Novikoff, A. B. The concept of integrative levels and biology. Science 101, 209–215 (1945).
Google Scholar
Mullock, B. M. & Luzio, J. P. Theory of Organelle Biogenesis: a Historical Perspective — Madame Curie Bioscience Database (National Center for Biotechnology Information, 2013).
Eguchi, S. & Rizzo, V. Organelles in health and diseases. Clin. Sci. 131, 1–2 (2017).
Trivedi, P. C., Bartlett, J. J. & Pulinilkunnil, T. Lysosomal biology and function: modern view of cellular debris bin. Cells 9, 1131 (2020).
Google Scholar
Schwarz, D. S. & Blower, M. D. The endoplasmic reticulum: structure, function and response to cellular signaling. Cell Mol. Life Sci. 73, 79–94 (2016).
Google Scholar
Huang, S. & Wang, Y. Golgi structure formation, function, and post-translational modifications in mammalian cells. F1000Research 6, 2050 (2017).
Friedman, J. R. & Nunnari, J. Mitochondrial form and function. Nature 505, 335–343 (2014).
Google Scholar
Leibiger, I. B., Leibiger, B. & Berggren, P.-O. Insulin signaling in the pancreatic β-cell. Annu. Rev. Nutr. 28, 233–251 (2008).
Google Scholar
Greengard, P., Valtorta, F., Czernik, A. J. & Benfenati, F. Synaptic vesicle phosphoproteins and regulation of synaptic function. Science 259, 780–785 (1993).
Google Scholar
Fairn, G. D. & Grinstein, S. How nascent phagosomes mature to become phagolysosomes. Trends Immunol. 33, 397–405 (2012).
Google Scholar
Whitaker, M. Calcium at fertilization and in early development. Physiol. Rev. 86, 25–88 (2006).
Google Scholar
Hirabayashi, Y. et al. ER-mitochondria tethering by PDZD8 regulates Ca2+ dynamics in mammalian neurons. Science 358, 623–630 (2017).
Google Scholar
Yu, S. B. & Pekkurnaz, G. Mechanisms orchestrating mitochondrial dynamics for energy homeostasis. J. Mol. Biol. 430, 3922–3941 (2018).
Google Scholar
Adler, K. B., Tuvim, M. J. & Dickey, B. F. Regulated mucin secretion from airway epithelial cells. Front. Endocrinol. 4, 129 (2013).
Mazzone, M. et al. Intracellular processing and activation of membrane type 1 matrix metalloprotease depends on its partitioning into lipid domains. J. Cell Sci. 117, 6275–6287 (2004).
Google Scholar
Herst, P. M., Dawson, R. H. & Berridge, M. V. Intercellular communication in tumor biology: a role for mitochondrial transfer. Front. Oncol. 8, 344 (2018).
Tirziu, D., Giordano, F. J. & Simons, M. Cell communications in the heart. Circulation 122, 928–937 (2010).
Garden, G. A. & La Spada, A. R. Intercellular (mis)communication in neurodegenerative disease. Neuron 73, 886–901 (2012).
Google Scholar
Galluzzi, L., Kepp, O., Trojel-Hansen, C. & Kroemer, G. Mitochondrial control of cellular life, stress, and death. Circ. Res. 111, 1198–1207 (2012).
Google Scholar
Pavlova, N. N. & Thompson, C. B. The emerging hallmarks of cancer metabolism. Cell Metab. 23, 27–47 (2016).
Google Scholar
Zhang, L., Sheng, R. & Qin, Z. The lysosome and neurodegenerative diseases. Acta Biochim. Biophys. Sin. 41, 437–445 (2009).
Google Scholar
Lindholm, D., Wootz, H. & Korhonen, L. ER stress and neurodegenerative diseases. Cell Death Differ. 13, 385–392 (2006).
Google Scholar
Yoshida, H. ER stress and diseases. FEBS J. 274, 630–658 (2007).
Google Scholar
Hong, J., Kim, K., Kim, J.-H. & Park, Y. The role of endoplasmic reticulum stress in cardiovascular disease and exercise. Int. J. Vasc. Med. 2017, 2049217 (2017).
Ozcan, L. & Tabas, I. Role of endoplasmic reticulum stress in metabolic disease and other disorders. Annu. Rev. Med. 63, 317–328 (2012).
Google Scholar
Luan, X. et al. Engineering exosomes as refined biological nanoplatforms for drug delivery. Acta Pharmacol. Sin. 38, 754–763 (2017).
Google Scholar
Mothes, W., Sherer, N. M., Jin, J. & Zhong, P. Virus cell-to-cell transmission. J. Virol. 84, 8360–8368 (2010).
Google Scholar
Warnock, R. A., Askari, S., Butcher, E. C. & von Andrian, U. H. Molecular mechanisms of lymphocyte homing to peripheral lymph nodes. J. Exp. Med. 187, 205–216 (1998).
Google Scholar
McEver, R. P. & Zhu, C. Rolling cell adhesion. Annu. Rev. Cell Dev. Biol. 26, 363–396 (2010).
Google Scholar
Marsh, M. & Helenius, A. Virus entry: open sesame. Cell 124, 729–740 (2006).
Google Scholar
Meier, O. et al. Adenovirus triggers macropinocytosis and endosomal leakage together with its clathrin-mediated uptake. J. Cell Biol. 158, 1119–1131 (2002).
Google Scholar
Tsai, B. et al. Gangliosides are receptors for murine polyoma virus and SV40. EMBO J. 22, 4346–4355 (2003).
Google Scholar
Panjwani, A. et al. Capsid protein VP4 of human rhinovirus induces membrane permeability by the formation of a size-selective multimeric pore. PLoS Pathog. 10, e1004294 (2014).
Dupzyk, A. & Tsai, B. How polyomaviruses exploit the ERAD machinery to cause infection. Viruses 8, 242 (2016).
Cohen, S., Au, S. & Panté, N. How viruses access the nucleus. Biochim. Biophys. Acta 1813, 1634–1645 (2011).
Google Scholar
Goswami, R. et al. Gene therapy leaves a vicious cycle. Front. Oncol. 9, 297 (2019).
Biagioni, A. et al. Delivery systems of CRISPR/Cas9-based cancer gene therapy. J. Biol. Eng. 12, 33 (2018).
Google Scholar
Ran, F. A. et al. In vivo genome editing using Staphylococcus aureus Cas9. Nature 520, 186–191 (2015). In this paper, AAV delivery vehicles were leveraged for Cas9-mediated in vivo genome editing.
Google Scholar
Ramasamy, M. N. et al. Safety and immunogenicity of ChAdOx1 nCoV-19 vaccine administered in a prime-boost regimen in young and old adults (COV002): a single-blind, randomised, controlled, phase 2/3 trial. Lancet 396, 1979–1993 (2021).
News In Brief: First CRISPR therapy dosed. Nat. Biotechnol. 38, 382 (2020).
Shahryari, A. et al. Development and clinical translation of approved gene therapy products for genetic disorders. Front. Genet. 10, 868 (2019).
