Preloader

Oral delivery of systemic monoclonal antibodies, peptides and small molecules using gastric auto-injectors

  • 1.

    Boye, K. S. et al. Utilities and disutilities for attributes of injectable treatments for type 2 diabetes. Eur. J. Heal. Econ. 12, 219–230 (2011).

    Article 

    Google Scholar 

  • 2.

    Pratley, R. E. et al. Liraglutide versus sitagliptin for patients with type 2 diabetes who did not have adequate glycaemic control with metformin: a 26-week, randomised, parallel-group, open-label trial. Lancet 375, 1447–1456 (2010).

    CAS 
    Article 

    Google Scholar 

  • 3.

    Turner, R. C., Cull, C. A., Frighi, V. & Holman, R. R.Glycemic control with diet, sulfonylurea, metformin, or insulin in patients with type 2 diabetes mellitus progressive requirement for multiple therapies (UKPDS 49). UK Prospective Diabetes Study (UKPDS) Group. JAMA 281, 2005–2012 (1999).

    CAS 
    Article 

    Google Scholar 

  • 4.

    Colombel, J. F. et al. Adalimumab for maintenance of clinical response and remission in patients with Crohn’s disease: the CHARM trial. Gastroenterology 132, 52–65 (2007).

    CAS 
    Article 

    Google Scholar 

  • 5.

    Brayden, D. J. & Alonso, M.-J. Oral delivery of peptides: opportunities and issues for translation. Adv. Drug Deliv. Rev. 106, 193–195 (2016).

    CAS 
    Article 

    Google Scholar 

  • 6.

    Drucker, D. J. Advances in oral peptide therapeutics. Nat. Rev. Drug Discov. 19, 277–289 (2019).

  • 7.

    Rubino, A., McQuay, L. J., Gough, S. C., Kvasz, M. & Tennis, P. Delayed initiation of subcutaneous insulin therapy after failure of oral glucose-lowering agents in patients with type 2 diabetes: a population-based analysis in the UK. Diabet. Med. 24, 1412–1418 (2007).

    CAS 
    Article 

    Google Scholar 

  • 8.

    Ruemmele, F. M. et al. Consensus guidelines of ECCO/ESPGHAN on the medical management of pediatric Crohn’s disease. J. Crohn’s Colitis 8, 1179–1207 (2014).

    CAS 
    Article 

    Google Scholar 

  • 9.

    Ahadian, S. et al. Micro and nanoscale technologies in oral drug delivery. Adv. Drug Deliv. Rev. 157, 37–62 (2020).

  • 10.

    Anselmo, A. C., Gokarn, Y. & Mitragotri, S. Non-invasive delivery strategies for biologics. Nat. Rev. Drug Discov. 18, 19–40 (2018).

    Article 

    Google Scholar 

  • 11.

    Buckley, S. T. et al. Transcellular stomach absorption of a derivatized glucagon-like peptide-1 receptor agonist. Sci. Transl. Med. 10, eaar7047 (2018).

    Article 

    Google Scholar 

  • 12.

    Pratley, R. et al. Oral semaglutide versus subcutaneous liraglutide and placebo in type 2 diabetes (PIONEER 4): a randomised, double-blind, phase 3a trial. Lancet 394, 39–50 (2019).

    CAS 
    Article 

    Google Scholar 

  • 13.

    Husain, M. et al. Oral semaglutide and cardiovascular outcomes in patients with type 2 diabetes. N. Engl. J. Med. 381, 841–851 (2019).

    CAS 
    Article 

    Google Scholar 

  • 14.

    Halberg, I. B. et al. Efficacy and safety of oral basal insulin versus subcutaneous insulin glargine in type 2 diabetes: a randomised, double-blind, phase 2 trial. Lancet Diabetes Endocrinol. 7, 179–188 (2019).

    Article 

    Google Scholar 

  • 15.

    Abramson, A., Halperin, F., Kim, J. & Traverso, G. Quantifying the value of orally delivered biologic therapies: a cost-effectiveness analysis of oral semaglutide. J. Pharm. Sci. 108, 3138–3145 (2019).

    CAS 
    Article 

    Google Scholar 

  • 16.

    Mahmood, A. & Bernkop-Schnürch, A. SEDDS: a game changing approach for the oral administration of hydrophilic macromolecular drugs. Adv. Drug Deliv. Rev. 142, 91–101 (2019).

    CAS 
    Article 

    Google Scholar 

  • 17.

    Phan, T. N. Q., Shahzadi, I. & Bernkop-Schnürch, A. Hydrophobic ion-pairs and lipid-based nanocarrier systems: the perfect match for delivery of BCS class 3 drugs. J. Controlled Release 304, 146–155 (2019).

    CAS 
    Article 

    Google Scholar 

  • 18.

    Fox, C. B. et al. Fabrication of sealed nanostraw microdevices for oral drug delivery. ACS Nano 10, 5873–5881 (2016).

    CAS 
    Article 

    Google Scholar 

  • 19.

