Preloader

Organelle-level precision with next-generation targeting technologies

  • 1.

    Novikoff, A. B. The concept of integrative levels and biology. Science 101, 209–215 (1945).

    CAS 

    Google Scholar 

  • 2.

    Mullock, B. M. & Luzio, J. P. Theory of Organelle Biogenesis: a Historical Perspective — Madame Curie Bioscience Database (National Center for Biotechnology Information, 2013).

  • 3.

    Eguchi, S. & Rizzo, V. Organelles in health and diseases. Clin. Sci. 131, 1–2 (2017).

    Google Scholar 

  • 4.

    Trivedi, P. C., Bartlett, J. J. & Pulinilkunnil, T. Lysosomal biology and function: modern view of cellular debris bin. Cells 9, 1131 (2020).

    CAS 

    Google Scholar 

  • 5.

    Schwarz, D. S. & Blower, M. D. The endoplasmic reticulum: structure, function and response to cellular signaling. Cell Mol. Life Sci. 73, 79–94 (2016).

    CAS 

    Google Scholar 

  • 6.

    Huang, S. & Wang, Y. Golgi structure formation, function, and post-translational modifications in mammalian cells. F1000Research 6, 2050 (2017).

    Google Scholar 

  • 7.

    Friedman, J. R. & Nunnari, J. Mitochondrial form and function. Nature 505, 335–343 (2014).

    CAS 

    Google Scholar 

  • 8.

    Leibiger, I. B., Leibiger, B. & Berggren, P.-O. Insulin signaling in the pancreatic β-cell. Annu. Rev. Nutr. 28, 233–251 (2008).

    CAS 

    Google Scholar 

  • 9.

    Greengard, P., Valtorta, F., Czernik, A. J. & Benfenati, F. Synaptic vesicle phosphoproteins and regulation of synaptic function. Science 259, 780–785 (1993).

    CAS 

    Google Scholar 

  • 10.

    Fairn, G. D. & Grinstein, S. How nascent phagosomes mature to become phagolysosomes. Trends Immunol. 33, 397–405 (2012).

    CAS 

    Google Scholar 

  • 11.

    Whitaker, M. Calcium at fertilization and in early development. Physiol. Rev. 86, 25–88 (2006).

    CAS 

    Google Scholar 

  • 12.

    Hirabayashi, Y. et al. ER-mitochondria tethering by PDZD8 regulates Ca2+ dynamics in mammalian neurons. Science 358, 623–630 (2017).

    CAS 

    Google Scholar 

  • 13.

    Yu, S. B. & Pekkurnaz, G. Mechanisms orchestrating mitochondrial dynamics for energy homeostasis. J. Mol. Biol. 430, 3922–3941 (2018).

    CAS 

    Google Scholar 

  • 14.

    Adler, K. B., Tuvim, M. J. & Dickey, B. F. Regulated mucin secretion from airway epithelial cells. Front. Endocrinol. 4, 129 (2013).

    Google Scholar 

  • 15.

    Mazzone, M. et al. Intracellular processing and activation of membrane type 1 matrix metalloprotease depends on its partitioning into lipid domains. J. Cell Sci. 117, 6275–6287 (2004).

    CAS 

    Google Scholar 

  • 16.

    Herst, P. M., Dawson, R. H. & Berridge, M. V. Intercellular communication in tumor biology: a role for mitochondrial transfer. Front. Oncol. 8, 344 (2018).

    Google Scholar 

  • 17.

    Tirziu, D., Giordano, F. J. & Simons, M. Cell communications in the heart. Circulation 122, 928–937 (2010).

    Google Scholar 

  • 18.

    Garden, G. A. & La Spada, A. R. Intercellular (mis)communication in neurodegenerative disease. Neuron 73, 886–901 (2012).

    CAS 

    Google Scholar 

  • 19.

    Galluzzi, L., Kepp, O., Trojel-Hansen, C. & Kroemer, G. Mitochondrial control of cellular life, stress, and death. Circ. Res. 111, 1198–1207 (2012).

    CAS 

    Google Scholar 

  • 20.

    Pavlova, N. N. & Thompson, C. B. The emerging hallmarks of cancer metabolism. Cell Metab. 23, 27–47 (2016).

    CAS 

    Google Scholar 

  • 21.

    Zhang, L., Sheng, R. & Qin, Z. The lysosome and neurodegenerative diseases. Acta Biochim. Biophys. Sin. 41, 437–445 (2009).

    CAS 

    Google Scholar 

  • 22.

    Lindholm, D., Wootz, H. & Korhonen, L. ER stress and neurodegenerative diseases. Cell Death Differ. 13, 385–392 (2006).

    CAS 

    Google Scholar 

  • 23.

    Yoshida, H. ER stress and diseases. FEBS J. 274, 630–658 (2007).

    CAS 

    Google Scholar 

  • 24.

    Hong, J., Kim, K., Kim, J.-H. & Park, Y. The role of endoplasmic reticulum stress in cardiovascular disease and exercise. Int. J. Vasc. Med. 2017, 2049217 (2017).

    Google Scholar 

  • 25.

    Ozcan, L. & Tabas, I. Role of endoplasmic reticulum stress in metabolic disease and other disorders. Annu. Rev. Med. 63, 317–328 (2012).

    CAS 

    Google Scholar 

  • 26.

    Luan, X. et al. Engineering exosomes as refined biological nanoplatforms for drug delivery. Acta Pharmacol. Sin. 38, 754–763 (2017).

    CAS 

    Google Scholar 

  • 27.

    Mothes, W., Sherer, N. M., Jin, J. & Zhong, P. Virus cell-to-cell transmission. J. Virol. 84, 8360–8368 (2010).

    CAS 

    Google Scholar 

  • 28.

    Warnock, R. A., Askari, S., Butcher, E. C. & von Andrian, U. H. Molecular mechanisms of lymphocyte homing to peripheral lymph nodes. J. Exp. Med. 187, 205–216 (1998).

    CAS 

    Google Scholar 

  • 29.

    McEver, R. P. & Zhu, C. Rolling cell adhesion. Annu. Rev. Cell Dev. Biol. 26, 363–396 (2010).

    CAS 

    Google Scholar 

  • 30.

    Marsh, M. & Helenius, A. Virus entry: open sesame. Cell 124, 729–740 (2006).

    CAS 

    Google Scholar 

  • 31.

    Meier, O. et al. Adenovirus triggers macropinocytosis and endosomal leakage together with its clathrin-mediated uptake. J. Cell Biol. 158, 1119–1131 (2002).

    CAS 

    Google Scholar 

  • 32.

    Tsai, B. et al. Gangliosides are receptors for murine polyoma virus and SV40. EMBO J. 22, 4346–4355 (2003).

    CAS 

    Google Scholar 

  • 33.

    Panjwani, A. et al. Capsid protein VP4 of human rhinovirus induces membrane permeability by the formation of a size-selective multimeric pore. PLoS Pathog. 10, e1004294 (2014).

    Google Scholar 

  • 34.

    Dupzyk, A. & Tsai, B. How polyomaviruses exploit the ERAD machinery to cause infection. Viruses 8, 242 (2016).

    Google Scholar 

  • 35.

    Cohen, S., Au, S. & Panté, N. How viruses access the nucleus. Biochim. Biophys. Acta 1813, 1634–1645 (2011).

    CAS 

    Google Scholar 

  • 36.

    Goswami, R. et al. Gene therapy leaves a vicious cycle. Front. Oncol. 9, 297 (2019).

    Google Scholar 

  • 37.

    Biagioni, A. et al. Delivery systems of CRISPR/Cas9-based cancer gene therapy. J. Biol. Eng. 12, 33 (2018).

    CAS 

    Google Scholar 

  • 38.

    Ran, F. A. et al. In vivo genome editing using Staphylococcus aureus Cas9. Nature 520, 186–191 (2015). In this paper, AAV delivery vehicles were leveraged for Cas9-mediated in vivo genome editing.

    CAS 

    Google Scholar 

  • 39.

    Ramasamy, M. N. et al. Safety and immunogenicity of ChAdOx1 nCoV-19 vaccine administered in a prime-boost regimen in young and old adults (COV002): a single-blind, randomised, controlled, phase 2/3 trial. Lancet 396, 1979–1993 (2021).

