Preloader

Optimization of loading protocols for tissue engineering experiments

  • Haas, N. P. Callus modulation—Fiction or reality?. Chirurg 71, 987–988. https://doi.org/10.1007/s001040051171 (2000).

    CAS 
    PubMed 
    Article 

    Google Scholar 

  • Delaine-Smith, R. M. & Reilly, G. C. Mesenchymal stem cell responses to mechanical st`imuli. Muscles Ligaments Tendons J. 2, 169–180 (2012).

    PubMed 
    PubMed Central 

    Google Scholar 

  • Fahy, N., Alini, M. & Stoddart, M. J. Mechanical stimulation of mesenchymal stem cells: Implications for cartilage tissue engineering. J. Orthop. Res. 36, 52–63. https://doi.org/10.1002/jor.23670 (2018).

    PubMed 
    Article 

    Google Scholar 

  • Luo, Z. J. & Seedhom, B. B. Light and low-frequency pulsatile hydrostatic pressure enhances extracellular matrix formation by bone marrow mesenchymal cells: An in-vitro study with special reference to cartilage repair. Proc. Inst. Mech. Eng. H 221, 499–507. https://doi.org/10.1243/09544119JEIM199 (2007).

    CAS 
    PubMed 
    Article 

    Google Scholar 

  • Steadman, J. R., Rodkey, W. G. & Rodrigo, J. J. Microfracture: Surgical technique and rehabilitation to treat chondral defects. Clin. Orthop. Relat. Res. https://doi.org/10.1097/00003086-200110001-00033 (2001).

    PubMed 
    Article 

    Google Scholar 

  • Buckwalter, J. A. & Mankin, H. J. Articular cartilage repair and transplantation. Arthritis Rheum. 41, 1331–1342. https://doi.org/10.1002/1529-0131(199808)41:8%3c1331::AID-ART2%3e3.0.CO;2-J (1998).

    CAS 
    PubMed 
    Article 

    Google Scholar 

  • Hunziker, E. B. Articular cartilage repair: Basic science and clinical progress. A review of the current status and prospects. Osteoarthritis Cartil. 10, 432–463. https://doi.org/10.1053/joca.2002.0801 (2002).

    CAS 
    Article 

    Google Scholar 

  • Erggelet, C. & Vavken, P. Microfracture for the treatment of cartilage defects in the knee joint—A golden standard?. J. Clin. Orthop. Trauma 7, 145–152. https://doi.org/10.1016/j.jcot.2016.06.015 (2016).

    PubMed 
    PubMed Central 
    Article 

    Google Scholar 

  • Johnstone, B., Hering, T. M., Caplan, A. I., Goldberg, V. M. & Yoo, J. U. In vitro chondrogenesis of bone marrow-derived mesenchymal progenitor cells. Exp. Cell Res. 238, 265–272. https://doi.org/10.1006/excr.1997.3858 (1998).

    CAS 
    PubMed 
    Article 

    Google Scholar 

  • Barry, F., Boynton, R. E., Liu, B. & Murphy, J. M. Chondrogenic differentiation of mesenchymal stem cells from bone marrow: Differentiation-dependent gene expression of matrix components. Exp. Cell Res. 268, 189–200. https://doi.org/10.1006/excr.2001.5278 (2001).

    CAS 
    PubMed 
    Article 

    Google Scholar 

  • Li, Z., Kupcsik, L., Yao, S. J., Alini, M. & Stoddart, M. J. Mechanical load modulates chondrogenesis of human mesenchymal stem cells through the TGF-beta pathway. J. Cell Mol. Med. 14, 1338–1346. https://doi.org/10.1111/j.1582-4934.2009.00780.x (2010).

    CAS 
    PubMed 
    Article 

    Google Scholar 

  • Behrendt, P. et al. Articular joint-simulating mechanical load activates endogenous TGF-beta in a highly cellularized bioadhesive hydrogel for cartilage repair. Am. J. Sports Med. 48, 210–221. https://doi.org/10.1177/0363546519887909 (2020).

