Preloader

Next generation self-replicating RNA vectors for vaccines and immunotherapies

  • Xiong C, Levis R, Shen P, Schlesinger S, Rice CM, Huang HV. Sindbis virus: an efficient, broad host range vector for gene expression in animal cells. Science. 1989;243:1188–91.

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Bredenbeek PJ, Frolov I, Rice CM, Schlesinger S. Sindbis virus expression vectors: packaging of RNA replicons by using defective helper RNAs. J Virol. 1993;67:6439–46.

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Liljeström P, Garoff H. A new generation of animal cell expression vectors based on the Semliki forest virus replicon. Bio/Technol. 1991;9:1356–61.

    Google Scholar 

  • Lundstrom K. Self-amplifying RNA viruses as RNA vaccines. Int J Mol Sci. 2020;21:5130.

    CAS 

    Google Scholar 

  • Blakney AK, Ip S, Geall AJ. An update on self-amplifying mRNA vaccine development. Vaccines. 2021;9:97.

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Vogel AB, Lambert L, Kinnear E, Busse D, Erbar S, Reuter KC, et al. Self-amplifying RNA vaccines give equivalent protection against influenza to mRNA vaccines but at much lower doses. Mol Ther. 2018;26:446–55.

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Jackson LA, Anderson EJ, Rouphael NG, Roberts PC, Makhene M, Coler RN, et al. An mRNA vaccine against SARS-CoV-2 — preliminary report. N. Engl J Med. 2020;383:1920–31.

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Borah P, Deb PK, Al-Shar’i NA, Dahabiyeh LA, Venugopala KN, Singh V, et al. Perspectives on RNA vaccine candidates for COVID-19. Front Mol Biosci. 2021;8:30.

    Google Scholar 

  • Morse MA, Hobeika AC, Osada T, Berglund P, Hubby B, Negri S, et al. An alphavirus vector overcomes the presence of neutralizing antibodies and elevated numbers of Tregs to induce immune responses in humans with advanced cancer. J Clin Invest. 2010;120:3234–41.

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Slovin SF, Kehoe M, Durso R, Fernandez C, Olson W, Gao JP, et al. A phase I dose escalation trial of vaccine replicon particles (VRP) expressing prostate-specific membrane antigen (PSMA) in subjects with prostate cancer. Vaccine. 2013;31:943–9.

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Wecker M, Gilbert P, Russell N, Hural J, Allen M, Pensiero M, et al. Phase I safety and immunogenicity evaluations of an alphavirus replicon HIV-1 subtype C gag vaccine in healthy HIV-1-uninfected adults. Clin Vaccin Immunol CVI. 2012;19:1651–60.

    CAS 

    Google Scholar 

  • Bernstein DI, Reap EA, Katen K, Watson A, Smith K, Norberg P, et al. Randomized, double-blind, Phase 1 trial of an alphavirus replicon vaccine for cytomegalovirus in CMV seronegative adult volunteers. Vaccine. 2009;28:484–93.

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Drake CG, Johnson ML, Spira AI, Manji GA, Carbone DP, Henick BS, et al. Personalized viral-based prime/boost immunotherapy targeting patient-specific or shared neoantigens: Immunogenicity, safety, and efficacy results from two ongoing phase I studies. J Clin Oncol. 2020;38:3137–3137.

    Google Scholar 

  • Low JG. A phase 1/2 randomized, double-blinded, placebo controlled ascending dose trial to assess the safety, tolerability and immunogenicity of ARCT-021 in healthy adults | medRxiv. https://www.medrxiv.org/content/10.1101/2021.07.01.21259831v1 (accessed 22 Oct 2021).

  • Pollock KM, Cheeseman HM, Szubert AJ, Libri V, Boffito M, Owen D, et al. Safety and Immunogenicity of a Self-Amplifying RNA Vaccine Against COVID-19: COVAC1, a Phase I, Dose-Ranging Trial. Social Science Research Network: Rochester, NY, 2021. https://doi.org/10.2139/ssrn.3859294.