Google Scholar
Maddalo, D. et al. In vivo engineering of oncogenic chromosomal rearrangements with the CRISPR/Cas9 system. Nature 516, 423–427 (2014).
Google Scholar
Ding, Q. et al. Permanent alteration of PCSK9 with in vivo CRISPR-Cas9 genome editing. Circ. Res. 115, 488–492 (2014).
Google Scholar
Maggio, I., Liu, J., Janssen, J. M., Chen, X. & Gonçalves, M. A. F. V. Adenoviral vectors encoding CRISPR/Cas9 multiplexes rescue dystrophin synthesis in unselected populations of DMD muscle cells. Sci. Rep. 6, 37051 (2016).
Google Scholar
Li, C. et al. Inhibition of HIV-1 infection of primary CD4+ T-cells by gene editing of CCR5 using adenovirus-delivered CRISPR/Cas9. J. Gen. Virol. 96, 2381–2393 (2015).
Google Scholar
Yang, Y. et al. A dual AAV system enables the Cas9-mediated correction of a metabolic liver disease in newborn mice. Nat. Biotechnol. 34, 334–338 (2016).
Google Scholar
Gong, H. et al. Method for dual viral vector mediated CRISPR-Cas9 gene disruption in primary human endothelial cells. Sci. Rep. 7, 42127 (2017).
Google Scholar
Yin, H. et al. Therapeutic genome editing by combined viral and non-viral delivery of CRISPR system components in vivo. Nat. Biotechnol. 34, 328–333 (2016).
Google Scholar
Liu, P. et al. Improved prime editors enable pathogenic allele correction and cancer modelling in adult mice. Nat. Commun. 12, 2121 (2021). This paper describes the optimization of genome editors with nuclear localization signals to improve genome editing efficiency in vivo.
Google Scholar
Koblan, L. W. et al. In vivo base editing rescues Hutchinson–Gilford progeria syndrome in mice. Nature 589, 608–614 (2021).
Google Scholar
Tachibana, R. Quantitative studies on the nuclear transport of plasmid DNA and gene expression employing nonviral vectors. Adv. Drug Deliv. Rev. 52, 219–226 (2001).
Google Scholar
Ma, X., Gong, N., Zhong, L., Sun, J. & Liang, X.-J. Future of nanotherapeutics: targeting the cellular sub-organelles. Biomaterials 97, 10–21 (2016).
Google Scholar
Kang, B., Mackey, M. A. & El-Sayed, M. A. Nuclear targeting of gold nanoparticles in cancer cells induces DNA damage, causing cytokinesis arrest and apoptosis. J. Am. Chem. Soc. 132, 1517–1519 (2010).
Google Scholar
Zelmer, C. et al. Organelle-specific targeting of polymersomes into the cell nucleus. Proc. Natl Acad. Sci. USA 117, 2770–2778 (2020).
Google Scholar
Pan, L. et al. Nuclear-targeted drug delivery of TAT peptide-conjugated monodisperse mesoporous silica nanoparticles. J. Am. Chem. Soc. 134, 5722–5725 (2012).
Google Scholar
Vivès, E., Brodin, P. & Lebleu, B. A truncated HIV-1 Tat protein basic domain rapidly translocates through the plasma membrane and accumulates in the cell nucleus. J. Biol. Chem. 272, 16010–16017 (1997).
Boustany, R.-M. N. Lysosomal storage diseases — the horizon expands. Nat. Rev. Neurol. 9, 583–598 (2013).
Google Scholar
Kaksonen, M. & Roux, A. Mechanisms of clathrin-mediated endocytosis. Nat. Rev. Mol. Cell Biol. 19, 313–326 (2018).
Google Scholar
McMahon, H. T. & Boucrot, E. Molecular mechanism and physiological functions of clathrin-mediated endocytosis. Nat. Rev. Mol. Cell Biol. 12, 517–533 (2011).
Google Scholar
Deduve, C. From cytases to lysosomes. Fed. Proc. 23, 1045–1049 (1964).
Google Scholar
Platt, F. M., Boland, B. & van der Spoel, A. C. The cell biology of disease: lysosomal storage disorders: the cellular impact of lysosomal dysfunction. J. Cell Biol. 199, 723–734 (2012).
Google Scholar
Futerman, A. H. & van Meer, G. The cell biology of lysosomal storage disorders. Nat. Rev. Mol. Cell Biol. 5, 554–565 (2004).
Google Scholar
Sun, M. et al. Mucolipidosis type IV is caused by mutations in a gene encoding a novel transient receptor potential channel. Hum. Mol. Genet. 9, 2471–2478 (2000).
Google Scholar
Peake, K. B. & Vance, J. E. Defective cholesterol trafficking in Niemann–Pick C-deficient cells. FEBS Lett. 584, 2731–2739 (2010).
Google Scholar
Bach, G., Friedman, R., Weissmann, B. & Neufeld, E. F. The defect in the Hurler and Scheie syndromes: deficiency of α-l-iduronidase. Proc. Natl Acad. Sci. USA 69, 2048–2051 (1972).
Google Scholar
Fratantoni, J. C., Hall, C. W. & Neufeld, E. F. Hurler and Hunter syndromes: mutual correction of the defect in cultured fibroblasts. Science 162, 570–572 (1968).
Google Scholar
Varki, A. & Kornfeld, S. Structural studies of phosphorylated high mannose-type oligosaccharides. J. Biol. Chem. 255, 10847–10858 (1980).
Google Scholar
Barton, N. W. et al. Replacement therapy for inherited enzyme deficiency — macrophage-targeted glucocerebrosidase for Gaucher’s disease. N. Engl. J. Med. 324, 1464–1470 (1991). This paper describes the clinical efficacy of the first enzyme replacement therapy targeting lysosomal dysfunction by leveraging the mannose-6-phosphate receptor pathway.
Google Scholar
Solomon, M. & Muro, S. Lysosomal enzyme replacement therapies: historical development, clinical outcomes, and future perspectives. Adv. Drug Deliv. Rev. 118, 109–134 (2017).
Google Scholar
Desnick, R. J. & Schuchman, E. H. Enzyme replacement and enhancement therapies: lessons from lysosomal disorders. Nat. Rev. Genet. 3, 954–966 (2002).
Google Scholar
Pardridge, W. M. Blood–brain barrier delivery. Drug Discov. Today 12, 54–61 (2007).
Google Scholar
Urayama, A., Grubb, J. H., Sly, W. S. & Banks, W. A. Mannose 6-phosphate receptor-mediated transport of sulfamidase across the blood–brain barrier in the newborn mouse. Mol. Ther. 16, 1261–1266 (2008).
Google Scholar
Tian, W. et al. The glycosylation design space for recombinant lysosomal replacement enzymes produced in CHO cells. Nat. Commun. 10, 1785 (2019).
