Butler JE. Enzyme-linked immunosorbent assay. J Immunoass. 2000;21:165–209.
Google Scholar
Buchwalow IB, Minin EA, Boecker W. A multicolor fluorescence immunostaining technique for simultaneous antigen targeting. Acta Histochemica. 2005;107:143–8.
Google Scholar
Kubista M, Andrade JM, Bengtsson M, Forootan A, Jonák J, Lind K, et al. The real-time polymerase chain reaction. Mol Asp Med. 2006;27:95–125.
Google Scholar
Min T. FISH Techniques. Methods Mol Biol. 2003;220:193–212.
Google Scholar
Chi X, Gatti P, Papoian T. Safety of antisense oligonucleotide and siRNA-based therapeutics. Drug Disco Today. 2017;22:823–33.
Google Scholar
Seeman NC, Sleiman HF. DNA nanotechnology. Nat Rev Mater. 2018;3:17068.
Google Scholar
Kuzuya A, Ohya Y. DNA nanostructures as scaffolds for metal nanoparticles. Polym J. 2012;44:452–60.
Google Scholar
Madsen M, Gothelf KV. Chemistries for DNA nanotechnology. Chem Rev. 2019;119:6384–458.
Google Scholar
Yuan Y, Gu Z, Yao C, Luo D, Yang D. Nucleic acid–based functional nanomaterials as advanced cancer therapeutics. Small. 2019;15:1900172.
Tan X, Jiab F, Wang P, Zhang K. Nucleic acid-based drug delivery strategies. J Control Release. 2020;323:240–52.
Google Scholar
Stephanopoulos N. Hybrid nanostructures from the self-assembly of proteins and DNA. Chem. 2020;6:364–405.
Google Scholar
Hamada S, Luo D. Enzyme-based fabrication of physical DNA hydrogels: new materials and applications. Polym J. 2020;52:891–8.
Google Scholar
Zhou W, Saran R, Liu J. Metal Sensing by DNA. Chem Rev. 2017;117:8272–325.
Google Scholar
Peng H, Newbigging AM, Wang Z, Tao J, Deng W, Le XC, et al. DNAzyme-mediated assays for amplified detection of nucleic acids and proteins. Anal Chem. 2018;90:190–207.
Google Scholar
Samanta D, Ebrahimi SB, Mirkin CA. Nucleic-acid structures as intracellular probes for live cells. Adv Mater. 2020;32:1901743.
Google Scholar
Tyagi S, Kramer FR. Molecular beacons: probes that fluoresce upon hybridization. Nat Biotechnol. 1996;14:303–8.
Google Scholar
Pisa MD, Seitz O. Nucleic acid templated reactions for chemical biology. ChemMedChem. 2017;12:872–82.
Google Scholar
Tomoike F, Abe H. RNA imaging by chemical probes. Adv Drug Deliv Rev. 2019;147:44–58.
Google Scholar
Santangelo P, Nitin N, Bao G. Nanostructured probes for RNA detection in living cells. Ann Biomed Eng. 2006;34:39–50.
Google Scholar
Zhao D, Yang Y, Qu N, Chen M, Ma Z, Krueger CJ, et al. Single-molecule detection and tracking of RNA transcripts in living cells using phosphorothioate-optimized 2’-O-methyl RNA molecular beacons. Biomaterials. 2016;100:172–83.
Google Scholar
Bohländer PR, Abba ML, Bestvater F, Allgayer H, Wagenknecht HA. Two wavelength-shifting molecular beacons for simultaneous and selective imaging of vesicular miRNA-21 and miRNA-31 in living cancer cells. Org Biomol Chem. 2016;14:5001–6.
Google Scholar
Park YK, Jung WY, Park MG, Song SK, Lee YS, Heo H, et al. Bioimaging of multiple piRNAs in a single breast cancer cell using molecular beacons. Med Chem Commun. 2017;8:2228–32.
Google Scholar
Maksimenko A, Ishchenko AA, Sanz G, Laval J, Elder RH, Saparbaev MK. A molecular beacon assay for measuring base excision repair activities. Biochem Biophys Res Commun. 2004;319:240–6.