  • Baronti L, Karlsson H, Marušič M, Petzold K. A guide to large-scale RNA sample preparation. Anal Bioanal Chem. 2018;410:3239–52.

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Walker SE & Lorsch J. Chapter nineteen – RNA purification – precipitation methods. In: Lorsch J (ed). Methods in Enzymology. Academic Press, 2013, pp 337–43.

  • Polack FP, Thomas SJ, Kitchin N, Absalon J, Gurtman A, Lockhart S, et al. Safety and efficacy of the BNT162b2 mRNA Covid-19 vaccine. N. Engl J Med. 2020;383:2603–15.

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Baden LR, El Sahly HM, Essink B, Kotloff K, Frey S, Novak R, et al. Efficacy and safety of the mRNA-1273 SARS-CoV-2 vaccine. N. Engl J Med. 2021;384:403–16.

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Chapin-Bardales J, Gee J, Myers T. Reactogenicity following receipt of mRNA-based COVID-19 vaccines. JAMA. 2021;325:2201–2.

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • van de Berg D, Kis Z, Behmer CF, Samnuan K, Blakney AK, Kontoravdi C, et al. Quality by design modelling to support rapid RNA vaccine production against emerging infectious diseases. NPJ Vaccines. 2021;6:65.

    PubMed 
    PubMed Central 

    Google Scholar 

  • Kis Z, Kontoravdi C, Shattock R, Shah N. Resources, production scales and time required for producing RNA vaccines for the global pandemic demand. Vaccines. 2020;9:3.

    PubMed 
    PubMed Central 

    Google Scholar 

  • Geall AJ, Verma A, Otten GR, Shaw CA, Hekele A, Banerjee K, et al. Nonviral delivery of self-amplifying RNA vaccines. Proc Natl Acad Sci USA. 2012;109:14604–9.

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Rossi A, Dupaty L, Aillot L, Zhang L, Gallien C, Hallek M, et al. Vector uncoating limits adeno-associated viral vector-mediated transduction of human dendritic cells and vector immunogenicity. Sci Rep. 2019;9:3631.

    PubMed 
    PubMed Central 

    Google Scholar 

  • Mendonça SA, Lorincz R, Boucher P, Curiel DT. Adenoviral vector vaccine platforms in the SARS-CoV-2 pandemic. Npj Vaccines. 2021;6:1–14.

    Google Scholar 

  • In a major setback, Merck to stop developing its two Covid-19 vaccines and focus on therapies. https://www.statnews.com/2021/01/25/in-a-major-setback-merck-to-stop-developing-its-two-covid-19-vaccines-and-focus-on-therapies/.

  • Fathi A, Dahlke C, Addo MM. Recombinant vesicular stomatitis virus vector vaccines for WHO blueprint priority pathogens. Hum Vaccines Immunother. 2019;15:2269–85.

    Google Scholar 

  • CDC.gov. Ebola Vaccine: Information about Ervebo. https://www.cdc.gov/vhf/ebola/clinicians/vaccine/index.html#:~:text=Ervebo%C2%AE%20(Ebola%20Zaire%20Vaccine,as%20a%20single%20dose%20administration.

  • Li Y, Su Z, Zhao W, Zhang X, Momin N, Zhang C, et al. Multifunctional oncolytic nanoparticles deliver self-replicating IL-12 RNA to eliminate established tumors and prime systemic immunity. Nat Cancer. 2020;1:882–93.

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Ni P, Cheng Kao C. Non-encapsidation activities of the capsid proteins of positive-strand RNA viruses. Virology. 2013;446:123–32.

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Garmashova N, Gorchakov R, Frolova E, Frolov I. Sindbis virus nonstructural protein nsP2 is cytotoxic and inhibits cellular transcription. J Virol. 2006;80:5686–96.

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Gorchakov R, Frolova E, Frolov I. Inhibition of transcription and translation in Sindbis virus-infected cells. J Virol. 2005;79:9397–409.

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Bhalla N, Sun C, Metthew Lam LK, Gardner CL, Ryman KD, Klimstra WB. Host translation shutoff mediated by non-structural protein 2 is a critical factor in the antiviral state resistance of Venezuelan equine encephalitis virus. Virology. 2016;496:147–65.