    Google Scholar 

  • 40.

    News In Brief: First CRISPR therapy dosed. Nat. Biotechnol. 38, 382 (2020).

  • 41.

    Shahryari, A. et al. Development and clinical translation of approved gene therapy products for genetic disorders. Front. Genet. 10, 868 (2019).

    CAS 

    Google Scholar 

  • 42.

    Maddalo, D. et al. In vivo engineering of oncogenic chromosomal rearrangements with the CRISPR/Cas9 system. Nature 516, 423–427 (2014).

    CAS 

    Google Scholar 

  • 43.

    Ding, Q. et al. Permanent alteration of PCSK9 with in vivo CRISPR-Cas9 genome editing. Circ. Res. 115, 488–492 (2014).

    CAS 

    Google Scholar 

  • 44.

    Maggio, I., Liu, J., Janssen, J. M., Chen, X. & Gonçalves, M. A. F. V. Adenoviral vectors encoding CRISPR/Cas9 multiplexes rescue dystrophin synthesis in unselected populations of DMD muscle cells. Sci. Rep. 6, 37051 (2016).

    CAS 

    Google Scholar 

  • 45.

    Li, C. et al. Inhibition of HIV-1 infection of primary CD4+ T-cells by gene editing of CCR5 using adenovirus-delivered CRISPR/Cas9. J. Gen. Virol. 96, 2381–2393 (2015).

    CAS 

    Google Scholar 

  • 46.

    Yang, Y. et al. A dual AAV system enables the Cas9-mediated correction of a metabolic liver disease in newborn mice. Nat. Biotechnol. 34, 334–338 (2016).

    CAS 

    Google Scholar 

  • 47.

    Gong, H. et al. Method for dual viral vector mediated CRISPR-Cas9 gene disruption in primary human endothelial cells. Sci. Rep. 7, 42127 (2017).

    CAS 

    Google Scholar 

  • 48.

    Yin, H. et al. Therapeutic genome editing by combined viral and non-viral delivery of CRISPR system components in vivo. Nat. Biotechnol. 34, 328–333 (2016).

    CAS 

    Google Scholar 

  • 49.

    Liu, P. et al. Improved prime editors enable pathogenic allele correction and cancer modelling in adult mice. Nat. Commun. 12, 2121 (2021). This paper describes the optimization of genome editors with nuclear localization signals to improve genome editing efficiency in vivo.

    CAS 

    Google Scholar 

  • 50.

    Koblan, L. W. et al. In vivo base editing rescues Hutchinson–Gilford progeria syndrome in mice. Nature 589, 608–614 (2021).

    CAS 

    Google Scholar 

  • 51.

    Tachibana, R. Quantitative studies on the nuclear transport of plasmid DNA and gene expression employing nonviral vectors. Adv. Drug Deliv. Rev. 52, 219–226 (2001).

    CAS 

    Google Scholar 

  • 52.

    Ma, X., Gong, N., Zhong, L., Sun, J. & Liang, X.-J. Future of nanotherapeutics: targeting the cellular sub-organelles. Biomaterials 97, 10–21 (2016).

    CAS 

    Google Scholar 

  • 53.

    Kang, B., Mackey, M. A. & El-Sayed, M. A. Nuclear targeting of gold nanoparticles in cancer cells induces DNA damage, causing cytokinesis arrest and apoptosis. J. Am. Chem. Soc. 132, 1517–1519 (2010).

    CAS 

    Google Scholar 

  • 54.

    Zelmer, C. et al. Organelle-specific targeting of polymersomes into the cell nucleus. Proc. Natl Acad. Sci. USA 117, 2770–2778 (2020).

    CAS 

    Google Scholar 

  • 55.

    Pan, L. et al. Nuclear-targeted drug delivery of TAT peptide-conjugated monodisperse mesoporous silica nanoparticles. J. Am. Chem. Soc. 134, 5722–5725 (2012).

    CAS 

    Google Scholar 

  • 56.

    Vivès, E., Brodin, P. & Lebleu, B. A truncated HIV-1 Tat protein basic domain rapidly translocates through the plasma membrane and accumulates in the cell nucleus. J. Biol. Chem. 272, 16010–16017 (1997).

    Google Scholar 

  • 57.

    Boustany, R.-M. N. Lysosomal storage diseases — the horizon expands. Nat. Rev. Neurol. 9, 583–598 (2013).

    CAS 

    Google Scholar 

  • 58.

    Kaksonen, M. & Roux, A. Mechanisms of clathrin-mediated endocytosis. Nat. Rev. Mol. Cell Biol. 19, 313–326 (2018).

    CAS 

    Google Scholar 

  • 59.

    McMahon, H. T. & Boucrot, E. Molecular mechanism and physiological functions of clathrin-mediated endocytosis. Nat. Rev. Mol. Cell Biol. 12, 517–533 (2011).

    CAS 

    Google Scholar 

  • 60.

    Deduve, C. From cytases to lysosomes. Fed. Proc. 23, 1045–1049 (1964).

    CAS 

    Google Scholar 

  • 61.

    Platt, F. M., Boland, B. & van der Spoel, A. C. The cell biology of disease: lysosomal storage disorders: the cellular impact of lysosomal dysfunction. J. Cell Biol. 199, 723–734 (2012).

    CAS 

    Google Scholar 

  • 62.

    Futerman, A. H. & van Meer, G. The cell biology of lysosomal storage disorders. Nat. Rev. Mol. Cell Biol. 5, 554–565 (2004).

    CAS 

    Google Scholar 

  • 63.

    Sun, M. et al. Mucolipidosis type IV is caused by mutations in a gene encoding a novel transient receptor potential channel. Hum. Mol. Genet. 9, 2471–2478 (2000).

    CAS 

    Google Scholar 

  • 64.

    Peake, K. B. & Vance, J. E. Defective cholesterol trafficking in Niemann–Pick C-deficient cells. FEBS Lett. 584, 2731–2739 (2010).

    CAS 

    Google Scholar 

  • 65.

    Bach, G., Friedman, R., Weissmann, B. & Neufeld, E. F. The defect in the Hurler and Scheie syndromes: deficiency of α-l-iduronidase. Proc. Natl Acad. Sci. USA 69, 2048–2051 (1972).

    CAS 

    Google Scholar 

  • 66.

    Fratantoni, J. C., Hall, C. W. & Neufeld, E. F. Hurler and Hunter syndromes: mutual correction of the defect in cultured fibroblasts. Science 162, 570–572 (1968).

    CAS 

    Google Scholar 

  • 67.

    Varki, A. & Kornfeld, S. Structural studies of phosphorylated high mannose-type oligosaccharides. J. Biol. Chem. 255, 10847–10858 (1980).

    CAS 

    Google Scholar 

  • 68.

    Barton, N. W. et al. Replacement therapy for inherited enzyme deficiency — macrophage-targeted glucocerebrosidase for Gaucher’s disease. N. Engl. J. Med. 324, 1464–1470 (1991). This paper describes the clinical efficacy of the first enzyme replacement therapy targeting lysosomal dysfunction by leveraging the mannose-6-phosphate receptor pathway.

    CAS 

    Google Scholar 

  • 69.

    Solomon, M. & Muro, S. Lysosomal enzyme replacement therapies: historical development, clinical outcomes, and future perspectives. Adv. Drug Deliv. Rev. 118, 109–134 (2017).

    CAS 

    Google Scholar 

  • 70.

    Desnick, R. J. & Schuchman, E. H. Enzyme replacement and enhancement therapies: lessons from lysosomal disorders. Nat. Rev. Genet. 3, 954–966 (2002).

    CAS 

    Google Scholar 

  • 71.

    Pardridge, W. M. Blood–brain barrier delivery. Drug Discov. Today 12, 54–61 (2007).

    CAS 

    Google Scholar 

  • 72.

    Urayama, A., Grubb, J. H., Sly, W. S. & Banks, W. A. Mannose 6-phosphate receptor-mediated transport of sulfamidase across the blood–brain barrier in the newborn mouse. Mol. Ther. 16, 1261–1266 (2008).

    CAS 

    Google Scholar 

  • 73.