Google Scholar
Matsumoto N, Toga T, Hayashi R, Sugasawa K, Katayanagi K, Ide H, et al. Fluorescent probes for the analysis of DNA strand scission in base excision repair. Nucl Acids Res. 2010;8:e101.
Toga T, Kuraoka I, Yasui A, Iwai S. A transfection reporter for the prevention of false-negative results in molecular beacon experiments. Anal Biochem. 2013;440:9–11.
Google Scholar
Mirbahai L, Kershaw RM, Green RM, Hayden RE, Meldrum RA, Hodges NJ. Use of a molecular beacon to track the activity of base excision repair protein OGG1 in live cells. DNA Repair. 2010;9:144–52.
Google Scholar
Wang L, Yang CJ, Medley CD, Benner SA, Tan W. Locked nucleic acid molecular beacons. J Am Chem Soc. 2005;127:15664–5.
Google Scholar
Vilaivan T. Fluorogenic PNA probes. Beilstein J Org Chem. 2018;14:253–81.
Google Scholar
Murayama K, Kamiya Y, Kashida H, Asanuma H. Ultrasensitive molecular beacon designed with totally serinol nucleic acid (SNA) for monitoring mRNA in cells. ChemBioChem. 2015;16:1298–301.
Google Scholar
Asanuma H, Murayama K, Kamiya Y, Kashida H. Design of photofunctional oligonucleotides by copolymerization of natural nucleobases with base surrogates prepared from acyclic scaffolds. Polym J. 2017;49:279–89.
Google Scholar
Kashida H, Takatsu T, Fujii T, Sekiguchi K, Liang X, Niwa K, et al. In-stem molecular beacon containing a pseudo base pair of threoninol nucleotides for the removal of background emission. Angew Chem Int Ed. 2009;48:7044–7.
Google Scholar
Berndl S, Wagenknecht HA. Fluorescent color readout of DNA hybridization with thiazole orange as an artificial DNA base. Angew Chem Int Ed. 2009;48:2418–21.
Google Scholar
Saito Y, Shinohara Y, Bag SS, Takeuchi Y, Matsumoto K, Saito I. Ends free and self-quenched molecular beacon with pyrene labeled pyrrolocytidine in the middle of the stem. Tetrahedron. 2009;65:934–9.
Google Scholar
Häner R, Biner SM, Langenegger SM, Meng T, Malinovskii VL. A highly sensitive, excimer-controlled molecular beacon. Angew Chem Int Ed. 2010;49:1227–30.
Berndl S, Dimitrov SD, Menacher F, Fiebig T, Wagenknecht HA. Thiazole orange dimers in DNA: fluorescent base substitutions with hybridization readout. Chem Eur J. 2016;22:2386–95.
Google Scholar
Miyoshi Y, Ohtsuki T, Kashida H, Asanuma H, Watanabe K. In-stem molecular beacon targeted to a 5’-region of tRNA inclusive of the D arm that detects mature tRNA with high sensitivity. PLoS ONE. 2019;14:e0211505.
Google Scholar
Pan W, Yang H, Li N, Yang L, Tang B. Simultaneous visualization of multiple mRNAs and matrix metalloproteinases in living cells using a fluorescence nanoprobe. Chem Eur J. 2015;21:6070–3.
Google Scholar
Ishiguro T, Saitoh J, Yawata H, Otsuka M, Inoue T, Sugiura Y. Fluorescence detection of specific sequence of nucleic acids by oxazole yellow-linked oligonucleotides. Homogeneous quantitative monitoring of in vitro transcription. Nucl Acids Res. 1996;24:4992–7.
Google Scholar
Hövelmann F, Gaspar I, Ephrussi A, Seitz O. Brightness enhanced DNA FIT-probes for wash-free RNA imaging in tissue. J Am Chem Soc. 2013;135:19025–32.