    CAS 
    PubMed 

    Google Scholar 

  • Ventoso I, Sanz MA, Molina S, Berlanga JJ, Carrasco L, Esteban M. Translational resistance of late alphavirus mRNA to eIF2α phosphorylation: a strategy to overcome the antiviral effect of protein kinase PKR. Genes Dev. 2006;20:87–100.

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Barry G, Breakwell L, Fragkoudis R, Attarzadeh-Yazdi G, Rodriguez-Andres J, Kohl A, et al. PKR acts early in infection to suppress Semliki Forest virus production and strongly enhances the type I interferon response. J Gen Virol. 2009;90:1382–91.

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Pichlmair A, Reise Sousa C. Innate recognition of viruses. Immunity. 2007;27:370–83.

    CAS 
    PubMed 

    Google Scholar 

  • Translate Bio’s mRNA fails to improve lung function in cystic fibrosis patients. Httpswwwfiercebiotechcombiotechtranslate-Bio–Mrna-Fails–Improve-Lung-Funct.-Cyst.-Fibros.-Patients. https://www.fiercebiotech.com/biotech/translate-bio-s-mrna-fails-to-improve-lung-function-cystic-fibrosis-patients.

  • Karikó K, Buckstein M, Ni H, Weissman D. Suppression of RNA recognition by toll-like receptors: the impact of nucleoside modification and the evolutionary origin of RNA. Immunity. 2005;23:165–75.

    PubMed 

    Google Scholar 

  • Suthar MS, Shabman R, Madric K, Lambeth C, Heise MT. Identification of adult mouse neurovirulence determinants of the Sindbis virus strain AR86. J Virol. 2005;79:4219–28.

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Simmons JD, Wollish AC, Heise MT. A determinant of Sindbis virus neurovirulence enables efficient disruption of Jak/STAT signaling. J Virol. 2010;84:11429–39.

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Kumar A, Mamidi P, Das I, Nayak TK, Kumar S, Chhatai J, et al. A novel 2006 Indian outbreak strain of Chikungunya virus exhibits different pattern of infection as compared to prototype strain. PLoS ONE. 2014;9:e85714.

    PubMed 
    PubMed Central 

    Google Scholar 

  • Nayak TK, Mamidi P, Kumar A, Singh LPK, Sahoo SS, Chattopadhyay S, et al. Regulation of viral replication, apoptosis and pro-inflammatory responses by 17-AAG during Chikungunya virus infection in macrophages. Viruses. 2017;9:3.

    Google Scholar 

  • Trobaugh DW, Sun C, Bhalla N, Gardner CL, Dunn MD, Klimstra WB. Cooperativity between the 3’ untranslated region microRNA binding sites is critical for the virulence of eastern equine encephalitis virus. PLOS Pathog. 2019;15:e1007867.

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Rangel MV, Stapleford KA. Alphavirus virulence determinants. Pathogens. 2021;10:981.

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Jayabalan AK, Adivarahan S, Koppula A, Abraham R, Batish M, Zenklusen D, et al. Stress granule formation, disassembly, and composition are regulated by alphavirus ADP-ribosylhydrolase activity. Proc Natl Acad Sci USA. 2021;118. https://doi.org/10.1073/pnas.2021719118.

  • Cappuccio L, Maisse C. Infection of mammals and mosquitoes by alphaviruses: involvement of cell death. Cells. 2020;9:2612.

    CAS 

    Google Scholar 

  • Munz C. Autophagy proteins influence endocytosis for MHC restricted antigen presentation. Seminars in Cancer Biology. 2019;66:110–5.

    PubMed 
    PubMed Central 

    Google Scholar 

  • Jagannath C, Lindsey DR, Dhandayuthapani S, Xu Y, Hunter RL, Eissa NT. Autophagy enhances the efficacy of BCG vaccine by increasing peptide presentation in mouse dendritic cells. Nat Med. 2009;15:267–76.