LeBowitz, J. H. et al. Glycosylation-independent targeting enhances enzyme delivery to lysosomes and decreases storage in mucopolysaccharidosis type VII mice. Proc. Natl Acad. Sci. USA 101, 3083–3088 (2004).
Google Scholar
Prince, W. S. et al. Lipoprotein receptor binding, cellular uptake, and lysosomal delivery of fusions between the receptor-associated protein (RAP) and α-l-iduronidase or acid α-glucosidase. J. Biol. Chem. 279, 35037–35046 (2004).
Google Scholar
Boado, R. J., Lu, J. Z., Hui, E. K.-W., Sumbria, R. K. & Pardridge, W. M. Pharmacokinetics and brain uptake in the rhesus monkey of a fusion protein of arylsulfatase a and a monoclonal antibody against the human insulin receptor. Biotechnol. Bioeng. 110, 1456–1465 (2013).
Google Scholar
Do, M. A., Levy, D., Brown, A., Marriott, G. & Lu, B. Targeted delivery of lysosomal enzymes to the endocytic compartment in human cells using engineered extracellular vesicles. Sci. Rep. 9, 17274 (2019).
Muro, S. Strategies for delivery of therapeutics into the central nervous system for treatment of lysosomal storage disorders. Drug Deliv. Transl. Res. 2, 169–186 (2012).
Google Scholar
Gregoriadis, G. & Ryman, B. E. Lysosomal localization of β-fructofuranosidase-containing liposomes injected into rats. Some implications in the treatment of genetic disorders. Biochem. J. 129, 123–133 (1972).
Google Scholar
Steger, L. D. & Desnick, R. J. Enzyme therapy. VI: Comparative in vivo fates and effects on lysosomal integrity of enzyme entrapped in negatively and positively charged liposomes. Biochim. Biophys. Acta 464, 530–546 (1977).
Google Scholar
Baltazar, G. C. et al. Acidic nanoparticles are trafficked to lysosomes and restore an acidic lysosomal pH and degradative function to compromised ARPE-19 cells. PLoS ONE 7, e49635 (2012).
Google Scholar
Dekiwadia, C. D., Lawrie, A. C. & Fecondo, J. V. Peptide-mediated cell penetration and targeted delivery of gold nanoparticles into lysosomes. J. Pept. Sci. 18, 527–534 (2012).
Google Scholar
Muro, S. et al. A novel endocytic pathway induced by clustering endothelial ICAM-1 or PECAM-1. J. Cell Sci. 116, 1599–1609 (2003).
Google Scholar
Muro, S., Schuchman, E. H. & Muzykantov, V. R. Lysosomal enzyme delivery by ICAM-1-targeted nanocarriers bypassing glycosylation- and clathrin-dependent endocytosis. Mol. Ther. 13, 135–141 (2006).
Google Scholar
Garnacho, C. et al. Delivery of acid sphingomyelinase in normal and Niemann–Pick disease mice using intercellular adhesion molecule-1-targeted polymer nanocarriers. J. Pharmacol. Exp. Ther. 325, 400–408 (2008).
Google Scholar
Yin, H. & Flynn, A. D. Drugging membrane protein interactions. Annu. Rev. Biomed. Eng. 18, 51–76 (2016).
Google Scholar
Banik, S. M. et al. Lysosome-targeting chimaeras for degradation of extracellular proteins. Nature 584, 291–297 (2020).
Google Scholar
Shen, Y. et al. Transferrin receptor 1 in cancer: a new sight for cancer therapy. Am. J. Cancer Res. 8, 916–931 (2018).
Google Scholar
Zheng, G., Chen, J., Li, H. & Glickson, J. D. Rerouting lipoprotein nanoparticles to selected alternate receptors for the targeted delivery of cancer diagnostic and therapeutic agents. Proc. Natl Acad. Sci. USA 102, 17757–17762 (2005).
Google Scholar
Domenech, M., Marrero-Berrios, I., Torres-Lugo, M. & Rinaldi, C. Lysosomal membrane permeabilization by targeted magnetic nanoparticles in alternating magnetic fields. ACS Nano 7, 5091–5101 (2013).
Google Scholar
Schneider, R. et al. Design, synthesis, and biological evaluation of folic acid targeted tetraphenylporphyrin as novel photosensitizers for selective photodynamic therapy. Bioorg. Med. Chem. 13, 2799–2808 (2005).
Google Scholar
Tian, J. et al. Cell-specific and pH-activatable rubyrin-loaded nanoparticles for highly selective near-infrared photodynamic therapy against cancer. J. Am. Chem. Soc. 135, 18850–18858 (2013).
Google Scholar
Marques, E. T. A. et al. HIV-1 p55Gag encoded in the lysosome-associated membrane protein-1 as a DNA plasmid vaccine chimera is highly expressed, traffics to the major histocompatibility class II compartment, and elicits enhanced immune responses. J. Biol. Chem. 278, 37926–37936 (2003).
Google Scholar
Jiang, D.-B. et al. Recombinant DNA vaccine of Hantavirus Gn and LAMP1 induced long-term immune protection in mice. Antivir. Res. 138, 32–39 (2017).
Google Scholar
Ji, H. et al. Targeting human papillomavirus type 16 E7 to the endosomal/lysosomal compartment enhances the antitumor immunity of DNA vaccines against murine human papillomavirus type 16 E7-expressing tumors. Hum. Gene Ther. 10, 2727–2740 (1999).
Google Scholar
Farhan, H. & Rabouille, C. Signalling to and from the secretory pathway. J. Cell Sci. 124, 171–180 (2011).
Google Scholar
Spang, A. Retrograde traffic from the Golgi to the endoplasmic reticulum. Cold Spring Harb. Persp. Biol. 5, a013391 (2013).
Jackson, L. P. et al. Molecular basis for recognition of dilysine trafficking motifs by COPI. Dev. Cell 23, 1255–1262 (2012).
Google Scholar
Boelens, J., Lust, S., Offner, F., Bracke, M. E. & Vanhoecke, B. W. Review. The endoplasmic reticulum: a target for new anticancer drugs. In Vivo 21, 215–226 (2007).
Google Scholar
Schröder, M. & Kaufman, R. J. The mammalian unfolded protein response. Annu. Rev. Biochem. 74, 739–789 (2005).
Yen, C.-L. et al. Targeted delivery of curcumin rescues endoplasmic reticulum-retained mutant NOX2 protein and avoids leukocyte apoptosis. J. Immunol. 202, 3394–3403 (2019).
Google Scholar
Wang, G., Norton, A. S., Pokharel, D., Song, Y. & Hill, R. A. KDEL peptide gold nanoconstructs: promising nanoplatforms for drug delivery. Nanomedicine 9, 366–374 (2013).
Google Scholar
Perez-Trujillo, J. J. et al. DNA vaccine encoding human papillomavirus antigens flanked by a signal peptide and a KDEL sequence induces a potent therapeutic antitumor effect. Oncol. Lett. 13, 1569–1574 (2017).