Google Scholar
Svanvik N, Westman G, Wang D, Kubista M. Light-up probes: thiazole orange-conjugated peptide nucleic acid for detection of target nucleic acid in homogeneous solution. Anal Biochem. 2000;281:26–35.
Google Scholar
Köhler O, Seitz O. Thiazole orange as fluorescent universal base in peptide nucleic acids. Chem Commun. 2003:2938–9.
Köhler O, Jarikote DV, Seitz O. Forced intercalation probes (FIT Probes): thiazole orange as a fluorescent base in peptide nucleic acids for homogeneous single-nucleotide-polymorphism detection. ChemBioChem. 2005;6:69–77.
Google Scholar
Socher E, Jarikote DV, Knoll A, Röglin L, Burmeister J, Seitz O. FIT probes: peptide nucleic acid probes with a fluorescent base surrogate enable real-time DNA quantification and single nucleotide polymorphism discovery. Anal Biochem. 2008;375:318–30.
Google Scholar
Bethge L, Singh I, Seitz O. Designed thiazole orange nucleotides for the synthesis of single labelled oligonucleotides that fluoresce upon matched hybridization. Org Biomol Chem. 2010;8:2439–48.
Google Scholar
Knoll A, Kankowski S, Schöllkopf S, Meier JC, Seitz O. Chemo-biological mRNA imaging with single nucleotide specificity. Chem Commun. 2019;55:14817–20.
Google Scholar
Tepper O, Zheng H, Appella DH, Yavin E. Cyclopentane FIT-PNAs: bright RNA sensors. Chem Commun. 2021;57:540–3.
Google Scholar
Sato T, Sato Y, Nishizawa S. Triplex-forming peptide nucleic acid probe having thiazole orange as a base surrogate for fluorescence sensing of double-stranded RNA. J Am Chem Soc. 2016;138:9397–400.
Google Scholar
Sato T, Sato Y, Nishizawa S. Optimization of the alkyl linker of TO base surrogate in triplex-forming PNA for enhanced binding to double-stranded RNA. Chem Eur J. 2017;23:4079–88.
Google Scholar
Tanabe T, Sato T, Sato Y, Nishizawa S. Design of a fluorogenic PNA probe capable of simultaneous recognition of 3’-overhang and double-stranded sequences of small interfering RNAs. RSC Adv. 2018;8:42095–9.
Google Scholar
Ikeda S, Okamoto A. Hybridization-Sensitive On–off DNA probe: application of the exciton coupling effect to effective fluorescence quenching. Chem Asian J. 2008;3:958–68.
Google Scholar
Ikeda S, Kubota T, Kino K, Okamoto A. Sequence dependence of fluorescence emission and quenching of doubly thiazole orange labeled DNA: effective design of a hybridization-sensitive probe. Bioconjugate Chem. 2008;19:1719–25.
Google Scholar
Kubota T, Ikeda S, Yanagisawa H, Yuki M, Okamoto A. Hybridization-sensitive fluorescent probe for long-term monitoring of intracellular RNA. Bioconjugate Chem. 2009;20:1256–61.
Google Scholar
Ikeda S, Kubota T, Yuki M, Okamoto A. Exciton-controlled hybridization-sensitive fluorescent probes: multicolor detection of nucleic acids. Angew Chem Int Ed. 2009;48:6480–4.
Google Scholar
Kubota T, Ikeda S, Okamoto A. Doubly thiazole orange-labeled DNA for live cell RNA imaging. Bull Chem Soc Jpn. 2009;82:110–7.
Google Scholar
Okamoto A. ECHO probes: a concept of fluorescence control for practical nucleic acid sensing. Chem Soc Rev. 2011;40:5815–28.
Google Scholar
Ikeda S, Yanagisawa H, Nakamura A, Wang DO, Yukia M, Okamoto A. Hybridization-sensitive fluorescence control in the near-infrared wavelength range. Org Biomol Chem. 2011;9:4199–204.
Google Scholar
Oomoto I, Suzuki-Hirano A, Umeshima H, Han YW, Yanagisawa H, Carlton P, et al. ECHO-liveFISH: in vivo RNA labeling reveals dynamic regulation of nuclear RNA foci in living tissues. Nucl Acids Res. 2015;43:e126.