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Khan A, Bakhru P, Saikolappan S, Das K, Soudani E, Singh CR, et al. An autophagy-inducing and TLR-2 activating BCG vaccine induces a robust protection against tuberculosis in mice. Npj Vaccines. 2019;4:1–19.

    Google Scholar 

  • Joubert P-E, Werneke SW, de la Calle C, Guivel-Benhassine F, Giodini A, Peduto L, et al. Chikungunya virus-induced autophagy delays caspase-dependent cell death. J Exp Med. 2012;209:1029–47.

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Judith D, Mostowy S, Bourai M, Gangneux N, Lelek M, Lucas-Hourani M, et al. Species-specific impact of the autophagy machinery on Chikungunya virus infection. EMBO Rep. 2013;14:534–44.

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Shoji-Kawata S, Sumpter R, Leveno M, Campbell GR, Zou Z, Kinch L, et al. Identification of a candidate therapeutic autophagy-inducing peptide. Nature. 2013;494:201–6.

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Eng KE, Panas MD, Murphy D, Karlsson Hedestam GB, McInerney GM. Accumulation of autophagosomes in Semliki Forest virus-infected cells is dependent on expression of the viral glycoproteins. J Virol. 2012;86:5674–85.

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Maine CJ, Richard G, Spasova DS, Miyake-Stoner SJ, Sparks J, Moise L, et al. Self-replicating RNAs drive protective anti-tumor T cell responses to neoantigen vaccine targets in a combinatorial approach. Mol Ther J Am Soc Gene Ther. 2021;29:1186–98.

    CAS 

    Google Scholar 

  • Brito LA, Chan M, Shaw CA, Hekele A, Carsillo T, Schaefer M, et al. A cationic nanoemulsion for the delivery of next-generation RNA vaccines. Mol Ther. 2014;22:2118–29.

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Akinc A, Maier MA, Manoharan M, Fitzgerald K, Jayaraman M, Barros S, et al. The Onpattro story and the clinical translation of nanomedicines containing nucleic acid-based drugs. Nat Nanotechnol. 2019;14:1084–7.

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Buschmann MD, Carrasco MJ, Alishetty S, Paige M, Alameh MG, Weissman D. Nanomaterial delivery systems for mRNA vaccines. Vaccines. 2021;9:65.

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Rennick JJ, Johnston APR, Parton RG. Key principles and methods for studying the endocytosis of biological and nanoparticle therapeutics. Nat Nanotechnol. 2021;16:266–76.

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Dong Y, Love KT, Dorkin JR, Sirirungruang S, Zhang Y, Chen D, et al. Lipopeptide nanoparticles for potent and selective siRNA delivery in rodents and nonhuman primates. Proc Natl Acad Sci USA. 2014;111:3955–60.

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Akinc A, Querbes W, De S, Qin J, Frank-Kamenetsky M, Jayaprakash KN, et al. Targeted delivery of RNAi therapeutics with endogenous and exogenous ligand-based mechanisms. Mol Ther J Am Soc Gene Ther. 2010;18:1357–64.

    CAS 

    Google Scholar 

  • Żak MM, Zangi L. Lipid nanoparticles for organ-specific mRNA therapeutic delivery. Pharmaceutics. 2021;13:1675.

    PubMed 
    PubMed Central 

    Google Scholar 

  • Samaridou E, Heyes J, Lutwyche P. Lipid nanoparticles for nucleic acid delivery: current perspectives. Adv Drug Deliv Rev. 2020;154–155:37–63.

    PubMed 
    PubMed Central 

    Google Scholar 

  • Tiegs G, Lohse AW. Immune tolerance: what is unique about the liver. J Autoimmun. 2010;34:1–6.

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Manolova V, Flace A, Bauer M, Schwarz K, Saudan P, Bachmann MF. Nanoparticles target distinct dendritic cell populations according to their size. Eur J Immunol. 2008;38:1404–13.

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Mitchell MJ, Billingsley MM, Haley RM, Wechsler ME, Peppas NA, Langer R. Engineering precision nanoparticles for drug delivery. Nat Rev Drug Disco. 2021;20:101–24.

