Hamimed, S., Jebli, N., Sellami, H., Landoulsi, A. & Chatti, A. Dual valorization of olive mill wastewater by bio-nanosynthesis of magnesium oxide and Yarrowia lipolytica biomass production. Chem. Biodivers. 17, e1900608 (2020).
Google Scholar
Patil, R. S., Kokate, M. R. & Kolekar, S. S. Bioinspired synthesis of highly stabilized silver nanoparticles using Ocimum tenuiflorum leaf extract and their antibacterial activity. Spectrochim. Acta A. 91, 234–238 (2012).
Google Scholar
Jain, S. & Mehata, M. S. Medicinal plant leaf extract and pure flavonoid mediated green synthesis of silver nanoparticles and their enhanced antibacterial property. Sci. Rep. 7, 15867 (2017).
Google Scholar
Garibo, D. et al. Green synthesis of silver nanoparticles using Lysiloma acapulcensis exhibit high-antimicrobial activity. Sci Rep 10, 12805 (2020).
Google Scholar
Hamimed, S., Landoulsi, A. & Chatti, A. The bright side of olive mill wastewater: Valuables bioproducts after bioremediation. Int. J. Environ. Sci. Technol. https://doi.org/10.1007/s13762-021-03145- (2021).
Google Scholar
Mandal, D., Bolander, M. E., Mukhopadhyay, D., Sarkar, G. & Mukherjee, P. The use of microorganisms for the formation of metal nanoparticles and their application. Appl. Microbiol. Biotechnol. 69, 485–492 (2006).
Google Scholar
Ahmad, A. et al. Extracellular biosynthesis of silver nanoparticles using the fungus Fusarium oxysporum. Colloids Surf. B. 28, 313–318 (2003).
Google Scholar
Singh, J. et al. ‘Green’ synthesis of metals and their oxide nanoparticles: Applications for environmental remediation. J. Nanobiotechnol. 16, 1–24 (2018).
Google Scholar
Mehata, M. S. Enhancement of charge transfer and quenching of photoluminescence of capped CdS quantum dots. Sci. Rep. 5, 12056 (2015).
Google Scholar
Burdușel, A.-C. et al. Biomedical applications of silver nanoparticles: An up-to-date overview. Nanomaterials 8(9), 681 (2018).
Google Scholar
Nangare, S. N. & Patil, P. O. Green synthesis of silver nanoparticles: An eco-friendly approach. Nano Biomed. Eng. 12(4), 281–296 (2020).
Google Scholar
Kubota, K., Yoshimura, N., Yokota, M., Fitzsimmons, R. J. & Wikesjo, U. M. E. Overview of effects of electrical stimulation on osteogenesis and alveolar. Bone J. Periodontol. 66, 2–6 (1995).
Google Scholar
Gartzke, J. & Lange, K. Cellular target of weak magnetic fields: Ionic conduction along actin filaments of microvilli. Am. J. Physiol. 2, 1333–1346 (2002).
Google Scholar
Righi, H. et al. Exposure of Deinococcus radiodurans to both static magnetic fields and gamma radiation: Observation of cell recuperation effects. J. Biol. Phys. 46, 309–324 (2020).
Google Scholar
Ghodbane, S., Lahbib, A., Sakly, M. & Abdelmelek, H. Bioeffects of static magnetic fields: oxidative stress, genotoxic effects, and cancer studies. Biomed. Res. Int. 13, 602987 (2013).
Kula, B. & Drozdz, M. A study on magnetic field effects on fibroblast cultures. Part 2. The evaluation of the effects of static and extremely low frequency (ELF) magnetic fields on free-radical processes in fibroblast cultures. Bioelectrochem. Bioenerget. 39, 27–30 (1996).
Google Scholar
Kthiri, A. et al. Biochemical and biomolecular effects induced by a static magnetic field in Saccharomyces cerevisiae: Evidence for oxidative stress. PLoS ONE 14, e0209843 (2019).
Google Scholar
Natarajan, K., Selvaraj, S. & Murty, V. R. Microbial production of silver nanoparticles. Dig. J. Nanomater. Biostruct. 5, 135–140 (2010).
Rezazadeh, N. H., Buazar, F. & Matroodi, S. Synergistic effects of combinatorial chitosan and polyphenol biomolecules on enhanced antibacterial activity of biofunctionalaized silver nanoparticles. Sci. Rep. 10, 19615 (2020).