Google Scholar
Chen J, Morihiro K, Fukui D, Guo L, Okamoto A. Live-cell sensing of telomerase activity by using hybridization-sensitive fluorescent oligonucleotide probes. ChemBioChem. 2020;21:1022–7.
Google Scholar
Hrdlicka PJ, Babu BR, Sørensen MD, Harrit N, Wengel J. Multilabeled pyrene-functionalized 2’-amino-LNA probes for nucleic acid detection in homogeneous fluorescence assays. J Am Chem Soc. 2005;127:13293–9.
Google Scholar
Asanuma H, Akahane M, Kondo N, Osawa T, Kato T, Kashida H. Quencher-free linear probe with multiple fluorophores on an acyclic scaffold. Chem Sci. 2012;3:3165–9.
Google Scholar
Ro JJ, Lee HJ, Kim BH. PyA-cluster system for the detection and imaging of miRNAs in living cells through double-three-way junction formation. Chem Commun. 2018;54:7471–4.
Google Scholar
Paige JS, Wu KY, Jaffrey SR. RNA mimics of green fluorescent protein. Science. 2011;333:642–6.
Google Scholar
Paige JS, Nguyen-Duc T, Song W, Jaffrey SR. Fluorescence imaging of cellular metabolites with RNA. Science. 2012;335:1194.
Google Scholar
Strack RL, Song W, Jaffrey SR. Using Spinach-based sensors for fluorescence imaging of intracellular metabolites and proteins in living bacteria. Nat Protoc. 2014;9:146–55.
Google Scholar
Song W, Strack RL, Jaffrey SR. Imaging bacterial protein expression using genetically encoded RNA sensors. Nat Methods. 2013;10:873–5.
Google Scholar
Kolpashchikov DM, Spelkov AA. Binary (split) light-up aptameric sensors. Angew Chem Int Ed. 2021;60:4988–99.
Google Scholar
Babendure JR, Adams SR, Tsien RY. Aptamers switch on fluorescence of triphenylmethane dyes. J Am Chem Soc. 2003;125:14716–17.
Google Scholar
Sando S, Narita A, Hayami M, Aoyama Y. Transcription monitoring using fused RNA with a dye-binding light-up aptamer as a tag: a blue fluorescent RNA. Chem Commun. 2008:3858–60.
Strack RL, Disney MD, Jaffrey SR. A superfolding Spinach2 reveals the dynamic nature of trinucleotide repeat–containing RNA. Nat Methods. 2013;10:1219–24.
Google Scholar
Filonov GS, Moon JD, Svensen N, Jaffrey SR. Broccoli: rapid selection of an RNA mimic of green fluorescent protein by fluorescence-based selection and directed evolution. J Am Chem Soc. 2014;136:16299–308.
Google Scholar
Dolgosheina EV, Jeng SCY, Panchapakesan SSS, Cojocaru R, Chen PSK, Wilson PD, et al. RNA Mango aptamer-fluorophore: a bright, high-affinity complex for RNA labeling and tracking. ACS Chem Biol. 2014;9:2412–20.
Google Scholar
Warner KD, Chen MC, Song W, Strack RL, Thorn A, Jaffrey SR, et al. Structural basis for activity of highly efficient RNA mimics of green fluorescent protein. Nat Struct Mol Biol. 2014;21:658–63.
Google Scholar
Okuda M, Fourmy D, Yoshizawa S. Use of Baby Spinach and Broccoli for imaging of structured cellular RNAs. Nucl Acids Res. 2017;45:1404–15.
Google Scholar
Autour A, Jeng SCY, Cawte AD, Abdolahzadeh A, Galli A, Panchapakesan SSS. David Rueda, Ryckelynck M, Unrau PJ. Fluorogenic RNA Mango aptamers for imaging small non-coding RNAs in mammalian cells. Nat Commun. 2018;9:656.