    Tian, W. et al. The glycosylation design space for recombinant lysosomal replacement enzymes produced in CHO cells. Nat. Commun. 10, 1785 (2019).

    Google Scholar 

  • 74.

    LeBowitz, J. H. et al. Glycosylation-independent targeting enhances enzyme delivery to lysosomes and decreases storage in mucopolysaccharidosis type VII mice. Proc. Natl Acad. Sci. USA 101, 3083–3088 (2004).

    CAS 

    Google Scholar 

  • 75.

    Prince, W. S. et al. Lipoprotein receptor binding, cellular uptake, and lysosomal delivery of fusions between the receptor-associated protein (RAP) and α-l-iduronidase or acid α-glucosidase. J. Biol. Chem. 279, 35037–35046 (2004).

    CAS 

    Google Scholar 

  • 76.

    Boado, R. J., Lu, J. Z., Hui, E. K.-W., Sumbria, R. K. & Pardridge, W. M. Pharmacokinetics and brain uptake in the rhesus monkey of a fusion protein of arylsulfatase a and a monoclonal antibody against the human insulin receptor. Biotechnol. Bioeng. 110, 1456–1465 (2013).

    CAS 

    Google Scholar 

  • 77.

    Do, M. A., Levy, D., Brown, A., Marriott, G. & Lu, B. Targeted delivery of lysosomal enzymes to the endocytic compartment in human cells using engineered extracellular vesicles. Sci. Rep. 9, 17274 (2019).

    Google Scholar 

  • 78.

    Muro, S. Strategies for delivery of therapeutics into the central nervous system for treatment of lysosomal storage disorders. Drug Deliv. Transl. Res. 2, 169–186 (2012).

    CAS 

    Google Scholar 

  • 79.

    Gregoriadis, G. & Ryman, B. E. Lysosomal localization of β-fructofuranosidase-containing liposomes injected into rats. Some implications in the treatment of genetic disorders. Biochem. J. 129, 123–133 (1972).

    CAS 

    Google Scholar 

  • 80.

    Steger, L. D. & Desnick, R. J. Enzyme therapy. VI: Comparative in vivo fates and effects on lysosomal integrity of enzyme entrapped in negatively and positively charged liposomes. Biochim. Biophys. Acta 464, 530–546 (1977).

    CAS 

    Google Scholar 

  • 81.

    Baltazar, G. C. et al. Acidic nanoparticles are trafficked to lysosomes and restore an acidic lysosomal pH and degradative function to compromised ARPE-19 cells. PLoS ONE 7, e49635 (2012).

    CAS 

    Google Scholar 

  • 82.

    Dekiwadia, C. D., Lawrie, A. C. & Fecondo, J. V. Peptide-mediated cell penetration and targeted delivery of gold nanoparticles into lysosomes. J. Pept. Sci. 18, 527–534 (2012).

    CAS 

    Google Scholar 

  • 83.

    Muro, S. et al. A novel endocytic pathway induced by clustering endothelial ICAM-1 or PECAM-1. J. Cell Sci. 116, 1599–1609 (2003).

    CAS 

    Google Scholar 

  • 84.

    Muro, S., Schuchman, E. H. & Muzykantov, V. R. Lysosomal enzyme delivery by ICAM-1-targeted nanocarriers bypassing glycosylation- and clathrin-dependent endocytosis. Mol. Ther. 13, 135–141 (2006).

    CAS 

    Google Scholar 

  • 85.

    Garnacho, C. et al. Delivery of acid sphingomyelinase in normal and Niemann–Pick disease mice using intercellular adhesion molecule-1-targeted polymer nanocarriers. J. Pharmacol. Exp. Ther. 325, 400–408 (2008).

    CAS 

    Google Scholar 

  • 86.

    Yin, H. & Flynn, A. D. Drugging membrane protein interactions. Annu. Rev. Biomed. Eng. 18, 51–76 (2016).

    CAS 

    Google Scholar 

  • 87.

    Banik, S. M. et al. Lysosome-targeting chimaeras for degradation of extracellular proteins. Nature 584, 291–297 (2020).

    CAS 

    Google Scholar 

  • 88.

    Shen, Y. et al. Transferrin receptor 1 in cancer: a new sight for cancer therapy. Am. J. Cancer Res. 8, 916–931 (2018).

    CAS 

    Google Scholar 

  • 89.

    Zheng, G., Chen, J., Li, H. & Glickson, J. D. Rerouting lipoprotein nanoparticles to selected alternate receptors for the targeted delivery of cancer diagnostic and therapeutic agents. Proc. Natl Acad. Sci. USA 102, 17757–17762 (2005).

    CAS 

    Google Scholar 

  • 90.

    Domenech, M., Marrero-Berrios, I., Torres-Lugo, M. & Rinaldi, C. Lysosomal membrane permeabilization by targeted magnetic nanoparticles in alternating magnetic fields. ACS Nano 7, 5091–5101 (2013).

    CAS 

    Google Scholar 

  • 91.

    Schneider, R. et al. Design, synthesis, and biological evaluation of folic acid targeted tetraphenylporphyrin as novel photosensitizers for selective photodynamic therapy. Bioorg. Med. Chem. 13, 2799–2808 (2005).

    CAS 

    Google Scholar 

  • 92.

    Tian, J. et al. Cell-specific and pH-activatable rubyrin-loaded nanoparticles for highly selective near-infrared photodynamic therapy against cancer. J. Am. Chem. Soc. 135, 18850–18858 (2013).

    CAS 

    Google Scholar 

  • 93.

    Marques, E. T. A. et al. HIV-1 p55Gag encoded in the lysosome-associated membrane protein-1 as a DNA plasmid vaccine chimera is highly expressed, traffics to the major histocompatibility class II compartment, and elicits enhanced immune responses. J. Biol. Chem. 278, 37926–37936 (2003).

    CAS 

    Google Scholar 

  • 94.

    Jiang, D.-B. et al. Recombinant DNA vaccine of Hantavirus Gn and LAMP1 induced long-term immune protection in mice. Antivir. Res. 138, 32–39 (2017).

    CAS 

    Google Scholar 

  • 95.

    Ji, H. et al. Targeting human papillomavirus type 16 E7 to the endosomal/lysosomal compartment enhances the antitumor immunity of DNA vaccines against murine human papillomavirus type 16 E7-expressing tumors. Hum. Gene Ther. 10, 2727–2740 (1999).

    CAS 

    Google Scholar 

  • 96.

    Farhan, H. & Rabouille, C. Signalling to and from the secretory pathway. J. Cell Sci. 124, 171–180 (2011).

    CAS 

    Google Scholar 

  • 97.

    Spang, A. Retrograde traffic from the Golgi to the endoplasmic reticulum. Cold Spring Harb. Persp. Biol. 5, a013391 (2013).

    Google Scholar 

  • 98.

    Jackson, L. P. et al. Molecular basis for recognition of dilysine trafficking motifs by COPI. Dev. Cell 23, 1255–1262 (2012).

    CAS 

    Google Scholar 

  • 99.

    Boelens, J., Lust, S., Offner, F., Bracke, M. E. & Vanhoecke, B. W. Review. The endoplasmic reticulum: a target for new anticancer drugs. In Vivo 21, 215–226 (2007).

    CAS 

    Google Scholar 

  • 100.

    Schröder, M. & Kaufman, R. J. The mammalian unfolded protein response. Annu. Rev. Biochem. 74, 739–789 (2005).

    Google Scholar 

  • 101.

    Yen, C.-L. et al. Targeted delivery of curcumin rescues endoplasmic reticulum-retained mutant NOX2 protein and avoids leukocyte apoptosis. J. Immunol. 202, 3394–3403 (2019).

    CAS 

    Google Scholar 

  • 102.

    Wang, G., Norton, A. S., Pokharel, D., Song, Y. & Hill, R. A. KDEL peptide gold nanoconstructs: promising nanoplatforms for drug delivery. Nanomedicine 9, 366–374 (2013).

    CAS 

    Google Scholar 

  • 103.

    Perez-Trujillo, J. J. et al. DNA vaccine encoding human papillomavirus antigens flanked by a signal peptide and a KDEL sequence induces a potent therapeutic antitumor effect. Oncol. Lett. 13, 1569–1574 (2017).