    PubMed 
    Article 

    Google Scholar 

  • Sumanasinghe, R. D., Bernacki, S. H. & Loboa, E. G. Osteogenic differentiation of human mesenchymal stem cells in collagen matrices: Effect of uniaxial cyclic tensile strain on bone morphogenetic protein (BMP-2) mRNA expression. Tissue Eng. 12, 3459–3465. https://doi.org/10.1089/ten.2006.12.3459 (2006).

    CAS 
    PubMed 
    Article 

    Google Scholar 

  • Jaiswal, N., Haynesworth, S. E., Caplan, A. I. & Bruder, S. P. Osteogenic differentiation of purified, culture-expanded human mesenchymal stem cells in vitro. J. Cell Biochem. 64, 295–312 (1997).

    CAS 
    PubMed 
    Article 

    Google Scholar 

  • Halvorsen, Y. D. et al. Extracellular matrix mineralization and osteoblast gene expression by human adipose tissue-derived stromal cells. Tissue Eng. 7, 729–741. https://doi.org/10.1089/107632701753337681 (2001).

    CAS 
    PubMed 
    Article 

    Google Scholar 

  • Hofseth, L. J. et al. Nitric oxide-induced cellular stress and p53 activation in chronic inflammation. Proc. Natl. Acad. Sci. USA 100, 143–148. https://doi.org/10.1073/pnas.0237083100 (2003).

    ADS 
    CAS 
    PubMed 
    Article 

    Google Scholar 

  • Forstermann, U., Xia, N. & Li, H. Roles of vascular oxidative stress and nitric oxide in the pathogenesis of atherosclerosis. Circ. Res. 120, 713–735. https://doi.org/10.1161/CIRCRESAHA.116.309326 (2017).

    CAS 
    PubMed 
    Article 

    Google Scholar 

  • Fox, S. W., Chambers, T. J. & Chow, J. W. Nitric oxide is an early mediator of the increase in bone formation by mechanical stimulation. Am. J. Physiol. 270, E955-960. https://doi.org/10.1152/ajpendo.1996.270.6.E955 (1996).

    CAS 
    PubMed 
    Article 

    Google Scholar 

  • Montgomery, D. C. Design and Analysis of Experiments 8th edn. (Wiley, 2013).

    Google Scholar 

  • Oehlert, G. W. A First Course in Design and Analysis of Experiments. 2010. http://users.stat.umn.edu/~gary/book/fcdae.pdf. Accessed 10 August 2020.

  • Gardner, O. F., Alini, M. & Stoddart, M. J. Mesenchymal stem cells derived from human bone marrow. Methods Mol. Biol. (Clifton, N.J.) 1340, 41–52. https://doi.org/10.1007/978-1-4939-2938-2_3 (2015).

    CAS 
    Article 

    Google Scholar 

  • Li, Z., Kupcsik, L., Yao, S. J., Alini, M. & Stoddart, M. J. Chondrogenesis of human bone marrow mesenchymal stem cells in fibrin-polyurethane composites. Tissue Eng. Part A 15, 1729–1737. https://doi.org/10.1089/ten.tea.2008.0247 (2009).

    CAS 
    PubMed 
    Article 

    Google Scholar 

  • Gardner, O. F. W. et al. Asymmetrical seeding of MSCs into fibrin-poly(ester-urethane) scaffolds and its effect on mechanically induced chondrogenesis. J. Tissue Eng. Regen. Med. 11, 2912–2921. https://doi.org/10.1002/term.2194 (2017).

    CAS 
    PubMed 
    Article 

    Google Scholar 

  • Wimmer, M. A. et al. Tribology approach to the engineering and study of articular cartilage. Tissue Eng. 10, 1436–1445. https://doi.org/10.1089/ten.2004.10.1436 (2004).