Google Scholar
Sneh-Edri, H., Likhtenshtein, D. & Stepensky, D. Intracellular targeting of PLGA nanoparticles encapsulating antigenic peptide to the endoplasmic reticulum of dendritic cells and its effect on antigen cross-presentation in vitro. Mol. Pharm. 8, 1266–1275 (2011).
Google Scholar
Wales, R., Chaddock, J. A., Roberts, L. M. & Lord, J. M. Addition of an ER retention signal to the ricin A chain increases the cytotoxicity of the holotoxin. Exp. Cell Res. 203, 1–4 (1992).
Google Scholar
Jiao, P., Zhang, J., Dong, Y., Wei, D. & Ren, Y. Construction and characterization of the recombinant immunotoxin RTA-4D5-KDEL targeting HER2/neu-positive cancer cells and locating the endoplasmic reticulum. Appl. Microbiol. Biotechnol. 102, 9585–9594 (2018).
Google Scholar
Abraham, O. et al. Control of protein trafficking by reversible masking of transport signals. Mol. Biol. Cell 27, 1310–1319 (2016). This paper describes a pioneering method of delivering exogenous material to the ER and other intracellular compartments by reversibly unmasking organelle targeting signals.
Google Scholar
Mercer, J., Schelhaas, M. & Helenius, A. Virus entry by endocytosis. Annu. Rev. Biochem. 79, 803–833 (2010).
Google Scholar
Wernick, N. L. B., Chinnapen, D. J.-F., Cho, J. A. & Lencer, W. I. Cholera toxin: an intracellular journey into the cytosol by way of the endoplasmic reticulum. Toxins 2, 310–325 (2010).
Google Scholar
Johannes, L. & Goud, B. Surfing on a retrograde wave: how does Shiga toxin reach the endoplasmic reticulum? Trends Cell Biol. 8, 158–162 (1998).
Google Scholar
Lencer, W. I. et al. Targeting of cholera toxin and Escherichia coli heat labile toxin in polarized epithelia: role of COOH-terminal KDEL. J. Cell Biol. 131, 951–962 (1995).
Google Scholar
Johannes, L., Tenza, D., Antony, C. & Goud, B. Retrograde transport of KDEL-bearing B-fragment of Shiga toxin. J. Biol. Chem. 272, 19554–19561 (1997).
Google Scholar
Yu, M. & Haslam, D. B. Shiga toxin is transported from the endoplasmic reticulum following interaction with the luminal chaperone HEDJ/ERdj3. Infect. Immun. 73, 2524–2532 (2005).
Google Scholar
Tarragó-Trani, M. T. & Storrie, B. Alternate routes for drug delivery to the cell interior: pathways to the Golgi apparatus and endoplasmic reticulum. Adv. Drug Deliv. Rev. 59, 782–797 (2007).
Haicheur, N. et al. The B subunit of Shiga toxin fused to a tumor antigen elicits CTL and targets dendritic cells to allow MHC class I-restricted presentation of peptides derived from exogenous antigens. J. Immunol. 165, 3301–3308 (2000).
Google Scholar
Haicheur, N. et al. The B subunit of Shiga toxin coupled to full-size antigenic protein elicits humoral and cell-mediated immune responses associated with a Th1-dominant polarization. Int. Immunol. 15, 1161–1171 (2003).
Google Scholar
Engedal, N., Skotland, T., Torgersen, M. L. & Sandvig, K. Shiga toxin and its use in targeted cancer therapy and imaging. Microb. Biotechnol. 4, 32–46 (2011).
Google Scholar
Luginbuehl, V., Meier, N., Kovar, K. & Rohrer, J. Intracellular drug delivery: potential usefulness of engineered Shiga toxin subunit B for targeted cancer therapy. Biotechnol. Adv. 36, 613–623 (2018).
Google Scholar
Tarragó-Trani, M. T., Jiang, S., Harich, K. C. & Storrie, B. Shiga-like toxin subunit B (SLTB)-enhanced delivery of chlorin e6 (Ce6) improves cell killing. Photochem. Photobiol. 82, 527–537 (2006).
Wang, J., Fang, X. & Liang, W. Pegylated phospholipid micelles induce endoplasmic reticulum-dependent apoptosis of cancer cells but not normal cells. ACS Nano 6, 5018–5030 (2012).
Google Scholar
Pollock, S. et al. Uptake and trafficking of liposomes to the endoplasmic reticulum. FASEB J. 24, 1866–1878 (2010).
Google Scholar
Martin, G. M., Kandasamy, B., DiMaio, F., Yoshioka, C. & Shyng, S.-L. Anti-diabetic drug binding site in a mammalian KATP channel revealed by cryo-EM. eLife https://doi.org/10.7554/eLife.31054 (2017).
Google Scholar
Shi, Y., Wang, S., Wu, J., Jin, X. & You, J. Pharmaceutical strategies for endoplasmic reticulum-targeting and their prospects of application. J. Control. Rel. https://doi.org/10.1016/j.jconrel.2020.11.054 (2020).
Google Scholar
Zhou, Y. et al. Endoplasmic reticulum-localized two-photon-absorbing boron dipyrromethenes as advanced photosensitizers for photodynamic therapy. J. Med. Chem. 61, 3952–3961 (2018).
Google Scholar
Alam, P. et al. Red AIE-active fluorescent probes with tunable organelle-specific targeting. Adv. Funct. Mater. https://doi.org/10.1002/adfm.201909268 (2020).
Google Scholar
Zhang, H. et al. Fluorene-derived two-photon fluorescent probes for specific and simultaneous bioimaging of endoplasmic reticulum and lysosomes: group-effect and localization. J. Mater. Chem. B 1, 5450 (2013).
Google Scholar
Ghosh, C., Nandi, A. & Basu, S. Lipid nanoparticle-mediated induction of endoplasmic reticulum stress in cancer cells. ACS Appl. Bio Mater. 2, 3992–4001 (2019).
Google Scholar
Deng, H. et al. Endoplasmic reticulum targeting to amplify immunogenic cell death for cancer immunotherapy. Nano Lett. 20, 1928–1933 (2020).
Google Scholar
Pieczenik, S. R. & Neustadt, J. Mitochondrial dysfunction and molecular pathways of disease. Exp. Mol. Pathol. 83, 84–92 (2007).
Google Scholar
Smith, R. A. J., Hartley, R. C., Cochemé, H. M. & Murphy, M. P. Mitochondrial pharmacology. Trends Pharmacol. Sci. 33, 341–352 (2012).
Google Scholar
Omura, T. Mitochondria-targeting sequence, a multi-role sorting sequence recognized at all steps of protein import into mitochondria. J. Biochem. 123, 1010–1016 (1998).
Google Scholar
Hachiya, N. et al. MSF, a novel cytoplasmic chaperone which functions in precursor targeting to mitochondria. EMBO J. 13, 5146–5154 (1994).
Google Scholar
Jean, S. R., Ahmed, M., Lei, E. K., Wisnovsky, S. P. & Kelley, S. O. Peptide-mediated delivery of chemical probes and therapeutics to mitochondria. Acc. Chem. Res. 49, 1893–1902 (2016).
