Preloader

Novel static magnetic field effects on green chemistry biosynthesis of silver nanoparticles in Saccharomyces cerevisiae

  • 1.

    Hamimed, S., Jebli, N., Sellami, H., Landoulsi, A. & Chatti, A. Dual valorization of olive mill wastewater by bio-nanosynthesis of magnesium oxide and Yarrowia lipolytica biomass production. Chem. Biodivers. 17, e1900608 (2020).

    CAS 
    PubMed 
    Article 

    Google Scholar 

  • 2.

    Patil, R. S., Kokate, M. R. & Kolekar, S. S. Bioinspired synthesis of highly stabilized silver nanoparticles using Ocimum tenuiflorum leaf extract and their antibacterial activity. Spectrochim. Acta A. 91, 234–238 (2012).

    ADS 
    CAS 
    Article 

    Google Scholar 

  • 3.

    Jain, S. & Mehata, M. S. Medicinal plant leaf extract and pure flavonoid mediated green synthesis of silver nanoparticles and their enhanced antibacterial property. Sci. Rep. 7, 15867 (2017).

    ADS 
    PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar 

  • 4.

    Garibo, D. et al. Green synthesis of silver nanoparticles using Lysiloma acapulcensis exhibit high-antimicrobial activity. Sci Rep 10, 12805 (2020).

    ADS 
    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 

  • 5.

    Hamimed, S., Landoulsi, A. & Chatti, A. The bright side of olive mill wastewater: Valuables bioproducts after bioremediation. Int. J. Environ. Sci. Technol. https://doi.org/10.1007/s13762-021-03145- (2021).

    Article 

    Google Scholar 

  • 6.

    Mandal, D., Bolander, M. E., Mukhopadhyay, D., Sarkar, G. & Mukherjee, P. The use of microorganisms for the formation of metal nanoparticles and their application. Appl. Microbiol. Biotechnol. 69, 485–492 (2006).

    CAS 
    PubMed 
    Article 

    Google Scholar 

  • 7.

    Ahmad, A. et al. Extracellular biosynthesis of silver nanoparticles using the fungus Fusarium oxysporum. Colloids Surf. B. 28, 313–318 (2003).

    CAS 
    Article 

    Google Scholar 

  • 8.

    Singh, J. et al. ‘Green’ synthesis of metals and their oxide nanoparticles: Applications for environmental remediation. J. Nanobiotechnol. 16, 1–24 (2018).

    Article 
    CAS 

    Google Scholar 

  • 9.

    Mehata, M. S. Enhancement of charge transfer and quenching of photoluminescence of capped CdS quantum dots. Sci. Rep. 5, 12056 (2015).

    ADS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 

  • 10.

    Burdușel, A.-C. et al. Biomedical applications of silver nanoparticles: An up-to-date overview. Nanomaterials 8(9), 681 (2018).

    PubMed Central 
    Article 
    CAS 

    Google Scholar 

  • 11.

    Nangare, S. N. & Patil, P. O. Green synthesis of silver nanoparticles: An eco-friendly approach. Nano Biomed. Eng. 12(4), 281–296 (2020).

    CAS 
    Article 

    Google Scholar 

  • 12.

    Kubota, K., Yoshimura, N., Yokota, M., Fitzsimmons, R. J. & Wikesjo, U. M. E. Overview of effects of electrical stimulation on osteogenesis and alveolar. Bone J. Periodontol. 66, 2–6 (1995).

    CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 

  • 13.

    Gartzke, J. & Lange, K. Cellular target of weak magnetic fields: Ionic conduction along actin filaments of microvilli. Am. J. Physiol. 2, 1333–1346 (2002).

    Article 

    Google Scholar 

  • 14.

    Righi, H. et al. Exposure of Deinococcus radiodurans to both static magnetic fields and gamma radiation: Observation of cell recuperation effects. J. Biol. Phys. 46, 309–324 (2020).

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 

  • 15.