    CAS 

    Google Scholar 

  • 104.

    Sneh-Edri, H., Likhtenshtein, D. & Stepensky, D. Intracellular targeting of PLGA nanoparticles encapsulating antigenic peptide to the endoplasmic reticulum of dendritic cells and its effect on antigen cross-presentation in vitro. Mol. Pharm. 8, 1266–1275 (2011).

    CAS 

    Google Scholar 

  • 105.

    Wales, R., Chaddock, J. A., Roberts, L. M. & Lord, J. M. Addition of an ER retention signal to the ricin A chain increases the cytotoxicity of the holotoxin. Exp. Cell Res. 203, 1–4 (1992).

    CAS 

    Google Scholar 

  • 106.

    Jiao, P., Zhang, J., Dong, Y., Wei, D. & Ren, Y. Construction and characterization of the recombinant immunotoxin RTA-4D5-KDEL targeting HER2/neu-positive cancer cells and locating the endoplasmic reticulum. Appl. Microbiol. Biotechnol. 102, 9585–9594 (2018).

    CAS 

    Google Scholar 

  • 107.

    Abraham, O. et al. Control of protein trafficking by reversible masking of transport signals. Mol. Biol. Cell 27, 1310–1319 (2016). This paper describes a pioneering method of delivering exogenous material to the ER and other intracellular compartments by reversibly unmasking organelle targeting signals.

    CAS 

    Google Scholar 

  • 108.

    Mercer, J., Schelhaas, M. & Helenius, A. Virus entry by endocytosis. Annu. Rev. Biochem. 79, 803–833 (2010).

    CAS 

    Google Scholar 

  • 109.

    Wernick, N. L. B., Chinnapen, D. J.-F., Cho, J. A. & Lencer, W. I. Cholera toxin: an intracellular journey into the cytosol by way of the endoplasmic reticulum. Toxins 2, 310–325 (2010).

    CAS 

    Google Scholar 

  • 110.

    Johannes, L. & Goud, B. Surfing on a retrograde wave: how does Shiga toxin reach the endoplasmic reticulum? Trends Cell Biol. 8, 158–162 (1998).

    CAS 

    Google Scholar 

  • 111.

    Lencer, W. I. et al. Targeting of cholera toxin and Escherichia coli heat labile toxin in polarized epithelia: role of COOH-terminal KDEL. J. Cell Biol. 131, 951–962 (1995).

    CAS 

    Google Scholar 

  • 112.

    Johannes, L., Tenza, D., Antony, C. & Goud, B. Retrograde transport of KDEL-bearing B-fragment of Shiga toxin. J. Biol. Chem. 272, 19554–19561 (1997).

    CAS 

    Google Scholar 

  • 113.

    Yu, M. & Haslam, D. B. Shiga toxin is transported from the endoplasmic reticulum following interaction with the luminal chaperone HEDJ/ERdj3. Infect. Immun. 73, 2524–2532 (2005).

    CAS 

    Google Scholar 

  • 114.

    Tarragó-Trani, M. T. & Storrie, B. Alternate routes for drug delivery to the cell interior: pathways to the Golgi apparatus and endoplasmic reticulum. Adv. Drug Deliv. Rev. 59, 782–797 (2007).

    Google Scholar 

  • 115.

    Haicheur, N. et al. The B subunit of Shiga toxin fused to a tumor antigen elicits CTL and targets dendritic cells to allow MHC class I-restricted presentation of peptides derived from exogenous antigens. J. Immunol. 165, 3301–3308 (2000).

    CAS 

    Google Scholar 

  • 116.

    Haicheur, N. et al. The B subunit of Shiga toxin coupled to full-size antigenic protein elicits humoral and cell-mediated immune responses associated with a Th1-dominant polarization. Int. Immunol. 15, 1161–1171 (2003).

    CAS 

    Google Scholar 

  • 117.

    Engedal, N., Skotland, T., Torgersen, M. L. & Sandvig, K. Shiga toxin and its use in targeted cancer therapy and imaging. Microb. Biotechnol. 4, 32–46 (2011).

    CAS 

    Google Scholar 

  • 118.

    Luginbuehl, V., Meier, N., Kovar, K. & Rohrer, J. Intracellular drug delivery: potential usefulness of engineered Shiga toxin subunit B for targeted cancer therapy. Biotechnol. Adv. 36, 613–623 (2018).

    CAS 

    Google Scholar 

  • 119.

    Tarragó-Trani, M. T., Jiang, S., Harich, K. C. & Storrie, B. Shiga-like toxin subunit B (SLTB)-enhanced delivery of chlorin e6 (Ce6) improves cell killing. Photochem. Photobiol. 82, 527–537 (2006).

    Google Scholar 

  • 120.

    Wang, J., Fang, X. & Liang, W. Pegylated phospholipid micelles induce endoplasmic reticulum-dependent apoptosis of cancer cells but not normal cells. ACS Nano 6, 5018–5030 (2012).

    CAS 

    Google Scholar 

  • 121.

    Pollock, S. et al. Uptake and trafficking of liposomes to the endoplasmic reticulum. FASEB J. 24, 1866–1878 (2010).

    CAS 

    Google Scholar 

  • 122.

    Martin, G. M., Kandasamy, B., DiMaio, F., Yoshioka, C. & Shyng, S.-L. Anti-diabetic drug binding site in a mammalian KATP channel revealed by cryo-EM. eLife https://doi.org/10.7554/eLife.31054 (2017).

    Article 

    Google Scholar 

  • 123.

    Shi, Y., Wang, S., Wu, J., Jin, X. & You, J. Pharmaceutical strategies for endoplasmic reticulum-targeting and their prospects of application. J. Control. Rel. https://doi.org/10.1016/j.jconrel.2020.11.054 (2020).

    Article 

    Google Scholar 

  • 124.

    Zhou, Y. et al. Endoplasmic reticulum-localized two-photon-absorbing boron dipyrromethenes as advanced photosensitizers for photodynamic therapy. J. Med. Chem. 61, 3952–3961 (2018).

    CAS 

    Google Scholar 

  • 125.

    Alam, P. et al. Red AIE-active fluorescent probes with tunable organelle-specific targeting. Adv. Funct. Mater. https://doi.org/10.1002/adfm.201909268 (2020).

    Article 

    Google Scholar 

  • 126.

    Zhang, H. et al. Fluorene-derived two-photon fluorescent probes for specific and simultaneous bioimaging of endoplasmic reticulum and lysosomes: group-effect and localization. J. Mater. Chem. B 1, 5450 (2013).

    CAS 

    Google Scholar 

  • 127.

    Ghosh, C., Nandi, A. & Basu, S. Lipid nanoparticle-mediated induction of endoplasmic reticulum stress in cancer cells. ACS Appl. Bio Mater. 2, 3992–4001 (2019).

    CAS 

    Google Scholar 

  • 128.

    Deng, H. et al. Endoplasmic reticulum targeting to amplify immunogenic cell death for cancer immunotherapy. Nano Lett. 20, 1928–1933 (2020).

    CAS 

    Google Scholar 

  • 129.

    Pieczenik, S. R. & Neustadt, J. Mitochondrial dysfunction and molecular pathways of disease. Exp. Mol. Pathol. 83, 84–92 (2007).

    CAS 

    Google Scholar 

  • 130.

    Smith, R. A. J., Hartley, R. C., Cochemé, H. M. & Murphy, M. P. Mitochondrial pharmacology. Trends Pharmacol. Sci. 33, 341–352 (2012).

    CAS 

    Google Scholar 

  • 131.

    Omura, T. Mitochondria-targeting sequence, a multi-role sorting sequence recognized at all steps of protein import into mitochondria. J. Biochem. 123, 1010–1016 (1998).

    CAS 

    Google Scholar 

  • 132.

    Hachiya, N. et al. MSF, a novel cytoplasmic chaperone which functions in precursor targeting to mitochondria. EMBO J. 13, 5146–5154 (1994).

    CAS 

    Google Scholar 

  • 133.

    Jean, S. R., Ahmed, M., Lei, E. K., Wisnovsky, S. P. & Kelley, S. O. Peptide-mediated delivery of chemical probes and therapeutics to mitochondria. Acc. Chem. Res. 49, 1893–1902 (2016).