Google Scholar
Birla, S. S., Gaikwad, S. C., Gade, A. K. & Rai, M. K. Rapid Synthesis of Silver Nanoparticles from Fusarium oxysporumby optimizing physicocultural conditions. Sci. World J. 13, 1–12 (2013).
Google Scholar
Ronavari, A. et al. Biological activity of green-synthesized silver nanoparticles depends on the applied natural extracts: A comprehensive study. Int. J. Nanomed. 12, 871–883 (2017).
Google Scholar
Niknejad, F., Nabili, M., Daie Ghazvini, R. & Moazeni, M. Green synthesis of silver nanoparticles: Advantages of the yeast Saccharomyces cerevisiae model. Curr. Med. Mycol. 1(3), 17–24 (2015).
Google Scholar
Korbekandi, H., Mohseni, S., Mardani Jouneghani, R., Pourhossein, M. & Iravani, S. Biosynthesis of silver nanoparticles using Saccharomyces cerevisiae. Artif. Cells Nanomed. Biotechnol. 44(1), 235–239 (2014).
Google Scholar
Waghmare, S. R., Mulla, M. N., Marathe, S. R. & Sonawane, K. D. Ecofriendly production of silver nanoparticles using Candida utilis and its mechanistic action against pathogenic microorganisms. Biotech 5, 33–38 (2015).
Elamawi, R. M., Al-Harbi, R. E. & Hendi, A. A. Biosynthesis and characterization of silver nanoparticles using Trichoderma longibrachiatum and their effect on phytopathogenic fungi. Egypt J. Biol. Pest. Control 28, 28 (2018).
Google Scholar
Awwad, A. M., Salem, N. M. & Abdeen, A. O. Green synthesis of silver nanoparticles using carob leaf extract and its antibacterial activity. Int. J. Ind. Chem. 4, 29–35 (2013).
Google Scholar
Muraro, P. C. L. et al. Iron oxide nanocatalyst with titanium and silver nanoparticles: Synthesis, characterization and photocatalytic activity on the degradation of Rhodamine B dye. Sci. Rep. 10, 3055 (2020).
Google Scholar
Dhand, V. et al. Green synthesis of silver nanoparticles using Coffea arabica seed extract and its antibacterial activity. Mater Sci. Eng. C. Mater. Biol. Appl. 58, 36–43 (2016).
Google Scholar
Ajitha, B. et al. Lantana camara leaf extract mediated silver nanoparticles: Antibacterial, green catalyst. J. Photochem. Photobiol. B 149, 84–92 (2015).
Google Scholar
Hamouda, R. A., Hussein, M. H., Abo-Elmagd, R. A. & Bawazir, S. S. Synthesis and biological characterization of silver nanoparticles derived from the cyanobacterium Oscillatoria limnetica. Sci. Rep. 9(1), 13071 (2019).
Google Scholar
Vinayagam, R., Varadavenkatesan, T. & Selvaraj, R. Green synthesis, structural characterization, and catalytic activity of silver nanoparticles stabilized with Bridelia retusa leaf extract. Green Process. Synth. 7, 30–37 (2018).
Google Scholar
Yadav, P., Manjunath, H. & Selvaraj, R. Antibacterial and dye degradation potential of zero-valent silver nanoparticles synthesised using the leaf extract of Spondias dulcis. IET Nanobiotechnol. 13, 84–89 (2018).
Google Scholar
Sondi, I. & Sondi, B. S. Silver nanoparticles as antimicrobial agent: A case study on E. coli as a model for Gram-negative bacteria. J. Colloid. Interface. Sci. 275, 177–182 (2004).
Google Scholar
Papo, N. & Shai, Y. A molecular mechanism for lipopolysaccharide protection of Gram-negative bacteria from antimicrobial peptides. J. Biol. Chem. 280, 10378–10387 (2005).
Google Scholar
Yoon, K. Y., Byeon, J. H., Park, C. W. & Hwang, J. Antimicrobial effect of silver particles on bacterial contamination of activated carbon fibers. Environ. Sci. Technol. 42, 1251–1255 (2008).
Google Scholar
Olivier, N. E., Oscar, N. D. Y., Alima, N. L. N., François, M. G. & Barthelemy, N. Antibacterial properties of the extracts of Allexis obanensis and Allexis batangae (Violaceae) collected at Kribi (South Cameroon). J. Phytol. 7, 275–284 (2018).