    Ghodbane, S., Lahbib, A., Sakly, M. & Abdelmelek, H. Bioeffects of static magnetic fields: oxidative stress, genotoxic effects, and cancer studies. Biomed. Res. Int. 13, 602987 (2013).

    Google Scholar 

  • 16.

    Kula, B. & Drozdz, M. A study on magnetic field effects on fibroblast cultures. Part 2. The evaluation of the effects of static and extremely low frequency (ELF) magnetic fields on free-radical processes in fibroblast cultures. Bioelectrochem. Bioenerget. 39, 27–30 (1996).

    CAS 
    Article 

    Google Scholar 

  • 17.

    Kthiri, A. et al. Biochemical and biomolecular effects induced by a static magnetic field in Saccharomyces cerevisiae: Evidence for oxidative stress. PLoS ONE 14, e0209843 (2019).

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 

  • 18.

    Natarajan, K., Selvaraj, S. & Murty, V. R. Microbial production of silver nanoparticles. Dig. J. Nanomater. Biostruct. 5, 135–140 (2010).

    Google Scholar 

  • 19.

    Rezazadeh, N. H., Buazar, F. & Matroodi, S. Synergistic effects of combinatorial chitosan and polyphenol biomolecules on enhanced antibacterial activity of biofunctionalaized silver nanoparticles. Sci. Rep. 10, 19615 (2020).

    ADS 
    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 

  • 20.

    Birla, S. S., Gaikwad, S. C., Gade, A. K. & Rai, M. K. Rapid Synthesis of Silver Nanoparticles from Fusarium oxysporumby optimizing physicocultural conditions. Sci. World J. 13, 1–12 (2013).

    Article 
    CAS 

    Google Scholar 

  • 21.

    Ronavari, A. et al. Biological activity of green-synthesized silver nanoparticles depends on the applied natural extracts: A comprehensive study. Int. J. Nanomed. 12, 871–883 (2017).

    CAS 
    Article 

    Google Scholar 

  • 22.

    Niknejad, F., Nabili, M., Daie Ghazvini, R. & Moazeni, M. Green synthesis of silver nanoparticles: Advantages of the yeast Saccharomyces cerevisiae model. Curr. Med. Mycol. 1(3), 17–24 (2015).

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 

  • 23.

    Korbekandi, H., Mohseni, S., Mardani Jouneghani, R., Pourhossein, M. & Iravani, S. Biosynthesis of silver nanoparticles using Saccharomyces cerevisiae. Artif. Cells Nanomed. Biotechnol. 44(1), 235–239 (2014).

    PubMed 
    Article 
    CAS 
    PubMed Central 

    Google Scholar 

  • 24.

    Waghmare, S. R., Mulla, M. N., Marathe, S. R. & Sonawane, K. D. Ecofriendly production of silver nanoparticles using Candida utilis and its mechanistic action against pathogenic microorganisms. Biotech 5, 33–38 (2015).

    Google Scholar 

  • 25.

    Elamawi, R. M., Al-Harbi, R. E. & Hendi, A. A. Biosynthesis and characterization of silver nanoparticles using Trichoderma longibrachiatum and their effect on phytopathogenic fungi. Egypt J. Biol. Pest. Control 28, 28 (2018).

    Article 

    Google Scholar 

  • 26.

    Awwad, A. M., Salem, N. M. & Abdeen, A. O. Green synthesis of silver nanoparticles using carob leaf extract and its antibacterial activity. Int. J. Ind. Chem. 4, 29–35 (2013).

    Article 

    Google Scholar 

  • 27.

    Muraro, P. C. L. et al. Iron oxide nanocatalyst with titanium and silver nanoparticles: Synthesis, characterization and photocatalytic activity on the degradation of Rhodamine B dye. Sci. Rep. 10, 3055 (2020).

    ADS 
    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 

  • 28.