    CAS 

    Google Scholar 

  • 134.

    Wasilenko, S. T., Stewart, T. L., Meyers, A. F. A. & Barry, M. Vaccinia virus encodes a previously uncharacterized mitochondrial-associated inhibitor of apoptosis. Proc. Natl Acad. Sci. USA 100, 14345–14350 (2003).

    CAS 

    Google Scholar 

  • 135.

    Boya, P. et al. Viral proteins targeting mitochondria: controlling cell death. Biochim. Biophys. Acta 1659, 178–189 (2004).

    CAS 

    Google Scholar 

  • 136.

    Holt, I. J., Harding, A. E., Petty, R. K. & Morgan-Hughes, J. A. A new mitochondrial disease associated with mitochondrial DNA heteroplasmy. Am. J. Hum. Genet. 46, 428–433 (1990).

    CAS 

    Google Scholar 

  • 137.

    Tanaka, M. et al. Gene therapy for mitochondrial disease by delivering restriction endonuclease SmaI into mitochondria. J. Biomed. Sci. 9, 534–541 (2002).

    CAS 

    Google Scholar 

  • 138.

    Del Gaizo, V., MacKenzie, J. A. & Payne, R. M. Targeting proteins to mitochondria using TAT. Mol. Genet. Metab. 80, 170–180 (2003).

    Google Scholar 

  • 139.

    Yousif, L. F., Stewart, K. M., Horton, K. L. & Kelley, S. O. Mitochondria-penetrating peptides: sequence effects and model cargo transport. Chembiochem 10, 2081–2088 (2009).

    CAS 

    Google Scholar 

  • 140.

    Jiang, L. et al. Overcoming drug-resistant lung cancer by paclitaxel loaded dual-functional liposomes with mitochondria targeting and pH-response. Biomaterials 52, 126–139 (2015).

    CAS 

    Google Scholar 

  • 141.

    Agemy, L. et al. Targeted nanoparticle enhanced proapoptotic peptide as potential therapy for glioblastoma. Proc. Natl Acad. Sci. USA 108, 17450–17455 (2011).

    CAS 

    Google Scholar 

  • 142.

    Fonseca, S. B. et al. Rerouting chlorambucil to mitochondria combats drug deactivation and resistance in cancer cells. Chem. Biol. 18, 445–453 (2011).

    CAS 

    Google Scholar 

  • 143.

    Wisnovsky, S. P. et al. Targeting mitochondrial DNA with a platinum-based anticancer agent. Chem. Biol. 20, 1323–1328 (2013).

    CAS 

    Google Scholar 

  • 144.

    Gao, P., Pan, W., Li, N. & Tang, B. Boosting cancer therapy with organelle-targeted nanomaterials. ACS Appl. Mater. Interfaces 11, 26529–26558 (2019).

    CAS 

    Google Scholar 

  • 145.

    Smith, R. A., Porteous, C. M., Coulter, C. V. & Murphy, M. P. Selective targeting of an antioxidant to mitochondria. Eur. J. Biochem. 263, 709–716 (1999).

    CAS 

    Google Scholar 

  • 146.

    Smith, R. A. J., Porteous, C. M., Gane, A. M. & Murphy, M. P. Delivery of bioactive molecules to mitochondria in vivo. Proc. Natl Acad. Sci. USA 100, 5407–5412 (2003).

    CAS 

    Google Scholar 

  • 147.

    Sharma, A. et al. Design and evaluation of multifunctional nanocarriers for selective delivery of coenzyme Q10 to mitochondria. Biomacromolecules 13, 239–252 (2012).

    CAS 

    Google Scholar 

  • 148.

    Marrache, S. & Dhar, S. Engineering of blended nanoparticle platform for delivery of mitochondria-acting therapeutics. Proc. Natl Acad. Sci. USA 109, 16288–16293 (2012).

    CAS 

    Google Scholar 

  • 149.

    Boddapati, S. V., D’Souza, G. G. M., Erdogan, S., Torchilin, V. P. & Weissig, V. Organelle-targeted nanocarriers: specific delivery of liposomal ceramide to mitochondria enhances its cytotoxicity in vitro and in vivo. Nano Lett. 8, 2559–2563 (2008).

    CAS 

    Google Scholar 

  • 150.

    Marrache, S. & Dhar, S. The energy blocker inside the power house: mitochondria targeted delivery of 3-bromopyruvate. Chem. Sci. 6, 1832–1845 (2015).

    CAS 

    Google Scholar 

  • 151.

    Zhou, W. et al. Redox-triggered activation of nanocarriers for mitochondria-targeting cancer chemotherapy. Nanoscale 9, 17044–17053 (2017).

    CAS 

    Google Scholar 

  • 152.

    Zhou, J. et al. The anticancer efficacy of paclitaxel liposomes modified with mitochondrial targeting conjugate in resistant lung cancer. Biomaterials 34, 3626–3638 (2013).

    CAS 

    Google Scholar 

  • 153.

    Panagiotaki, K. N. et al. A triphenylphosphonium-functionalized mitochondriotropic nanocarrier for efficient Co-delivery of doxorubicin and chloroquine and enhanced antineoplastic activity. Pharmaceuticals 10, 91 (2017).

    Google Scholar 

  • 154.

    Yu, Z., Sun, Q., Pan, W., Li, N. & Tang, B. A near-infrared triggered nanophotosensitizer inducing domino effect on mitochondrial reactive oxygen species burst for cancer therapy. ACS Nano 9, 11064–11074 (2015).

    CAS 

    Google Scholar 

  • 155.

    Jung, H. S. et al. Enhanced NIR radiation-triggered hyperthermia by mitochondrial targeting. J. Am. Chem. Soc. 137, 3017–3023 (2015).

    CAS 

    Google Scholar 

  • 156.

    Weiss, M. J. et al. Dequalinium, a topical antimicrobial agent, displays anticarcinoma activity based on selective mitochondrial accumulation. Proc. Natl Acad. Sci. USA 84, 5444–5448 (1987).

    CAS 

    Google Scholar 

  • 157.

    Weissig, V. et al. DQAsomes: a novel potential drug and gene delivery system made from DequaliniumTM. Pharm. Res. 15, 334–337 (1998).

    CAS 

    Google Scholar 

  • 158.

    Teixeira, J. et al. Development of a mitochondriotropic antioxidant based on caffeic acid: proof of concept on cellular and mitochondrial oxidative stress models. J. Med. Chem. 60, 7084–7098 (2017).

    CAS 

    Google Scholar 

  • 159.

    Manolis, A. S. et al. Mitochondrial dysfunction in cardiovascular disease: current status of translational research/clinical and therapeutic implications. Med. Res. Rev. 41, 275–313 (2021).

    CAS 

    Google Scholar 

  • 160.

    Gane, E. J. et al. The mitochondria-targeted anti-oxidant mitoquinone decreases liver damage in a phase II study of hepatitis C patients. Liver Int. 30, 1019–1026 (2010).

    CAS 

    Google Scholar 

  • 161.

    Snow, B. J. et al. A double-blind, placebo-controlled study to assess the mitochondria-targeted antioxidant MitoQ as a disease-modifying therapy in Parkinson’s disease. Mov. Disord. 25, 1670–1674 (2010).

    Google Scholar 

  • 162.

    Saad, A. et al. Phase 2a clinical trial of mitochondrial protection (elamipretide) during stent revascularization in patients with atherosclerotic renal artery stenosis. Circ. Cardiovasc. Interv. 10, e005487 (2017).

    CAS 

    Google Scholar 

  • 163.

    Seeman, N. C. & Sleiman, H. F. DNA nanotechnology. Nat. Rev. Mater. 3, 17068 (2017).

    Google Scholar 

  • 164.

    SantaLucia, J. & Hicks, D. The thermodynamics of DNA structural motifs. Annu. Rev. Biophys. Biomol. Struct. 33, 415–440 (2004).

    CAS 

    Google Scholar 

  • 165.

    Carlson, R. The changing economics of DNA synthesis. Nat. Biotechnol. 27, 1091–1094 (2009).

    CAS 

    Google Scholar 

  • 166.