    CAS 
    PubMed 
    Article 

    Google Scholar 

  • Gardner, O. F. W., Fahy, N., Alini, M. & Stoddart, M. J. Joint mimicking mechanical load activates TGFbeta1 in fibrin-poly(ester-urethane) scaffolds seeded with mesenchymal stem cells. J. Tissue Eng. Regen. Med. 11, 2663–2666. https://doi.org/10.1002/term.2210 (2017).

    CAS 
    PubMed 
    Article 

    Google Scholar 

  • Schatti, O. et al. A combination of shear and dynamic compression leads to mechanically induced chondrogenesis of human mesenchymal stem cells. Eur. Cell Mater. 22, 214–225 (2011).

    CAS 
    PubMed 
    Article 

    Google Scholar 

  • Farndale, R. W., Buttle, D. J. & Barrett, A. J. Improved quantitation and discrimination of sulphated glycosaminoglycans by use of dimethylmethylene blue. Biochim. Biophys. Acta 883, 173–177. https://doi.org/10.1016/0304-4165(86)90306-5 (1986).

    CAS 
    PubMed 
    Article 

    Google Scholar 

  • R: A Language and Environment for Statistical Computing (2020).

  • RStudio: Integrated Development for R. RStudio (RStudio, PBC, 2020).

  • Li, Z., Yao, S. J., Alini, M. & Stoddart, M. J. Chondrogenesis of human bone marrow mesenchymal stem cells in fibrin-polyurethane composites is modulated by frequency and amplitude of dynamic compression and shear stress. Tissue Eng. Part A 16, 575–584. https://doi.org/10.1089/ten.TEA.2009.0262 (2010).

    CAS 
    PubMed 
    Article 

    Google Scholar 

  • Field, A. P., Miles, J. & Field, Z. Discovering Statistics Using R (Sage, 2012).

    Google Scholar 

  • Rosenthal, R. Meta-Analytic Procedures for Social Research Rev. (Sage Publications, 1991).

    Book 

    Google Scholar 

  • Steward, A. J. & Kelly, D. J. Mechanical regulation of mesenchymal stem cell differentiation. J. Anat. 227, 717–731. https://doi.org/10.1111/joa.12243 (2015).

    PubMed 
    Article 

    Google Scholar 

  • Ahamed, J. et al. In vitro and in vivo evidence for shear-induced activation of latent transforming growth factor-beta1. Blood 112, 3650–3660. https://doi.org/10.1182/blood-2008-04-151753 (2008).

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 

  • Albro, M. B. et al. Shearing of synovial fluid activates latent TGF-beta. Osteoarthritis Cartil. 20, 1374–1382. https://doi.org/10.1016/j.joca.2012.07.006 (2012).

    CAS 
    Article 

    Google Scholar 

  • Ohno, M., Cooke, J. P., Dzau, V. J. & Gibbons, G. H. Fluid shear stress induces endothelial transforming growth factor beta-1 transcription and production. Modulation by potassium channel blockade. J. Clin. Invest. 95, 1363–1369. https://doi.org/10.1172/JCI117787 (1995).

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 

  • Wipff, P. J., Rifkin, D. B., Meister, J. J. & Hinz, B. Myofibroblast contraction activates latent TGF-beta1 from the extracellular matrix. J. Cell Biol. 179, 1311–1323. https://doi.org/10.1083/jcb.200704042 (2007).

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 

  • Tanaka, S. M. et al. Osteoblast responses one hour after load-induced fluid flow in a three-dimensional porous matrix. Calcif. Tissue Int. 76, 261–271. https://doi.org/10.1007/s00223-004-0238-2 (2005).

    CAS 
    PubMed 
    Article 

    Google Scholar 

  • Zahedmanesh, H. et al. Deciphering mechanical regulation of chondrogenesis in fibrin-polyurethane composite scaffolds enriched with human mesenchymal stem cells: A dual computational and experimental approach. Tissue Eng. Part A 20, 1197–1212. https://doi.org/10.1089/ten.TEA.2013.0145 (2014).