    Dhand, V. et al. Green synthesis of silver nanoparticles using Coffea arabica seed extract and its antibacterial activity. Mater Sci. Eng. C. Mater. Biol. Appl. 58, 36–43 (2016).

    CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 

  • 29.

    Ajitha, B. et al. Lantana camara leaf extract mediated silver nanoparticles: Antibacterial, green catalyst. J. Photochem. Photobiol. B 149, 84–92 (2015).

    CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 

  • 30.

    Hamouda, R. A., Hussein, M. H., Abo-Elmagd, R. A. & Bawazir, S. S. Synthesis and biological characterization of silver nanoparticles derived from the cyanobacterium Oscillatoria limnetica. Sci. Rep. 9(1), 13071 (2019).

    ADS 
    PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar 

  • 31.

    Vinayagam, R., Varadavenkatesan, T. & Selvaraj, R. Green synthesis, structural characterization, and catalytic activity of silver nanoparticles stabilized with Bridelia retusa leaf extract. Green Process. Synth. 7, 30–37 (2018).

    CAS 
    Article 

    Google Scholar 

  • 32.

    Yadav, P., Manjunath, H. & Selvaraj, R. Antibacterial and dye degradation potential of zero-valent silver nanoparticles synthesised using the leaf extract of Spondias dulcis. IET Nanobiotechnol. 13, 84–89 (2018).

    Article 

    Google Scholar 

  • 33.

    Sondi, I. & Sondi, B. S. Silver nanoparticles as antimicrobial agent: A case study on E. coli as a model for Gram-negative bacteria. J. Colloid. Interface. Sci. 275, 177–182 (2004).

    ADS 
    CAS 
    PubMed 
    Article 

    Google Scholar 

  • 34.

    Papo, N. & Shai, Y. A molecular mechanism for lipopolysaccharide protection of Gram-negative bacteria from antimicrobial peptides. J. Biol. Chem. 280, 10378–10387 (2005).

    CAS 
    PubMed 
    Article 

    Google Scholar 

  • 35.

    Yoon, K. Y., Byeon, J. H., Park, C. W. & Hwang, J. Antimicrobial effect of silver particles on bacterial contamination of activated carbon fibers. Environ. Sci. Technol. 42, 1251–1255 (2008).

    ADS 
    CAS 
    PubMed 
    Article 

    Google Scholar 

  • 36.

    Olivier, N. E., Oscar, N. D. Y., Alima, N. L. N., François, M. G. & Barthelemy, N. Antibacterial properties of the extracts of Allexis obanensis and Allexis batangae (Violaceae) collected at Kribi (South Cameroon). J. Phytol. 7, 275–284 (2018).

    Google Scholar 

  • 37.

    Rai, M., Yadav, A. & Gade, A. Silver nanoparticles as a new generation of antimicrobials. Biotech. Adv. 27, 76–83 (2009).

    CAS 
    Article 

    Google Scholar 

  • 38.

    Kim, J. S. et al. Antimicrobial effects of silver nanoparticles. Nanomedicine 3, 95–101 (2007).

    CAS 
    PubMed 
    Article 

    Google Scholar 

  • 39.

    Franci, G. et al. Silver nanoparticles as potential antibacterial agents. Molecules 20, 8856–8874 (2015).

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 

  • 40.

    Gopinath, V. et al. Biogenic synthesis, characterization of antibacterial silver nanoparticles and its cell cytotoxicity. Arab. J. Chem. 10, 1107–1117 (2017).

    CAS 
    Article 

    Google Scholar 

  • 41.

    Abbaszadegan, A. et al. The effect of charge at the surface of silver nanoparticles on antimicrobial activity against Gram-positive and Gram-negative bacteria: A preliminary study. J. Nanomater. 2015, 1–8 (2015).

    Article 
    CAS 

    Google Scholar 

  • 42.

    Cicek, S., Gungor, A. A., Adiguzel, A. & Nadaroglu, H. Biochemical evaluation and green synthesis of nano silver using peroxidase from Euphorbia (Euphorbia amygdaloides) and its antibacterial activity. J. Chem. 15, 1–7 (2015).