    Krishnan, Y. & Simmel, F. C. Nucleic acid based molecular devices. Angew. Chem. Int. Ed. 50, 3124–3156 (2011).

    CAS 

    Google Scholar 

  • 167.

    Douglas, S. M., Bachelet, I. & Church, G. M. A logic-gated nanorobot for targeted transport of molecular payloads. Science 335, 831–834 (2012).

    CAS 

    Google Scholar 

  • 168.

    Surana, S., Shenoy, A. R. & Krishnan, Y. Designing DNA nanodevices for compatibility with the immune system of higher organisms. Nat. Nanotechnol. 10, 741–747 (2015).

    CAS 

    Google Scholar 

  • 169.

    Veetil, A. T. et al. DNA-based fluorescent probes of NOS2 activity in live brains. Proc. Natl Acad. Sci. USA 117, 14694–14702 (2020). This paper shows how DNA nanodevices are targeted with organelle-level precision specifically in microglia of live zebrafish and that the DNA sequence can be modified to either trigger or evade the immune response.

    CAS 

    Google Scholar 

  • 170.

    Krishnan, Y., Zou, J. & Jani, M. S. Quantitative imaging of biochemistry in situ and at the nanoscale. ACS Cent. Sci. 6, 1938–1954 (2020).

    CAS 

    Google Scholar 

  • 171.

    Hu, Q., Li, H., Wang, L., Gu, H. & Fan, C. DNA Nanotechnology-Enabled Drug Delivery Systems. Chem. Rev. 119, 6459–6506 (2019).

    CAS 

    Google Scholar 

  • 172.

    Lee, H. et al. Molecularly self-assembled nucleic acid nanoparticles for targeted in vivo siRNA delivery. Nat. Nanotechnol. 7, 389–393 (2012).

    CAS 

    Google Scholar 

  • 173.

    Huang, X. et al. DNA scaffolds enable efficient and tunable functionalization of biomaterials for immune cell modulation. Nat. Nanotechnol. 16, 214–223 (2021). This paper describes DNA-based immune cell-engaging particles that prime T cell activation in vivo by exploiting the stoichiometry of DNA hybridization to display precise numbers of immune stimulatory ligands.

    CAS 

    Google Scholar 

  • 174.

    Jones, M. R., Seeman, N. C. & Mirkin, C. A. Nanomaterials. Programmable materials and the nature of the DNA bond. Science 347, 1260901 (2015).

    Google Scholar 

  • 175.

    Bhatia, D. et al. Quantum dot-loaded monofunctionalized DNA icosahedra for single-particle tracking of endocytic pathways. Nat. Nanotechnol. 11, 1112–1119 (2016). In this paper, the modularity, stoichiometry, structural and spatial precision offered by a DNA icosahedron are leveraged to modulate its trafficking selectively within cells.

    CAS 

    Google Scholar 

  • 176.

    Banerjee, A. et al. Controlled release of encapsulated cargo from a DNA icosahedron using a chemical trigger. Angew. Chem. Int. Ed. 52, 6854–6857 (2013).

    CAS 

    Google Scholar 

  • 177.

    Ellington, A. D. & Szostak, J. W. In vitro selection of RNA molecules that bind specific ligands. Nature 346, 818–822 (1990).

    CAS 

    Google Scholar 

  • 178.

    Famulok, M., Hartig, J. S. & Mayer, G. Functional aptamers and aptazymes in biotechnology, diagnostics, and therapy. Chem. Rev. 107, 3715–3743 (2007).

    CAS 

    Google Scholar 

  • 179.

    Wilson, D. S. & Szostak, J. W. In vitro selection of functional nucleic acids. Annu. Rev. Biochem. 68, 611–647 (1999).

    CAS 

    Google Scholar 

  • 180.

    Cho, E. J., Lee, J.-W. & Ellington, A. D. Applications of aptamers as sensors. Annu. Rev. Anal. Chem. 2, 241–264 (2009).

    CAS 

    Google Scholar 

  • 181.

    Dunn, M. R., Jimenez, R. M. & Chaput, J. C. Analysis of aptamer discovery and technology. Nat. Rev. Chem. 1, 0076 (2017).

    CAS 

    Google Scholar 

  • 182.

    Halder, S. & Krishnan, Y. Design of ultrasensitive DNA-based fluorescent pH sensitive nanodevices. Nanoscale 7, 10008–10012 (2015).

    CAS 

    Google Scholar 

  • 183.

    Nielsen, P. E., Egholm, M., Berg, R. H. & Buchardt, O. Sequence-selective recognition of DNA by strand displacement with a thymine-substituted polyamide. Science 254, 1497–1500 (1991).

    CAS 

    Google Scholar 

  • 184.

    Koshkin, A. A. et al. LNA (Locked Nucleic Acids): synthesis of the adenine, cytosine, guanine, 5-methylcytosine, thymine and uracil bicyclonucleoside monomers, oligomerisation, and unprecedented nucleic acid recognition. Tetrahedron 54, 3607–3630 (1998).

    CAS 

    Google Scholar 

  • 185.

    Saha, S., Prakash, V., Halder, S., Chakraborty, K. & Krishnan, Y. A pH-independent DNA nanodevice for quantifying chloride transport in organelles of living cells. Nat. Nanotechnol. 10, 645–651 (2015).

    CAS 

    Google Scholar 

  • 186.

    Kaur, H., Babu, B. R. & Maiti, S. Perspectives on chemistry and therapeutic applications of Locked Nucleic Acid (LNA). Chem. Rev. 107, 4672–4697 (2007).

    CAS 

    Google Scholar 

  • 187.

    Pinheiro, V. B. et al. Synthetic genetic polymers capable of heredity and evolution. Science 336, 341–344 (2012).

    CAS 

    Google Scholar 

  • 188.

    Yu, H., Zhang, S. & Chaput, J. C. Darwinian evolution of an alternative genetic system provides support for TNA as an RNA progenitor. Nat. Chem. 4, 183–187 (2012).

    CAS 

    Google Scholar 

  • 189.

    Li, H. et al. Molecular spherical nucleic acids. Proc. Natl Acad. Sci. USA 115, 4340–4344 (2018).

    CAS 

    Google Scholar 

  • 190.

    Chakraborty, K., Veetil, A. T., Jaffrey, S. R. & Krishnan, Y. Nucleic acid-based nanodevices in biological imaging. Annu. Rev. Biochem. 85, 349–373 (2016).

    CAS 

    Google Scholar 

  • 191.

    Hivare, P., Rajwar, A., Gupta, S. & Bhatia, D. Spatiotemporal dynamics of endocytic pathways adapted by small DNA nanocages in model neuroblastoma cell-derived differentiated neurons. ACS Appl. Bio Mater. https://doi.org/10.1021/acsabm.0c01668 (2021).

    Article 

    Google Scholar 

  • 192.

    Bagasra, O. Protocols for the in situ PCR-amplification and detection of mRNA and DNA sequences. Nat. Protoc. 2, 2782–2795 (2007).

    CAS 

    Google Scholar 

  • 193.

    Canton, J., Neculai, D. & Grinstein, S. Scavenger receptors in homeostasis and immunity. Nat. Rev. Immunol. 13, 621–634 (2013).

    CAS 

    Google Scholar 

  • 194.

    Gough, P. J. & Gordon, S. The role of scavenger receptors in the innate immune system. Microbes Infect. 2, 305–311 (2000).

    CAS 

    Google Scholar 

  • 195.

    Cullen, P. J. & Steinberg, F. To degrade or not to degrade: mechanisms and significance of endocytic recycling. Nat. Rev. Mol. Cell Biol. 19, 679–696 (2018).

    CAS 

    Google Scholar 

  • 196.

    Modi, S. et al. A DNA nanomachine that maps spatial and temporal pH changes inside living cells. Nat. Nanotechnol. 4, 325–330 (2009).

    CAS 

    Google Scholar 

  • 197.

    Leung, K., Chakraborty, K., Saminathan, A. & Krishnan, Y. A DNA nanomachine chemically resolves lysosomes in live cells. Nat. Nanotechnol. 14, 176–183 (2019). This paper describes a pioneering method to quantify two ions simultaneously in the same organelle to chemically resolve lysosomes in live cells, yielding a potential diagnostic for lysosomal diseases.