Google Scholar
Wasilenko, S. T., Stewart, T. L., Meyers, A. F. A. & Barry, M. Vaccinia virus encodes a previously uncharacterized mitochondrial-associated inhibitor of apoptosis. Proc. Natl Acad. Sci. USA 100, 14345–14350 (2003).
Google Scholar
Boya, P. et al. Viral proteins targeting mitochondria: controlling cell death. Biochim. Biophys. Acta 1659, 178–189 (2004).
Google Scholar
Holt, I. J., Harding, A. E., Petty, R. K. & Morgan-Hughes, J. A. A new mitochondrial disease associated with mitochondrial DNA heteroplasmy. Am. J. Hum. Genet. 46, 428–433 (1990).
Google Scholar
Tanaka, M. et al. Gene therapy for mitochondrial disease by delivering restriction endonuclease SmaI into mitochondria. J. Biomed. Sci. 9, 534–541 (2002).
Google Scholar
Del Gaizo, V., MacKenzie, J. A. & Payne, R. M. Targeting proteins to mitochondria using TAT. Mol. Genet. Metab. 80, 170–180 (2003).
Yousif, L. F., Stewart, K. M., Horton, K. L. & Kelley, S. O. Mitochondria-penetrating peptides: sequence effects and model cargo transport. Chembiochem 10, 2081–2088 (2009).
Google Scholar
Jiang, L. et al. Overcoming drug-resistant lung cancer by paclitaxel loaded dual-functional liposomes with mitochondria targeting and pH-response. Biomaterials 52, 126–139 (2015).
Google Scholar
Agemy, L. et al. Targeted nanoparticle enhanced proapoptotic peptide as potential therapy for glioblastoma. Proc. Natl Acad. Sci. USA 108, 17450–17455 (2011).
Google Scholar
Fonseca, S. B. et al. Rerouting chlorambucil to mitochondria combats drug deactivation and resistance in cancer cells. Chem. Biol. 18, 445–453 (2011).
Google Scholar
Wisnovsky, S. P. et al. Targeting mitochondrial DNA with a platinum-based anticancer agent. Chem. Biol. 20, 1323–1328 (2013).
Google Scholar
Gao, P., Pan, W., Li, N. & Tang, B. Boosting cancer therapy with organelle-targeted nanomaterials. ACS Appl. Mater. Interfaces 11, 26529–26558 (2019).
Google Scholar
Smith, R. A., Porteous, C. M., Coulter, C. V. & Murphy, M. P. Selective targeting of an antioxidant to mitochondria. Eur. J. Biochem. 263, 709–716 (1999).
Google Scholar
Smith, R. A. J., Porteous, C. M., Gane, A. M. & Murphy, M. P. Delivery of bioactive molecules to mitochondria in vivo. Proc. Natl Acad. Sci. USA 100, 5407–5412 (2003).
Google Scholar
Sharma, A. et al. Design and evaluation of multifunctional nanocarriers for selective delivery of coenzyme Q10 to mitochondria. Biomacromolecules 13, 239–252 (2012).
Google Scholar
Marrache, S. & Dhar, S. Engineering of blended nanoparticle platform for delivery of mitochondria-acting therapeutics. Proc. Natl Acad. Sci. USA 109, 16288–16293 (2012).
Google Scholar
Boddapati, S. V., D’Souza, G. G. M., Erdogan, S., Torchilin, V. P. & Weissig, V. Organelle-targeted nanocarriers: specific delivery of liposomal ceramide to mitochondria enhances its cytotoxicity in vitro and in vivo. Nano Lett. 8, 2559–2563 (2008).
Google Scholar
Marrache, S. & Dhar, S. The energy blocker inside the power house: mitochondria targeted delivery of 3-bromopyruvate. Chem. Sci. 6, 1832–1845 (2015).
Google Scholar
Zhou, W. et al. Redox-triggered activation of nanocarriers for mitochondria-targeting cancer chemotherapy. Nanoscale 9, 17044–17053 (2017).
Google Scholar
Zhou, J. et al. The anticancer efficacy of paclitaxel liposomes modified with mitochondrial targeting conjugate in resistant lung cancer. Biomaterials 34, 3626–3638 (2013).
Google Scholar
Panagiotaki, K. N. et al. A triphenylphosphonium-functionalized mitochondriotropic nanocarrier for efficient Co-delivery of doxorubicin and chloroquine and enhanced antineoplastic activity. Pharmaceuticals 10, 91 (2017).
Yu, Z., Sun, Q., Pan, W., Li, N. & Tang, B. A near-infrared triggered nanophotosensitizer inducing domino effect on mitochondrial reactive oxygen species burst for cancer therapy. ACS Nano 9, 11064–11074 (2015).
Google Scholar
Jung, H. S. et al. Enhanced NIR radiation-triggered hyperthermia by mitochondrial targeting. J. Am. Chem. Soc. 137, 3017–3023 (2015).
Google Scholar
Weiss, M. J. et al. Dequalinium, a topical antimicrobial agent, displays anticarcinoma activity based on selective mitochondrial accumulation. Proc. Natl Acad. Sci. USA 84, 5444–5448 (1987).
Google Scholar
Weissig, V. et al. DQAsomes: a novel potential drug and gene delivery system made from DequaliniumTM. Pharm. Res. 15, 334–337 (1998).
Google Scholar
Teixeira, J. et al. Development of a mitochondriotropic antioxidant based on caffeic acid: proof of concept on cellular and mitochondrial oxidative stress models. J. Med. Chem. 60, 7084–7098 (2017).
Google Scholar
Manolis, A. S. et al. Mitochondrial dysfunction in cardiovascular disease: current status of translational research/clinical and therapeutic implications. Med. Res. Rev. 41, 275–313 (2021).
Google Scholar
Gane, E. J. et al. The mitochondria-targeted anti-oxidant mitoquinone decreases liver damage in a phase II study of hepatitis C patients. Liver Int. 30, 1019–1026 (2010).
Google Scholar
Snow, B. J. et al. A double-blind, placebo-controlled study to assess the mitochondria-targeted antioxidant MitoQ as a disease-modifying therapy in Parkinson’s disease. Mov. Disord. 25, 1670–1674 (2010).
Saad, A. et al. Phase 2a clinical trial of mitochondrial protection (elamipretide) during stent revascularization in patients with atherosclerotic renal artery stenosis. Circ. Cardiovasc. Interv. 10, e005487 (2017).
Google Scholar
Seeman, N. C. & Sleiman, H. F. DNA nanotechnology. Nat. Rev. Mater. 3, 17068 (2017).
SantaLucia, J. & Hicks, D. The thermodynamics of DNA structural motifs. Annu. Rev. Biophys. Biomol. Struct. 33, 415–440 (2004).
Google Scholar
Carlson, R. The changing economics of DNA synthesis. Nat. Biotechnol. 27, 1091–1094 (2009).