    Article 
    CAS 

    Google Scholar 

  • 43.

    Singh, H., Du, J., Singh, P. & Yi, T. H. Ecofriendly synthesis of silver and gold nanoparticles by Euphrasia officinalis leaf extract and its biomedical applications. Artif. Cells Nanomed. Biotechnol. 46, 1163–1170 (2018).

    CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 

  • 44.

    Makarov, V. V. et al. Green nanotechnologies: synthesis of metal nanoparticles using plants. Acta Nat. 6, 35–44 (2014).

    CAS 
    Article 

    Google Scholar 

  • 45.

    Jun, F., Jing, S., Sirimanne, S. R. & Mounier-Lee, C. E. Kinetic and stereochemical studies on novel inactivators of C-terminal amidation. Biochem. J. 350, 521–530 (2000).

    Article 

    Google Scholar 

  • 46.

    Fabrega, J., Fawcett, S. R., Renshaw, J. C. & Lead, J. R. Silver Nanoparticle impact on bacterial growth: Effect of pH, concentration, and organic matter. Environ. Sci. Technol. 43, 7285–7290 (2009).

    ADS 
    CAS 
    PubMed 
    Article 

    Google Scholar 

  • 47.

    Mohanty, S. et al. An investigation on the antibacterial, cytotoxic, and antibiofilm efficacy of starch-stabilized silver nanoparticles. Nanomed. Nanotechnol. Biol. Med. 8, 916–924 (2012).

    CAS 
    Article 

    Google Scholar 

  • 48.

    Markowska, K., Grudniak, A. M. & Wolska, K. I. Silver nanoparticles as an alternative strategy against bacterial biofilms. Acta Biochim. Pol. 60, 523–530 (2013).

    PubMed 

    Google Scholar 

  • 49.

    Bagur, H. et al. Biogenically synthesized silver nanoparticles using endophyte fungal extract of Ocimum tenuiflorum and evaluation of biomedical properties. J. Cluster Sci. 19, 1–15 (2019).

    Google Scholar 

  • 50.

    Park, S. et al. Antiviral properties of silver nanoparticles on a magnetic hybrid colloid. Appl. Environ. Microbiol. 80(8), 2343–2350 (2014).

    ADS 
    PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar 

  • 51.

    Goswami, S. R., Sahareen, T., Singh, M. & Kumar, S. Role of biogenic silver nanoparticles in disruption of cell-cell adhesion in Staphylococcus aureus and Escherichia coli biofilm. J. Ind. Eng. Chem. 26, 73–80 (2015).

    CAS 
    Article 

    Google Scholar 

  • 52.

    Barapatre, A., Aadil, K. R. & Jha, H. Synergistic antibacterial and antibiofilm activity of silver nanoparticles biosynthesized by lignin-degrading fungus. Bioresour. Bioprocess. 3, 8 (2016).

    Article 

    Google Scholar 

  • 53.

    Rolim, W. R. et al. Green tea extract mediated biogenic synthesis of silver nanoparticles: Characterization, cytotoxicity evaluation and antibacterial activity. Appl. Surf. Sci. 463, 66–74 (2019).

    ADS 
    CAS 
    Article 

    Google Scholar 

  • 54.

    Lehtinen, J., Järvinen, S., Virta, M. & Lilius, E.-M. Real-time monitoring of antimicrobial activity with the multiparameter microplate assay. J. Microbiol. Methods 66, 381–389 (2006).

    CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 

  • 55.

    Kalishwaralal, K., Kanth, S. B. M., Pandian, S. R. K., Deepak, V. & Gurunathan, S. Silver nanoparticles impede the biofilm formation by Pseudomonas aeruginosa and Staphylococcus epidermidis. Colloids Surf. B 79, 340–344 (2010).

    CAS 
    Article 

    Google Scholar 

  • Source link