    CAS 

    Google Scholar 

  • 198.

    Narayanaswamy, N. et al. A pH-correctable, DNA-based fluorescent reporter for organellar calcium. Nat. Methods 16, 95–102 (2019).

    CAS 

    Google Scholar 

  • 199.

    Thekkan, S. et al. A DNA-based fluorescent reporter maps HOCl production in the maturing phagosome. Nat. Chem. Biol. 15, 1165–1172 (2019). This paper outlines how DNA nanodevices can be targeted to phagosomes of immune cells derived from human blood and from multiple tissues of mice.

    CAS 

    Google Scholar 

  • 200.

    Jani, M. S., Zou, J., Veetil, A. T. & Krishnan, Y. A DNA-based fluorescent probe maps NOS3 activity with subcellular spatial resolution. Nat. Chem. Biol. 16, 660–666 (2020).

    CAS 

    Google Scholar 

  • 201.

    Dan, K., Veetil, A. T., Chakraborty, K. & Krishnan, Y. DNA nanodevices map enzymatic activity in organelles. Nat. Nanotechnol. 14, 252–259 (2019).

    CAS 

    Google Scholar 

  • 202.

    Surana, S., Bhat, J. M., Koushika, S. P. & Krishnan, Y. An autonomous DNA nanomachine maps spatiotemporal pH changes in a multicellular living organism. Nat. Commun. 2, 340 (2011).

    Google Scholar 

  • 203.

    Fares, H. & Greenwald, I. Genetic analysis of endocytosis in Caenorhabditis elegans: coelomocyte uptake defective mutants. Genetics 159, 133–145 (2001).

    CAS 

    Google Scholar 

  • 204.

    Chakraborty, K., Leung, K. & Krishnan, Y. High lumenal chloride in the lysosome is critical for lysosome function. eLife 6, e28862 (2017).

    Google Scholar 

  • 205.

    Chakraborty, K. et al. Tissue specific targeting of DNA nanodevices in a multicellular living organism. eLife 10, e67830 (2021) This article demonstrates that DNA nanodevices can be tissue-specifically targeted with organelle-level precision in nematodes by engaging a synthetic, tissue-specifically expressed endocytic receptor.

    Google Scholar 

  • 206.

    Grant, B. D. & Donaldson, J. G. Pathways and mechanisms of endocytic recycling. Nat. Rev. Mol. Cell Biol. 10, 597–608 (2009).

    CAS 

    Google Scholar 

  • 207.

    Taguchi, T. Emerging roles of recycling endosomes. J. Biochem. 153, 505–510 (2013).

    CAS 

    Google Scholar 

  • 208.

    Goldenring, J. R. Recycling endosomes. Curr. Opin. Cell Biol. 35, 117–122 (2015).

    CAS 

    Google Scholar 

  • 209.

    Mellman, I. & Yarden, Y. Endocytosis and cancer. Cold Spring Harb. Perspect. Biol. 5, a016949 (2013).

    Google Scholar 

  • 210.

    Howe, E. N. et al. Rab11b-mediated integrin recycling promotes brain metastatic adaptation and outgrowth. Nat. Commun. 11, 3017 (2020).

    CAS 

    Google Scholar 

  • 211.

    Schreij, A. M. A., Fon, E. A. & McPherson, P. S. Endocytic membrane trafficking and neurodegenerative disease. Cell Mol. Life Sci. 73, 1529–1545 (2016).

    CAS 

    Google Scholar 

  • 212.

    Vale-Costa, S. & Amorim, M. J. Recycling endosomes and viral infection. Viruses 8, 64 (2016).

    Google Scholar 

  • 213.

    De Castro Martin, I. F. et al. Influenza virus genome reaches the plasma membrane via a modified endoplasmic reticulum and Rab11-dependent vesicles. Nat. Commun. 8, 1396 (2017).

    Google Scholar 

  • 214.

    Johnsen, K. B., Burkhart, A., Thomsen, L. B., Andresen, T. L. & Moos, T. Targeting the transferrin receptor for brain drug delivery. Prog. Neurobiol. 181, 101665 (2019).

    CAS 

    Google Scholar 

  • 215.

    Modi, S., Nizak, C., Surana, S., Halder, S. & Krishnan, Y. Two DNA nanomachines map pH changes along intersecting endocytic pathways inside the same cell. Nat. Nanotechnol. 8, 459–467 (2013).

    CAS 

    Google Scholar 

  • 216.

    Aisen, P. & Listowsky, I. Iron transport and storage proteins. Annu. Rev. Biochem. 49, 357–393 (1980).

    CAS 

    Google Scholar 

  • 217.

    Mayle, K. M., Le, A. M. & Kamei, D. T. The intracellular trafficking pathway of transferrin. Biochim. Biophys. Acta 1820, 264–281 (2012).

    CAS 

    Google Scholar 

  • 218.

    Saminathan, A. et al. A DNA-based voltmeter for organelles. Nat. Nanotechnol. 16, 96–103 (2021).

    CAS 

    Google Scholar 

  • 219.

    Glick, B. S. & Nakano, A. Membrane traffic within the Golgi apparatus. Annu. Rev. Cell Dev. Biol. 25, 113–132 (2009).

    CAS 

    Google Scholar 

  • 220.

    Thomas, G. Furin at the cutting edge: from protein traffic to embryogenesis and disease. Nat. Rev. Mol. Cell Biol. 3, 753–766 (2002).

    CAS 

    Google Scholar 

  • 221.

    McCafferty, J., Griffiths, A. D., Winter, G. & Chiswell, D. J. Phage antibodies: filamentous phage displaying antibody variable domains. Nature 348, 552–554 (1990).

    CAS 

    Google Scholar 

  • 222.

    Brayman, M., Thathiah, A. & Carson, D. D. MUC1: a multifunctional cell surface component of reproductive tissue epithelia. Reprod. Biol. Endocrinol. 2, 4 (2004).

    Google Scholar 

  • 223.

    Ferreira, C. S. M., Cheung, M. C., Missailidis, S., Bisland, S. & Gariépy, J. Phototoxic aptamers selectively enter and kill epithelial cancer cells. Nucleic Acids Res. 37, 866–876 (2009).

    CAS 

    Google Scholar 

  • 224.

    Bretscher, M. S. Membrane structure: some general principles. Science 181, 622–629 (1973).

    CAS 

    Google Scholar 

  • 225.

    Park, J. et al. Engineering the surface of therapeutic “living” cells. Chem. Rev. 118, 1664–1690 (2018).

    CAS 

    Google Scholar 

  • 226.

    Ridley, A. J. et al. Cell migration: integrating signals from front to back. Science 302, 1704–1709 (2003).

    CAS 

    Google Scholar 

  • 227.

    Niemeyer, C. M. Semisynthetic DNA-protein conjugates for biosensing and nanofabrication. Angew. Chem. Int. Ed. 49, 1200–1216 (2010).

    CAS 

    Google Scholar 

  • 228.

    Mahal, L. K., Yarema, K. J. & Bertozzi, C. R. Engineering chemical reactivity on cell surfaces through oligosaccharide biosynthesis. Science 276, 1125–1128 (1997).

    CAS 

    Google Scholar 

  • 229.

    Chandra, R. A., Douglas, E. S., Mathies, R. A., Bertozzi, C. R. & Francis, M. B. Programmable cell adhesion encoded by DNA hybridization. Angew. Chem. Int. Ed. 45, 896–901 (2006).

    CAS 

    Google Scholar 

  • 230.

    Charter, N. W., Mahal, L. K., Koshland, D. E. & Bertozzi, C. R. Differential effects of unnatural sialic acids on the polysialylation of the neural cell adhesion molecule and neuronal behavior. J. Biol. Chem. 277, 9255–9261 (2002).

    CAS 

    Google Scholar 

  • 231.

    Todhunter, M. E. et al. Programmed synthesis of three-dimensional tissues. Nat. Methods 12, 975–981 (2015).

    CAS 

    Google Scholar 

  • 232.

    You, M. et al. DNA probes for monitoring dynamic and transient molecular encounters on live cell membranes. Nat. Nanotechnol. 12, 453–459 (2017).