Google Scholar
Krishnan, Y. & Simmel, F. C. Nucleic acid based molecular devices. Angew. Chem. Int. Ed. 50, 3124–3156 (2011).
Google Scholar
Douglas, S. M., Bachelet, I. & Church, G. M. A logic-gated nanorobot for targeted transport of molecular payloads. Science 335, 831–834 (2012).
Google Scholar
Surana, S., Shenoy, A. R. & Krishnan, Y. Designing DNA nanodevices for compatibility with the immune system of higher organisms. Nat. Nanotechnol. 10, 741–747 (2015).
Google Scholar
Veetil, A. T. et al. DNA-based fluorescent probes of NOS2 activity in live brains. Proc. Natl Acad. Sci. USA 117, 14694–14702 (2020). This paper shows how DNA nanodevices are targeted with organelle-level precision specifically in microglia of live zebrafish and that the DNA sequence can be modified to either trigger or evade the immune response.
Google Scholar
Krishnan, Y., Zou, J. & Jani, M. S. Quantitative imaging of biochemistry in situ and at the nanoscale. ACS Cent. Sci. 6, 1938–1954 (2020).
Google Scholar
Hu, Q., Li, H., Wang, L., Gu, H. & Fan, C. DNA Nanotechnology-Enabled Drug Delivery Systems. Chem. Rev. 119, 6459–6506 (2019).
Google Scholar
Lee, H. et al. Molecularly self-assembled nucleic acid nanoparticles for targeted in vivo siRNA delivery. Nat. Nanotechnol. 7, 389–393 (2012).
Google Scholar
Huang, X. et al. DNA scaffolds enable efficient and tunable functionalization of biomaterials for immune cell modulation. Nat. Nanotechnol. 16, 214–223 (2021). This paper describes DNA-based immune cell-engaging particles that prime T cell activation in vivo by exploiting the stoichiometry of DNA hybridization to display precise numbers of immune stimulatory ligands.
Google Scholar
Jones, M. R., Seeman, N. C. & Mirkin, C. A. Nanomaterials. Programmable materials and the nature of the DNA bond. Science 347, 1260901 (2015).
Bhatia, D. et al. Quantum dot-loaded monofunctionalized DNA icosahedra for single-particle tracking of endocytic pathways. Nat. Nanotechnol. 11, 1112–1119 (2016). In this paper, the modularity, stoichiometry, structural and spatial precision offered by a DNA icosahedron are leveraged to modulate its trafficking selectively within cells.
Google Scholar
Banerjee, A. et al. Controlled release of encapsulated cargo from a DNA icosahedron using a chemical trigger. Angew. Chem. Int. Ed. 52, 6854–6857 (2013).
Google Scholar
Ellington, A. D. & Szostak, J. W. In vitro selection of RNA molecules that bind specific ligands. Nature 346, 818–822 (1990).
Google Scholar
Famulok, M., Hartig, J. S. & Mayer, G. Functional aptamers and aptazymes in biotechnology, diagnostics, and therapy. Chem. Rev. 107, 3715–3743 (2007).
Google Scholar
Wilson, D. S. & Szostak, J. W. In vitro selection of functional nucleic acids. Annu. Rev. Biochem. 68, 611–647 (1999).
Google Scholar
Cho, E. J., Lee, J.-W. & Ellington, A. D. Applications of aptamers as sensors. Annu. Rev. Anal. Chem. 2, 241–264 (2009).
Google Scholar
Dunn, M. R., Jimenez, R. M. & Chaput, J. C. Analysis of aptamer discovery and technology. Nat. Rev. Chem. 1, 0076 (2017).
Google Scholar
Halder, S. & Krishnan, Y. Design of ultrasensitive DNA-based fluorescent pH sensitive nanodevices. Nanoscale 7, 10008–10012 (2015).
Google Scholar
Nielsen, P. E., Egholm, M., Berg, R. H. & Buchardt, O. Sequence-selective recognition of DNA by strand displacement with a thymine-substituted polyamide. Science 254, 1497–1500 (1991).
Google Scholar
Koshkin, A. A. et al. LNA (Locked Nucleic Acids): synthesis of the adenine, cytosine, guanine, 5-methylcytosine, thymine and uracil bicyclonucleoside monomers, oligomerisation, and unprecedented nucleic acid recognition. Tetrahedron 54, 3607–3630 (1998).
Google Scholar
Saha, S., Prakash, V., Halder, S., Chakraborty, K. & Krishnan, Y. A pH-independent DNA nanodevice for quantifying chloride transport in organelles of living cells. Nat. Nanotechnol. 10, 645–651 (2015).
Google Scholar
Kaur, H., Babu, B. R. & Maiti, S. Perspectives on chemistry and therapeutic applications of Locked Nucleic Acid (LNA). Chem. Rev. 107, 4672–4697 (2007).
Google Scholar
Pinheiro, V. B. et al. Synthetic genetic polymers capable of heredity and evolution. Science 336, 341–344 (2012).
Google Scholar
Yu, H., Zhang, S. & Chaput, J. C. Darwinian evolution of an alternative genetic system provides support for TNA as an RNA progenitor. Nat. Chem. 4, 183–187 (2012).
Google Scholar
Li, H. et al. Molecular spherical nucleic acids. Proc. Natl Acad. Sci. USA 115, 4340–4344 (2018).
Google Scholar
Chakraborty, K., Veetil, A. T., Jaffrey, S. R. & Krishnan, Y. Nucleic acid-based nanodevices in biological imaging. Annu. Rev. Biochem. 85, 349–373 (2016).
Google Scholar
Hivare, P., Rajwar, A., Gupta, S. & Bhatia, D. Spatiotemporal dynamics of endocytic pathways adapted by small DNA nanocages in model neuroblastoma cell-derived differentiated neurons. ACS Appl. Bio Mater. https://doi.org/10.1021/acsabm.0c01668 (2021).
Google Scholar
Bagasra, O. Protocols for the in situ PCR-amplification and detection of mRNA and DNA sequences. Nat. Protoc. 2, 2782–2795 (2007).
Google Scholar
Canton, J., Neculai, D. & Grinstein, S. Scavenger receptors in homeostasis and immunity. Nat. Rev. Immunol. 13, 621–634 (2013).
Google Scholar
Gough, P. J. & Gordon, S. The role of scavenger receptors in the innate immune system. Microbes Infect. 2, 305–311 (2000).
Google Scholar
Cullen, P. J. & Steinberg, F. To degrade or not to degrade: mechanisms and significance of endocytic recycling. Nat. Rev. Mol. Cell Biol. 19, 679–696 (2018).
Google Scholar
Modi, S. et al. A DNA nanomachine that maps spatial and temporal pH changes inside living cells. Nat. Nanotechnol. 4, 325–330 (2009).
Google Scholar
Leung, K., Chakraborty, K., Saminathan, A. & Krishnan, Y. A DNA nanomachine chemically resolves lysosomes in live cells. Nat. Nanotechnol. 14, 176–183 (2019). This paper describes a pioneering method to quantify two ions simultaneously in the same organelle to chemically resolve lysosomes in live cells, yielding a potential diagnostic for lysosomal diseases.