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 

  • Sato, M. et al. Mechanical tension-stress induces expression of bone morphogenetic protein (BMP)-2 and BMP-4, but not BMP-6, BMP-7, and GDF-5 mRNA, during distraction osteogenesis. J. Bone Miner. Res. 14, 1084–1095. https://doi.org/10.1359/jbmr.1999.14.7.1084 (1999).

    CAS 
    PubMed 
    Article 

    Google Scholar 

  • Kopf, J., Petersen, A., Duda, G. N. & Knaus, P. BMP2 and mechanical loading cooperatively regulate immediate early signalling events in the BMP pathway. BMC Biol. https://doi.org/10.1186/1741-7007-10-37 (2012).

    PubMed 
    PubMed Central 
    Article 

    Google Scholar 

  • D’Angelo, M. et al. MMP-13 is induced during chondrocyte hypertrophy. J. Cell Biochem. 77, 678–693 (2000).

    CAS 
    PubMed 
    Article 

    Google Scholar 

  • Tsuji, K. et al. BMP2 activity, although dispensable for bone formation, is required for the initiation of fracture healing. Nat. Genet. 38, 1424–1429. https://doi.org/10.1038/ng1916 (2006).

    CAS 
    PubMed 
    Article 

    Google Scholar 

  • Ghosh-Choudhury, N. et al. Autoregulation of mouse BMP-2 gene transcription is directed by the proximal promoter element. Biochem. Biophys. Res. Commun. 286, 101–108. https://doi.org/10.1006/bbrc.2001.5351 (2001).

    CAS 
    PubMed 
    Article 

    Google Scholar 

  • Nasrabadi, D., Rezaeiani, S., Eslaminejad, M. B. & Shabani, A. Improved protocol for chondrogenic differentiation of bone marrow derived mesenchymal stem cells-effect of PTHrP and FGF-2 on TGFbeta1/BMP2-induced chondrocytes hypertrophy. Stem Cell Rev. Rep. 14, 755–766. https://doi.org/10.1007/s12015-018-9816-y (2018).

    CAS 
    PubMed 
    Article 

    Google Scholar 

  • Li, Z., Kupcsik, L., Alini, M., Yao, S. J. & Stoddart, M. Mechanical load modulates chondrogenesis of human mesenchymal stem cells through the TGF-beta pathway. J. Cell Mol. Med. 14, 1338–1346 (2010).

    CAS 
    PubMed 
    Article 

    Google Scholar 

  • Kupcsik, L., Stoddart, M. J., Li, Z., Benneker, L. M. & Alini, M. Improving chondrogenesis: Potential and limitations of SOX9 gene transfer and mechanical stimulation for cartilage tissue engineering. Tissue Eng. Part A 16, 1845–1855. https://doi.org/10.1089/ten.TEA.2009.0531 (2010).

    CAS 
    PubMed 
    Article 

    Google Scholar 

  • Gardner, O. F., Fahy, N., Alini, M. & Stoddart, M. J. Differences in human mesenchymal stem cell secretomes during chondrogenic induction. Eur. Cell Mater. 31, 221–235 (2016).

    CAS 
    PubMed 
    Article 

    Google Scholar 

  • Stoddart, M. J., Richards, R. G. & Alini, M. In vitro experiments with primary mammalian cells: To pool or not to pool?. Eur. Cell Mater. 24, i–ii (2012).

    CAS 
    PubMed 
    Article 

    Google Scholar 

  • Schad, D. J., Vasishth, S., Hohenstein, S. & Kliegl, R. How to capitalize on a priori contrasts in linear (mixed) models: A tutorial. J. Memory Lang. https://doi.org/10.1016/j.jml.2019.104038 (2020).

    Article 

    Google Scholar 

  • Source link