Google Scholar
Warner KD, Sjekloća L, Song W, Filonov GS, Jaffrey SR, Ferré-D’Amaré AR. A homodimer interface without base pairs in an RNA mimic of red fluorescent protein. Nat Chem Biol. 2017;13:1195–201.
Google Scholar
Song W, Filonov GS, Kim H, Hirsch M, Li X, Moon JD, et al. Imaging RNA polymerase III transcription using a photostable RNA-fluorophore complex. Nat Chem Biol. 2017;13:1187–94.
Google Scholar
Yu Q, Shi J, Mudiyanselage APKKK, Wu R, Zhao B, Zhou M, et al. Genetically encoded RNA-based sensors for intracellular imaging of silver ions. Chem Commun. 2019;55:707–10.
Google Scholar
Gu Y, Huang LJ, Zhao W, Zhang TT, Cui MR, Yang XJ, et al. Living-cell microRNA imaging with self-assembling fragments of fluorescent protein-mimic RNA aptamer. ACS Sens. 2021;6:2339–47.
Google Scholar
Sando S, Narita A, Aoyama Y. Light-up Hoechst–DNA aptamer Pair: generation of an aptamer-selective fluorophore from a conventional DNA-staining dye. ChemBioChem. 2007;8:1795–803.
Google Scholar
Kato T, Shimada I, Kimura R, Hyuga M. Light-up fluorophore–DNA aptamer pair for label-free turn-on aptamer sensors. Chem Commun. 2016;52:4041–4.
Google Scholar
Wang H, Wang J, Sun N, Cheng H, Chen H, Pei R. Selection and characterization of malachite green aptamers for the development of light–up probes. ChemistrySelect. 2016;1:1571–4.
Google Scholar
Wang H, Wang J, Wang Q, Chen X, Liu M, Chen H, et al. Selection and characterization of dimethylindole red DNA aptamers for the development of light-up fluorescent probes. Talanta 2017;168:217–21.
Google Scholar
Connelly RP, Madalozzo PF, Mordeson JE, Pratt AD, Gerasimova YV. Promiscuous dye binding by a light-up aptamer: application for label-free multi-wavelength biosensing. Chem Commun. 2021;57:3672–5.
Google Scholar
Lin S, Gao W, Tian Z, Yang C, Lu L, Mergny JL, et al. Luminescence switch-on detection of protein tyrosine kinase-7 using a G-quadruplex-selective probe. Chem Sci. 2015;6:4284–90.
Google Scholar
Lin S, Lua L, Liu JB, Liu C, Kang TS, Yang C, et al. A G-quadruplex-selective luminescent iridium(III) complex and its application by long lifetime. Biochim Biophys Acta. 2017;1861:1448–54.
Google Scholar
Thoa TTT, Minagawa N, Aigaki T, Ito Y, Uzawa T. Regulation of photosensitization processes by an RNA aptamer. Sci Rep. 2017;7:43272.
Google Scholar
Min I, Uzawa T, Serizawa T, Ito Y. “One stroke drawing” of poly(ribonucleic acids) with different aptamer functions for sensing probes. Polym J. 2021;53:667–75.
Google Scholar
Jani MS, Zou J, Veetil AT, Krishnan Y. A DNA-based fluorescent probe maps NOS3 activity with subcellular spatial resolution. Nat Chem Biol. 2020;660:660–6.
Dirks RM, Pierce NA. Triggered amplification by hybridization chain reaction. PNAS 2004;101:15275–8.
Google Scholar
Choi HMT, Chang JY, Trinh LA, Padilla JE, Fraser SE, Pierce NA. Programmable in situ amplification for multiplexed imaging of mRNA expression. Nat Biotechnol. 2010;28:1208–12.
Google Scholar
Marrasa SAE, Bushkina Y, Tyagi S. High-fidelity amplified FISH for the detection and allelic discrimination of single mRNA molecules. PNAS. 2019;116:13921–6.
Cheglakov Z, Cronin TM, He C, Weizmann Y. Live cell microRNA imaging using cascade hybridization reaction. J Am Chem Soc. 2015;137:6116–9.