Google Scholar
Narayanaswamy, N. et al. A pH-correctable, DNA-based fluorescent reporter for organellar calcium. Nat. Methods 16, 95–102 (2019).
Google Scholar
Thekkan, S. et al. A DNA-based fluorescent reporter maps HOCl production in the maturing phagosome. Nat. Chem. Biol. 15, 1165–1172 (2019). This paper outlines how DNA nanodevices can be targeted to phagosomes of immune cells derived from human blood and from multiple tissues of mice.
Google Scholar
Jani, M. S., Zou, J., Veetil, A. T. & Krishnan, Y. A DNA-based fluorescent probe maps NOS3 activity with subcellular spatial resolution. Nat. Chem. Biol. 16, 660–666 (2020).
Google Scholar
Dan, K., Veetil, A. T., Chakraborty, K. & Krishnan, Y. DNA nanodevices map enzymatic activity in organelles. Nat. Nanotechnol. 14, 252–259 (2019).
Google Scholar
Surana, S., Bhat, J. M., Koushika, S. P. & Krishnan, Y. An autonomous DNA nanomachine maps spatiotemporal pH changes in a multicellular living organism. Nat. Commun. 2, 340 (2011).
Fares, H. & Greenwald, I. Genetic analysis of endocytosis in Caenorhabditis elegans: coelomocyte uptake defective mutants. Genetics 159, 133–145 (2001).
Google Scholar
Chakraborty, K., Leung, K. & Krishnan, Y. High lumenal chloride in the lysosome is critical for lysosome function. eLife 6, e28862 (2017).
Chakraborty, K. et al. Tissue specific targeting of DNA nanodevices in a multicellular living organism. eLife 10, e67830 (2021) This article demonstrates that DNA nanodevices can be tissue-specifically targeted with organelle-level precision in nematodes by engaging a synthetic, tissue-specifically expressed endocytic receptor.
Grant, B. D. & Donaldson, J. G. Pathways and mechanisms of endocytic recycling. Nat. Rev. Mol. Cell Biol. 10, 597–608 (2009).
Google Scholar
Taguchi, T. Emerging roles of recycling endosomes. J. Biochem. 153, 505–510 (2013).
Google Scholar
Goldenring, J. R. Recycling endosomes. Curr. Opin. Cell Biol. 35, 117–122 (2015).
Google Scholar
Mellman, I. & Yarden, Y. Endocytosis and cancer. Cold Spring Harb. Perspect. Biol. 5, a016949 (2013).
Howe, E. N. et al. Rab11b-mediated integrin recycling promotes brain metastatic adaptation and outgrowth. Nat. Commun. 11, 3017 (2020).
Google Scholar
Schreij, A. M. A., Fon, E. A. & McPherson, P. S. Endocytic membrane trafficking and neurodegenerative disease. Cell Mol. Life Sci. 73, 1529–1545 (2016).
Google Scholar
Vale-Costa, S. & Amorim, M. J. Recycling endosomes and viral infection. Viruses 8, 64 (2016).
De Castro Martin, I. F. et al. Influenza virus genome reaches the plasma membrane via a modified endoplasmic reticulum and Rab11-dependent vesicles. Nat. Commun. 8, 1396 (2017).
Johnsen, K. B., Burkhart, A., Thomsen, L. B., Andresen, T. L. & Moos, T. Targeting the transferrin receptor for brain drug delivery. Prog. Neurobiol. 181, 101665 (2019).
Google Scholar
Modi, S., Nizak, C., Surana, S., Halder, S. & Krishnan, Y. Two DNA nanomachines map pH changes along intersecting endocytic pathways inside the same cell. Nat. Nanotechnol. 8, 459–467 (2013).
Google Scholar
Aisen, P. & Listowsky, I. Iron transport and storage proteins. Annu. Rev. Biochem. 49, 357–393 (1980).
Google Scholar
Mayle, K. M., Le, A. M. & Kamei, D. T. The intracellular trafficking pathway of transferrin. Biochim. Biophys. Acta 1820, 264–281 (2012).
Google Scholar
Saminathan, A. et al. A DNA-based voltmeter for organelles. Nat. Nanotechnol. 16, 96–103 (2021).
Google Scholar
Glick, B. S. & Nakano, A. Membrane traffic within the Golgi apparatus. Annu. Rev. Cell Dev. Biol. 25, 113–132 (2009).
Google Scholar
Thomas, G. Furin at the cutting edge: from protein traffic to embryogenesis and disease. Nat. Rev. Mol. Cell Biol. 3, 753–766 (2002).
Google Scholar
McCafferty, J., Griffiths, A. D., Winter, G. & Chiswell, D. J. Phage antibodies: filamentous phage displaying antibody variable domains. Nature 348, 552–554 (1990).
Google Scholar
Brayman, M., Thathiah, A. & Carson, D. D. MUC1: a multifunctional cell surface component of reproductive tissue epithelia. Reprod. Biol. Endocrinol. 2, 4 (2004).
Ferreira, C. S. M., Cheung, M. C., Missailidis, S., Bisland, S. & Gariépy, J. Phototoxic aptamers selectively enter and kill epithelial cancer cells. Nucleic Acids Res. 37, 866–876 (2009).
Google Scholar
Bretscher, M. S. Membrane structure: some general principles. Science 181, 622–629 (1973).
Google Scholar
Park, J. et al. Engineering the surface of therapeutic “living” cells. Chem. Rev. 118, 1664–1690 (2018).
Google Scholar
Ridley, A. J. et al. Cell migration: integrating signals from front to back. Science 302, 1704–1709 (2003).
Google Scholar
Niemeyer, C. M. Semisynthetic DNA-protein conjugates for biosensing and nanofabrication. Angew. Chem. Int. Ed. 49, 1200–1216 (2010).
Google Scholar
Mahal, L. K., Yarema, K. J. & Bertozzi, C. R. Engineering chemical reactivity on cell surfaces through oligosaccharide biosynthesis. Science 276, 1125–1128 (1997).
Google Scholar
Chandra, R. A., Douglas, E. S., Mathies, R. A., Bertozzi, C. R. & Francis, M. B. Programmable cell adhesion encoded by DNA hybridization. Angew. Chem. Int. Ed. 45, 896–901 (2006).
Google Scholar
Charter, N. W., Mahal, L. K., Koshland, D. E. & Bertozzi, C. R. Differential effects of unnatural sialic acids on the polysialylation of the neural cell adhesion molecule and neuronal behavior. J. Biol. Chem. 277, 9255–9261 (2002).
Google Scholar
Todhunter, M. E. et al. Programmed synthesis of three-dimensional tissues. Nat. Methods 12, 975–981 (2015).
Google Scholar
You, M. et al. DNA probes for monitoring dynamic and transient molecular encounters on live cell membranes. Nat. Nanotechnol. 12, 453–459 (2017).