Rai, M., Yadav, A. & Gade, A. Silver nanoparticles as a new generation of antimicrobials. Biotech. Adv. 27, 76–83 (2009).
Google Scholar
Kim, J. S. et al. Antimicrobial effects of silver nanoparticles. Nanomedicine 3, 95–101 (2007).
Google Scholar
Franci, G. et al. Silver nanoparticles as potential antibacterial agents. Molecules 20, 8856–8874 (2015).
Google Scholar
Gopinath, V. et al. Biogenic synthesis, characterization of antibacterial silver nanoparticles and its cell cytotoxicity. Arab. J. Chem. 10, 1107–1117 (2017).
Google Scholar
Abbaszadegan, A. et al. The effect of charge at the surface of silver nanoparticles on antimicrobial activity against Gram-positive and Gram-negative bacteria: A preliminary study. J. Nanomater. 2015, 1–8 (2015).
Google Scholar
Cicek, S., Gungor, A. A., Adiguzel, A. & Nadaroglu, H. Biochemical evaluation and green synthesis of nano silver using peroxidase from Euphorbia (Euphorbia amygdaloides) and its antibacterial activity. J. Chem. 15, 1–7 (2015).
Google Scholar
Singh, H., Du, J., Singh, P. & Yi, T. H. Ecofriendly synthesis of silver and gold nanoparticles by Euphrasia officinalis leaf extract and its biomedical applications. Artif. Cells Nanomed. Biotechnol. 46, 1163–1170 (2018).
Google Scholar
Makarov, V. V. et al. Green nanotechnologies: synthesis of metal nanoparticles using plants. Acta Nat. 6, 35–44 (2014).
Google Scholar
Jun, F., Jing, S., Sirimanne, S. R. & Mounier-Lee, C. E. Kinetic and stereochemical studies on novel inactivators of C-terminal amidation. Biochem. J. 350, 521–530 (2000).
Google Scholar
Fabrega, J., Fawcett, S. R., Renshaw, J. C. & Lead, J. R. Silver Nanoparticle impact on bacterial growth: Effect of pH, concentration, and organic matter. Environ. Sci. Technol. 43, 7285–7290 (2009).
Google Scholar
Mohanty, S. et al. An investigation on the antibacterial, cytotoxic, and antibiofilm efficacy of starch-stabilized silver nanoparticles. Nanomed. Nanotechnol. Biol. Med. 8, 916–924 (2012).
Google Scholar
Markowska, K., Grudniak, A. M. & Wolska, K. I. Silver nanoparticles as an alternative strategy against bacterial biofilms. Acta Biochim. Pol. 60, 523–530 (2013).
Google Scholar
Bagur, H. et al. Biogenically synthesized silver nanoparticles using endophyte fungal extract of Ocimum tenuiflorum and evaluation of biomedical properties. J. Cluster Sci. 19, 1–15 (2019).
Park, S. et al. Antiviral properties of silver nanoparticles on a magnetic hybrid colloid. Appl. Environ. Microbiol. 80(8), 2343–2350 (2014).
Google Scholar
Goswami, S. R., Sahareen, T., Singh, M. & Kumar, S. Role of biogenic silver nanoparticles in disruption of cell-cell adhesion in Staphylococcus aureus and Escherichia coli biofilm. J. Ind. Eng. Chem. 26, 73–80 (2015).
Google Scholar
Barapatre, A., Aadil, K. R. & Jha, H. Synergistic antibacterial and antibiofilm activity of silver nanoparticles biosynthesized by lignin-degrading fungus. Bioresour. Bioprocess. 3, 8 (2016).
Google Scholar
Rolim, W. R. et al. Green tea extract mediated biogenic synthesis of silver nanoparticles: Characterization, cytotoxicity evaluation and antibacterial activity. Appl. Surf. Sci. 463, 66–74 (2019).
Google Scholar
Lehtinen, J., Järvinen, S., Virta, M. & Lilius, E.-M. Real-time monitoring of antimicrobial activity with the multiparameter microplate assay. J. Microbiol. Methods 66, 381–389 (2006).
Google Scholar
Kalishwaralal, K., Kanth, S. B. M., Pandian, S. R. K., Deepak, V. & Gurunathan, S. Silver nanoparticles impede the biofilm formation by Pseudomonas aeruginosa and Staphylococcus epidermidis. Colloids Surf. B 79, 340–344 (2010).
Google Scholar

