 (2015).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Tan, Y. & Cahan, P. SingleCellNet: a computational tool to classify single cell RNA-seq data across platforms and across species. Cell Syst. 9, 207–213.e2 (2019).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Bhaduri, A. et al. Cell stress in cortical organoids impairs molecular subtype specification. Nature 578, 142–148 (2020).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • He, L. et al. Analysis of the brain mural cell transcriptome. Sci. Rep. 6, 1–13 (2016).

    Google Scholar 

  • Kolesky, D. B., Homan, K. A., Skylar-Scott, M. A. & Lewis, J. A. Three-dimensional bioprinting of thick vascularized tissues. Proc. Natl Acad. Sci. USA 113, 3179–3184 (2016).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Kupfer, M. E. et al. In situ expansion, differentiation and electromechanical coupling of human cardiac muscle in a 3D bioprinted, chambered organoid. Circ. Res. 127, 207–224 (2020).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Gu, Q. et al. Functional 3D neural mini-tissues from printed gel-based bioink and human neural stem cells. Adv. Healthc. Mater. 5, 1429–1438 (2016).

    CAS 
    PubMed 

    Google Scholar 

  • Koch, L. et al. Laser bioprinting of human induced pluripotent stem cells – the effect of printing and biomaterials on cell survival, pluripotency, and differentiation. Biofabrication 10, 035005 (2018).

    PubMed 

    Google Scholar 

  • Li, Y. et al. 3D printing human induced pluripotent stem cells with novel hydroxypropyl chitin bioink: scalable expansion and uniform aggregation. Biofabrication 10, 044101 (2018).

    PubMed 

    Google Scholar 

  • Seiler, C. Y. et al. DNASU plasmid and PSI:Biology-Materials repositories: resources to accelerate biological research. Nucleic Acids Res. 42, D1253–D1260 (2014).

    CAS 
    PubMed 

    Google Scholar 

  • Wiemann, S. et al. The ORFeome Collaboration: a genome-scale human ORF-clone resource. Nat. Methods 13, 191–192 (2016).

    Google Scholar 

  • Thompson, D. B., Villaseñor, R., Dorr, B. M., Zerial, M. & Liu, D. R. Cellular uptake mechanisms and endosomal trafficking of supercharged proteins. Chem. Biol. 19, 831–843 (2012).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Lancaster, M. A. & Knoblich, J. A. Generation of cerebral organoids from human pluripotent stem cells. Nat. Protoc. 9, 2329–2340 (2014).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Birey, F. et al. Assembly of functionally integrated human forebrain spheroids. Nature 545, 54–59 (2017).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Renier, N. et al. Mapping of brain activity by automated volume analysis of immediate early genes. Cell 165, 1789–1802 (2016).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Schmid, B. et al. 3Dscript: animating 3D/4D microscopy data using a natural-language-based syntax. Nat. Methods 16, 278–280 (2019).

    CAS 
    PubMed 

    Google Scholar 

  • Zudaire, E., Gambardella, L., Kurcz, C. & Vermeren, S. A computational tool for quantitative analysis of vascular networks. PLoS ONE 6, e27385 (2011).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Hell, S., Reiner, G., Cremer, C. & Stelzer, E. H. K. Aberrations in confocal fluorescence microscopy induced by mismatches in refractive index. J. Microsc. 169, 391–405 (1993).

    Google Scholar 

  • Bayer, S. A. & Altman, J. The Human Brain During the Third Trimester (CRC Press, 2003).

  • Source link