Google Scholar
Jin, C. et al. Phosphorylated lipid-conjugated oligonucleotide selectively anchors on cell membranes with high alkaline phosphatase expression. Nat. Commun. 10, 2704 (2019).
Kwak, M. & Herrmann, A. Nucleic acid amphiphiles: synthesis and self-assembled nanostructures. Chem. Soc. Rev. 40, 5745–5755 (2011).
Google Scholar
McGinnis, C. S. et al. MULTI-seq: sample multiplexing for single-cell RNA sequencing using lipid-tagged indices. Nat. Methods 16, 619–626 (2019).
Google Scholar
Mali, P. et al. Barcoding cells using cell-surface programmable DNA-binding domains. Nat. Methods 10, 403–406 (2013).
Google Scholar
Zhu, G. et al. Building fluorescent DNA nanodevices on target living cell surfaces. Angew. Chem. Int. Ed. 52, 5490–5496 (2013).
Google Scholar
Li, L. et al. Aptamer displacement reaction from live-cell surfaces and its applications. J. Am. Chem. Soc. 141, 17174–17179 (2019).
Google Scholar
Liu, H., Kwong, B. & Irvine, D. J. Membrane anchored immunostimulatory oligonucleotides for in vivo cell modification and localized immunotherapy. Angew. Chem. Int. Ed. 50, 7052–7055 (2011).
Google Scholar
Winterbourn, C. C. & Kettle, A. J. Redox reactions and microbial killing in the neutrophil phagosome. Antioxid. Redox Signal. 18, 642–660 (2013).
Google Scholar
Underhill, D. M. Macrophage recognition of zymosan particles. J. Endotoxin Res. 9, 176–180 (2003).
Google Scholar
Locy, H. et al. Immunomodulation of the tumor microenvironment: turn foe into friend. Front. Immunol. 9, 2909 (2018).
Google Scholar
Xiao, Y. et al. Cathepsin C promotes breast cancer lung metastasis by modulating neutrophil infiltration and neutrophil extracellular trap formation. Cancer Cell 39, 423–437.e7 (2021).
Google Scholar
Cui, C. et al. A lysosome-targeted DNA nanodevice selectively targets macrophages to attenuate tumours. Nat. Nanotechnol. https://doi.org/10.1038/s41565-021-00988-z (2021).
Google Scholar
Mazzulli, J. R., Zunke, F., Isacson, O., Studer, L. & Krainc, D. α-Synuclein-induced lysosomal dysfunction occurs through disruptions in protein trafficking in human midbrain synucleinopathy models. Proc. Natl Acad. Sci. USA 113, 1931–1936 (2016).
Google Scholar
Kobayashi, T. et al. Enhanced lysosomal degradation maintains the quiescent state of neural stem cells. Nat. Commun. 10, 5446 (2019).
Marques, A. R. A. et al. Enzyme replacement therapy with recombinant pro-CTSD (cathepsin D) corrects defective proteolysis and autophagy in neuronal ceroid lipofuscinosis. Autophagy 16, 811–825 (2020).
Google Scholar
Chen, C. B. et al. Aptamer-based endocytosis of a lysosomal enzyme. Proc. Natl Acad. Sci. USA 105, 15908–15913 (2008).
Google Scholar
Bendorius, M. et al. The mitochondrion-lysosome axis in adaptive and innate immunity: effect of lupus regulator peptide P140 on mitochondria autophagy and NETosis. Front. Immunol. 9, 2158 (2018).
Carmona-Gutierrez, D., Hughes, A. L., Madeo, F. & Ruckenstuhl, C. The crucial impact of lysosomes in aging and longevity. Ageing Res. Rev. 32, 2–12 (2016).
Google Scholar
Conlan, R. S., Pisano, S., Oliveira, M. I., Ferrari, M. & Mendes Pinto, I. Exosomes as reconfigurable therapeutic systems. Trends Mol. Med. 23, 636–650 (2017).
Google Scholar
Sundaram, P., Kurniawan, H., Byrne, M. E. & Wower, J. Therapeutic RNA aptamers in clinical trials. Eur. J. Pharm. Sci. 48, 259–271 (2013).
Google Scholar
Sefah, K., Shangguan, D., Xiong, X., O’Donoghue, M. B. & Tan, W. Development of DNA aptamers using Cell-SELEX. Nat. Protoc. 5, 1169–1185 (2010).
Google Scholar
Juliano, R. L. The delivery of therapeutic oligonucleotides. Nucleic Acids Res. 44, 6518–6548 (2016).
Pardi, N., Hogan, M. J., Porter, F. W. & Weissman, D. mRNA vaccines — a new era in vaccinology. Nat. Rev. Drug Discov. 17, 261–279 (2018).
Google Scholar
Kirchenbaum, G., Hanson, J., Roen, D. & Lehmann, P. Detection of antigen-specific T cell lineages and effector functions based on secretory signature. J. Immunol. Sci. 3, 14–20 (2019).
Koves, T. R. et al. Subsarcolemmal and intermyofibrillar mitochondria play distinct roles in regulating skeletal muscle fatty acid metabolism. Am. J. Physiol. Cell Physiol. 288, C1074–C1082 (2005).
Google Scholar
Momcilovic, M. et al. In vivo imaging of mitochondrial membrane potential in non-small-cell lung cancer. Nature 575, 380–384 (2019).
Google Scholar
Desnick, R. J. & Schuchman, E. H. Enzyme replacement therapy for lysosomal diseases: lessons from 20 years of experience and remaining challenges. Annu. Rev. Genomics. Hum. Genet. 13, 307–335 (2012).
Google Scholar
Hirota, J. & Shimizu, S. in The Laboratory Mouse 709–725 (Elsevier, 2012).
Franz, W. M., Rothmann, T., Frey, N. & Katus, H. A. Analysis of tissue-specific gene delivery by recombinant adenoviruses containing cardiac-specific promoters. Cardiovasc. Res. 35, 560–566 (1997).
Google Scholar
Golombek, S. K. et al. Tumor targeting via EPR: strategies to enhance patient responses. Adv. Drug Deliv. Rev. 130, 17–38 (2018).
Google Scholar
Zwicke, G. L., Mansoori, G. A. & Jeffery, C. J. Utilizing the folate receptor for active targeting of cancer nanotherapeutics. Nano Rev. https://doi.org/10.3402/nano.v3i0.18496 (2012).
Google Scholar
Kang, K. W. In vivo imaging of 18F-aptide as a fibronectin extra domain B (EDB) targeting agent. J. Nucl. Med. 54, 555–555 (2013).
Zhou, J. & Rossi, J. Aptamers as targeted therapeutics: current potential and challenges. Nat. Rev. Drug Discov. 16, 181–202 (2017).
Google Scholar
Wang, Y. et al. Lysosome-targeting fluorogenic probe for cathepsin B imaging in living cells. Anal. Chem. 88, 12403–12410 (2016).
Google Scholar