Google Scholar
Chen J, Yang HH, Yin W, Zhang Y, Ma Y, Chen D, et al. Metastable dumbbell probe-based hybridization chain reaction for sensitive and accurate imaging of intracellular-specific microRNAs in situ in living cells. Anal Chem. 2019;91:4625–31.
Google Scholar
Yin P, Choi HMT, Calvert CR, Pierce NA. Programming biomolecular self-assembly pathways. Nat. 2008;451:318–22.
Google Scholar
Li B, Ellington AD, Chen X. Rational, modular adaptation of enzyme-free DNA circuits to multiple detection methods. Nucl Acids Res. 2011;39:e110.
Google Scholar
Wu C, Zhang SCL, Teng IT, Qiu L, Li J, Liu Y, et al. A Nonenzymatic hairpin DNA cascade reaction provides high signal gain of mRNA imaging inside live cells. J Am Chem Soc. 2015;137:4900–3.
Google Scholar
Mudiyanselage APKKK, Yu Q, Leon-Duque MA, Zhao B, Wu R, You M. Genetically encoded catalytic hairpin assembly for sensitive RNA imaging in live cells. J Am Chem Soc. 2018;140:8739–45.
Wu H, Zhou WJ, Liu L, Fan Z, Tang H, Yu RQ, et al. In vivo mRNA imaging based on tripartite DNA probe mediated catalyzed hairpin assembly. Chem Commun. 2020;56:8782–5.
Google Scholar
Breaker RR, Joyce GF. A DNA enzyme that cleaves RNA. Chem Biol. 1994;1:223–9.
Google Scholar
Wu P, Hwang K, Lan T, Lu Y. A DNAzyme-gold nanoparticle probe for uranyl ion in living cells. J Am Chem Soc. 2013;135:5254–7.
Google Scholar
Young DD, Lively MO, Deiters A. Activation and deactivation of DNAzyme and antisense function with light for the photochemical regulation of gene expression in mammalian cells. J Am Chem Soc. 2010;132:6183–93.
Google Scholar
Zhou M, Liang X, Mochizuki T, Asanuma H. A light-driven DNA nanomachine for the efficient photoswitching of RNA digestion. Angew Chem Int Ed. 2010;49:2167–70.
Google Scholar
Hwang K, Wu P, Kim T, Lei L, Wang Y, Lu Y. Photocaged DNAzymes as a general method for sensing metal ions in living cells. Angew Chem Int Ed. 2014;53:13798–802.
Google Scholar
Yang C, Yin X, Huan SY, Chen L, Hu XX, Xiong MY, et al. Two-photon DNAzyme−gold nanoparticle probe for imaging intracellular metal ions. Anal Chem. 2018;90:3118–23.
Google Scholar
Watanabe Y, Fujimoto K. Complete Photochemical Regulation of 8–17 DNAzyme activity by using reversible DNA photo-crosslinking. ChemBioChem. 2020;21:3244–8.
Google Scholar
Liu J, Lu Y. Rational design of “Turn-On” allosteric DNAzyme catalytic beacons for aqueous mercury ions with ultrahigh sensitivity and selectivity. Angew Chem Int Ed. 2007;46:7587–90.
Google Scholar
Shimron S, Elbaz J, Henning A, Willner I. Ion-induced DNAzyme switches. Chem Commun. 2010;46:3250–2.
Google Scholar
Takezawa Y, Nakama T, Shionoya M. Enzymatic synthesis of Cu(II)-responsive deoxyribozymes through polymerase incorporation of artificial ligand-type nucleotides. J Am Chem Soc. 2019;141:19342–50.
Google Scholar
Takezawa Y, Hu L, Nakama T, Shionoya M. Sharp switching of DNAzyme activity through the formation of a CuII-mediated carboxyimidazole base pair. Angew Chem Int Ed. 2020;59:21488–92.
Google Scholar
Nakama T, Takezawa Y, Sasaki D, Shionoya M. Allosteric regulation of DNAzyme activities through intrastrand transformation induced by Cu(II)-mediated artificial base pairing. J Am Chem Soc. 2020;142:10153–62.