    CAS 

    Google Scholar 

  • 233.

    Jin, C. et al. Phosphorylated lipid-conjugated oligonucleotide selectively anchors on cell membranes with high alkaline phosphatase expression. Nat. Commun. 10, 2704 (2019).

    Google Scholar 

  • 234.

    Kwak, M. & Herrmann, A. Nucleic acid amphiphiles: synthesis and self-assembled nanostructures. Chem. Soc. Rev. 40, 5745–5755 (2011).

    CAS 

    Google Scholar 

  • 235.

    McGinnis, C. S. et al. MULTI-seq: sample multiplexing for single-cell RNA sequencing using lipid-tagged indices. Nat. Methods 16, 619–626 (2019).

    CAS 

    Google Scholar 

  • 236.

    Mali, P. et al. Barcoding cells using cell-surface programmable DNA-binding domains. Nat. Methods 10, 403–406 (2013).

    CAS 

    Google Scholar 

  • 237.

    Zhu, G. et al. Building fluorescent DNA nanodevices on target living cell surfaces. Angew. Chem. Int. Ed. 52, 5490–5496 (2013).

    CAS 

    Google Scholar 

  • 238.

    Li, L. et al. Aptamer displacement reaction from live-cell surfaces and its applications. J. Am. Chem. Soc. 141, 17174–17179 (2019).

    CAS 

    Google Scholar 

  • 239.

    Liu, H., Kwong, B. & Irvine, D. J. Membrane anchored immunostimulatory oligonucleotides for in vivo cell modification and localized immunotherapy. Angew. Chem. Int. Ed. 50, 7052–7055 (2011).

    CAS 

    Google Scholar 

  • 240.

    Winterbourn, C. C. & Kettle, A. J. Redox reactions and microbial killing in the neutrophil phagosome. Antioxid. Redox Signal. 18, 642–660 (2013).

    CAS 

    Google Scholar 

  • 241.

    Underhill, D. M. Macrophage recognition of zymosan particles. J. Endotoxin Res. 9, 176–180 (2003).

    CAS 

    Google Scholar 

  • 242.

    Locy, H. et al. Immunomodulation of the tumor microenvironment: turn foe into friend. Front. Immunol. 9, 2909 (2018).

    CAS 

    Google Scholar 

  • 243.

    Xiao, Y. et al. Cathepsin C promotes breast cancer lung metastasis by modulating neutrophil infiltration and neutrophil extracellular trap formation. Cancer Cell 39, 423–437.e7 (2021).

    CAS 

    Google Scholar 

  • 244.

    Cui, C. et al. A lysosome-targeted DNA nanodevice selectively targets macrophages to attenuate tumours. Nat. Nanotechnol. https://doi.org/10.1038/s41565-021-00988-z (2021).

    Article 

    Google Scholar 

  • 245.

    Mazzulli, J. R., Zunke, F., Isacson, O., Studer, L. & Krainc, D. α-Synuclein-induced lysosomal dysfunction occurs through disruptions in protein trafficking in human midbrain synucleinopathy models. Proc. Natl Acad. Sci. USA 113, 1931–1936 (2016).

    CAS 

    Google Scholar 

  • 246.

    Kobayashi, T. et al. Enhanced lysosomal degradation maintains the quiescent state of neural stem cells. Nat. Commun. 10, 5446 (2019).

    Google Scholar 

  • 247.

    Marques, A. R. A. et al. Enzyme replacement therapy with recombinant pro-CTSD (cathepsin D) corrects defective proteolysis and autophagy in neuronal ceroid lipofuscinosis. Autophagy 16, 811–825 (2020).

    CAS 

    Google Scholar 

  • 248.

    Chen, C. B. et al. Aptamer-based endocytosis of a lysosomal enzyme. Proc. Natl Acad. Sci. USA 105, 15908–15913 (2008).

    CAS 

    Google Scholar 

  • 249.

    Bendorius, M. et al. The mitochondrion-lysosome axis in adaptive and innate immunity: effect of lupus regulator peptide P140 on mitochondria autophagy and NETosis. Front. Immunol. 9, 2158 (2018).

    Google Scholar 

  • 250.

    Carmona-Gutierrez, D., Hughes, A. L., Madeo, F. & Ruckenstuhl, C. The crucial impact of lysosomes in aging and longevity. Ageing Res. Rev. 32, 2–12 (2016).

    CAS 

    Google Scholar 

  • 251.

    Conlan, R. S., Pisano, S., Oliveira, M. I., Ferrari, M. & Mendes Pinto, I. Exosomes as reconfigurable therapeutic systems. Trends Mol. Med. 23, 636–650 (2017).

    CAS 

    Google Scholar 

  • 252.

    Sundaram, P., Kurniawan, H., Byrne, M. E. & Wower, J. Therapeutic RNA aptamers in clinical trials. Eur. J. Pharm. Sci. 48, 259–271 (2013).

    CAS 

    Google Scholar 

  • 253.

    Sefah, K., Shangguan, D., Xiong, X., O’Donoghue, M. B. & Tan, W. Development of DNA aptamers using Cell-SELEX. Nat. Protoc. 5, 1169–1185 (2010).

    CAS 

    Google Scholar 

  • 254.

    Juliano, R. L. The delivery of therapeutic oligonucleotides. Nucleic Acids Res. 44, 6518–6548 (2016).

    Google Scholar 

  • 255.

    Pardi, N., Hogan, M. J., Porter, F. W. & Weissman, D. mRNA vaccines — a new era in vaccinology. Nat. Rev. Drug Discov. 17, 261–279 (2018).

    CAS 

    Google Scholar 

  • 256.

    Kirchenbaum, G., Hanson, J., Roen, D. & Lehmann, P. Detection of antigen-specific T cell lineages and effector functions based on secretory signature. J. Immunol. Sci. 3, 14–20 (2019).

    Google Scholar 

  • 257.

    Koves, T. R. et al. Subsarcolemmal and intermyofibrillar mitochondria play distinct roles in regulating skeletal muscle fatty acid metabolism. Am. J. Physiol. Cell Physiol. 288, C1074–C1082 (2005).

    CAS 

    Google Scholar 

  • 258.

    Momcilovic, M. et al. In vivo imaging of mitochondrial membrane potential in non-small-cell lung cancer. Nature 575, 380–384 (2019).

    CAS 

    Google Scholar 

  • 259.

    Desnick, R. J. & Schuchman, E. H. Enzyme replacement therapy for lysosomal diseases: lessons from 20 years of experience and remaining challenges. Annu. Rev. Genomics. Hum. Genet. 13, 307–335 (2012).

    CAS 

    Google Scholar 

  • 260.

    Hirota, J. & Shimizu, S. in The Laboratory Mouse 709–725 (Elsevier, 2012).

  • 261.

    Franz, W. M., Rothmann, T., Frey, N. & Katus, H. A. Analysis of tissue-specific gene delivery by recombinant adenoviruses containing cardiac-specific promoters. Cardiovasc. Res. 35, 560–566 (1997).

    CAS 

    Google Scholar 

  • 262.

    Golombek, S. K. et al. Tumor targeting via EPR: strategies to enhance patient responses. Adv. Drug Deliv. Rev. 130, 17–38 (2018).

    CAS 

    Google Scholar 

  • 263.

    Zwicke, G. L., Mansoori, G. A. & Jeffery, C. J. Utilizing the folate receptor for active targeting of cancer nanotherapeutics. Nano Rev. https://doi.org/10.3402/nano.v3i0.18496 (2012).

    Article 

    Google Scholar 

  • 264.

    Kang, K. W. In vivo imaging of 18F-aptide as a fibronectin extra domain B (EDB) targeting agent. J. Nucl. Med. 54, 555–555 (2013).

    Google Scholar 

  • 265.

    Zhou, J. & Rossi, J. Aptamers as targeted therapeutics: current potential and challenges. Nat. Rev. Drug Discov. 16, 181–202 (2017).

    CAS 

    Google Scholar 

  • 266.

    Wang, Y. et al. Lysosome-targeting fluorogenic probe for cathepsin B imaging in living cells. Anal. Chem. 88, 12403–12410 (2016).

    CAS 

    Google Scholar 

  • Source link