    Banerjee, A., Wong, J., Gogoi, R., Brown, T. & Mitragotri, S. Intestinal micropatches for oral insulin delivery. J. Drug Target. 25, 608–615 (2017).

    CAS 
    Article 

    Google Scholar 

  • 20.

    Melmed, S. et al. Safety and efficacy of oral octreotide in acromegaly: results of a multicenter phase III trial. J. Clin. Endocrinol. Metab. 100, 1699–1708 (2015).

    CAS 
    Article 

    Google Scholar 

  • 21.

    Abramson, A. et al. An ingestible self-orienting system for oral delivery of macromolecules. Science 363, 611–615 (2019).

    CAS 
    Article 

    Google Scholar 

  • 22.

    Abramson, A. et al. A luminal unfolding microneedle injector for oral delivery of macromolecules. Nat. Med. 25, 1512–1518 (2019).

    CAS 
    Article 

    Google Scholar 

  • 23.

    Hashim, M. et al. Jejunal wall delivery of insulin via an ingestible capsule in anesthetized swine—a pharmacokinetic and pharmacodynamic study. Pharmacol. Res. Perspect. 7, e00522 (2019).

    CAS 
    Article 

    Google Scholar 

  • 24.

    Dhalla, A. K. et al. A robotic pill for oral delivery of biotherapeutics: safety, tolerability, and performance in healthy subjects. Drug Deliv. Transl. Res. https://doi.org/10.1007/s13346-021-00938-1 (2021).

  • 25.

    Banerjee, A. et al. Ionic liquids for oral insulin delivery. Proc. Natl Acad. Sci. USA 115, 7296–7301 (2018).

    CAS 
    Article 

    Google Scholar 

  • 26.

    Angsantikul, P. et al. Ionic liquids and deep eutectic solvents for enhanced delivery of antibodies in the gastrointestinal tract. Adv. Funct. Mater. https://doi.org/10.1002/adfm.202002912 (2020).

  • 27.

    Mathiowitz, E. et al. Biologically erodable microspheres as potential oral drug delivery systems. Nature 386, 410–414 (1997).

    CAS 
    Article 

    Google Scholar 

  • 28.

    Lamson, N. G., Berger, A., Fein, K. C. & Whitehead, K. A. Anionic nanoparticles enable the oral delivery of proteins by enhancing intestinal permeability. Nat. Biomed. Eng. 4, 84–96 (2020).

    CAS 
    Article 

    Google Scholar 

  • 29.

    Bolondi, L. et al. Measurement of gastric emptying time by real-time ultrasonography. Gastroenterology 89, 752–759 (1985).

    CAS 
    Article 

    Google Scholar 

  • 30.

    Derrickson, B. H. & Tortora, G. J. Principles of Anatomy and Physiology (Wiley, 2008).

  • 31.

    Várkonyi, P. L. & Domokos, G. Mono-monostatic bodies: the answer to Arnold’s question. Math. Intell. 28, 34–38 (2006).

    Article 

    Google Scholar 

  • 32.

    Butterworth, J. R., Wright, K., Boulton, R. A., Pathmakanthan, S. & Goh, J. Management of swallowed razor blades— retrieve or wait and see? Gut 53, 475–477 (2004).

    Article 

    Google Scholar 

  • 33.

    Velitchkov, N. G., Grigorov, G. I., Losanoff, J. E. & Kjossev, K. T. Ingested foreign bodies of the gastrointestinal tract: retrospective analysis of 542 cases. World J. Surg. 20, 1001–1005 (1996).

    CAS 
    Article 

    Google Scholar 

  • 34.

    Traverso, G. et al. Microneedles for drug delivery via the gastrointestinal tract. J. Pharm. Sci. 104, 362–367 (2015).

    CAS 
    Article 

    Google Scholar 

  • 35.

    Webb, W. A. Management of foreign bodies of the upper gastrointestinal tract: update. Gastrointest. Endosc. 41, 39–51 (1995).

    CAS 
    Article 

    Google Scholar 

  • 36.

    Bass, D. M., Prevo, M. & Waxman, D. S. Gastrointestinal safety of an extended-release, nondeformable, oral dosage form (OROS): a retrospective study. Drug Saf. 25, 1021–1033 (2002).

    CAS 
    Article 

    Google Scholar 

  • 37.

    Ben-Menachem, T. et al. Adverse events of upper GI endoscopy. Gastrointest. Endosc. 76, 707–718 (2012).

    Article 

    Google Scholar 

  • 38.

    Ginsberg, G. G. Management of ingested foreign objects and food bolus impactions. Gastrointest. Endosc. 41, 33–38 (1995).

    CAS 
    Article 

    Google Scholar 

  • 39.

    Coffman, C. et al. Particles comprising a therapeutic or diagnostic agent and suspensions and methods of use thereof. US Patent Application 20190374470A1 (2019).

  • 40.

    Savjani, K. T., Gajjar, A. K. & Savjani, J. K. Drug solubility: importance and enhancement techniques. ISRN Pharm. 2012, 1–10 (2012).

    Google Scholar 

  • Source link