Google Scholar
Sando S, Narita A, Sasaki T, Aoyama Y. Locked TASC probes for homogeneous sensing of nucleic acids and imaging of fixed E. coli cells. Org Biomol Chem. 2005;3:1002–7.
Google Scholar
Kolpashchikov DM. A binary deoxyribozyme for nucleic acid analysis. ChemBioChem. 2007;8:2039–42.
Google Scholar
Mokany E, Bone SM, Young PE, Doan TB, Todd AV. MNAzymes, a versatile new class of nucleic acid enzymes that can function as biosensors and molecular switches. J Am Chem Soc. 2010;132:1051–9.
Google Scholar
Gerasimova YV, Cornett E, Kolpashchikov DM. RNA-cleaving deoxyribozyme sensor for nucleic acid analysis: the limit of detection. ChemBioChem. 2010;11:811–7.
Google Scholar
Hanpanich O, Oyanagi T, Shimada N, Maruyama A. Cationic copolymer-chaperoned DNAzyme sensor for microRNA detection. Biomaterials. 2019;225:119535.
Google Scholar
Hanpanich O, Maruyama A. Cationic comb-type copolymer as an artificial chaperone. Polym J. 2019;51:935–43.
Google Scholar
Peng H, Li XF, Zhang H, Le XC. A microRNA-initiated DNAzyme motor operating in living cells. Nat Comm. 2017;8:14378.
Wu Y, Huang J, Yang X, Yang Y, Quan K, Xie N, et al. Gold nanoparticle loaded split-DNAzyme probe for amplified miRNA detection in living cells. Anal Chem. 2017;89:8377–83.
Google Scholar
Bakshi SF, Guz N, Zakharchenko A, Deng H, Tumanov AV, Woodworth CD, et al. Magnetic field-activated sensing of mRNA in living cells. J Am Chem Soc. 2017;139:12117–20.
Google Scholar
Wei J, Wang H, Wu Q, Gong X, Ma K, Liu X, et al. A smart, autocatalytic, DNAzyme biocircuit for in vivo, Amplified, MicroRNA Imaging. Angew Chem Int Ed. 2020;59:5965–71.
Google Scholar
Wang H, Chen Y, Wang H, Liu X, Zhou X, Wang F. DNAzyme-Loaded Metal–Organic Frameworks (MOFs) for Self-Sufficient Gene Therapy. Angew Chem Int Ed. 2019;58:7380–4.
Google Scholar
Xiao L, Gu C, Xiang Y. Orthogonal activation of RNA-cleaving DNAzymes in live cells by reactive oxygen species. Angew Chem Int Ed. 2019;58:14167–72.
Google Scholar
Banno A, Higashi S, Shibata A, Ikeda M. A stimuli-responsive DNAzyme displaying Boolean logic-gate responses. Chem Commun. 2019;55:1959–62.
Wang Q, Tan K, Wang H, Shang J, Wan Y, Liu X, et al. Orthogonal demethylase-activated deoxyribozyme for intracellular imaging and gene regulation. J Am Chem Soc. 2021;143:6895–904.
Google Scholar
Ebrahimi SB, Samanta D, Mirkin CA. DNA-based nanostructures for live-cell analysis. J Am Chem Soc. 2020;142:11343–56.
Google Scholar
Wang DX, Wang J, Wang YX, Du YC, Huang Y, Tang AN, et al. DNA nanostructure-based nucleic acid probes: construction and biological applications. Chem Sci. 2021;12:7602–22.
Google Scholar
Fisher TL, Terhorst T, Cao X, Wagner RW. Intracellular disposition and metabolism of fluorescently-labled unmodified and modified oligouncleotides microijjected into mammalian cells. Nucleic Acids Res. 1993;21:3857–65.
Google Scholar
Dong Y, Siegwart DJ, Anderson DG. Strategies, design, and chemistry in siRNA delivery systems. Adv Drug Deliv Rev. 2019;144:133–47.
Google Scholar