    CAS 

    Google Scholar 

  • Danaei M, Dehghankhold M, Ataei S, Hasanzadeh Davarani F, Javanmard R, Dokhani A, et al. Impact of particle size and polydispersity index on the clinical applications of lipidic nanocarrier systems. Pharmaceutics. 2018;10:E57.

    PubMed 
    PubMed Central 

    Google Scholar 

  • Reichmuth AM, Oberli MA, Jaklenec A, Langer R, Blankschtein D. mRNA vaccine delivery using lipid nanoparticles. Ther Deliv. 2016;7:319–34.

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Wang Y, Miao L, Satterlee A, Huang L. Delivery of oligonucleotides with lipid nanoparticles. Adv Drug Deliv Rev. 2015;87:68–80.

    PubMed 
    PubMed Central 

    Google Scholar 

  • Pepini T, Pulichino A-M, Carsillo T, Carlson AL, Sari-Sarraf F, Ramsauer K, et al. Induction of an IFN-mediated antiviral response by a self-amplifying RNA vaccine: implications for vaccine design. J Immunol Author Choice. 2017;198:4012–24.

    CAS 

    Google Scholar 

  • Hou X, Zaks T, Langer R, Dong Y. Lipid nanoparticles for mRNA delivery. Nat Rev Mater. 2021;6:1078–94.

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Kedmi R, Ben-Arie N, Peer D. The systemic toxicity of positively charged lipid nanoparticles and the role of Toll-like receptor 4 in immune activation. Biomaterials. 2010;31:6867–75.

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Ramishetti S, Hazan-Halevy I, Palakuri R, Chatterjee S, Naidu Gonna S, Dammes N, et al. A combinatorial library of lipid nanoparticles for RNA delivery to leukocytes. Adv Mater. 2020;32:1906128.

    CAS 

    Google Scholar 

  • Guevara ML, Persano F, Persano S. Advances in lipid nanoparticles for mRNA-based cancer immunotherapy. Front Chem. 2020;8:589959.

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Rawal M, Singh A, Amiji MM. Quality-by-design concepts to improve nanotechnology-based drug development. Pharm Res. 2019;36:153.

    PubMed 
    PubMed Central 

    Google Scholar 

  • Lv H, Zhang S, Wang B, Cui S, Yan J. Toxicity of cationic lipids and cationic polymers in gene delivery. J Control Release J Control Release Soc. 2006;114:100–9.

    CAS 

    Google Scholar 

  • Zeng C, Zhang C, Walker PG & Dong Y. Formulation and delivery technologies for mRNA vaccines. Curr Top Microbiol Immunol. 2020. https://doi.org/10.1007/82_2020_217.

  • Kumar V, Qin J, Jiang Y, Duncan RG, Brigham B, Fishman S, et al. Shielding of lipid nanoparticles for siRNA delivery: impact on physicochemical properties, cytokine induction, and efficacy. Mol Ther – Nucleic Acids. 2014;3:e210.

    PubMed 
    PubMed Central 

    Google Scholar 

  • Nogueira SS, Schlegel A, Maxeiner K, Weber B, Barz M, Schroer MA, et al. Polysarcosine-functionalized lipid nanoparticles for therapeutic mRNA delivery. ACS Appl Nano Mater. 2020;3:10634–45.

    CAS 

    Google Scholar 

  • Chahal JS, Khan OF, Cooper CL, McPartlan JS, Tsosie JK, Tilley LD, et al. Dendrimer-RNA nanoparticles generate protective immunity against lethal Ebola, H1N1 influenza, and Toxoplasma gondii challenges with a single dose. Proc Natl Acad Sci USA. 2016;113:E4133–E4142.

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Blakney AK, Zhu Y, McKay PF, Bouton CR, Yeow J, Tang J, et al. Big is beautiful: enhanced saRNA delivery and immunogenicity by a higher molecular weight, bioreducible, cationic polymer. ACS Nano. 2020;14:5711–27.

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Blakney AK, McKay PF, Hu K, Samnuan K, Jain N, Brown A, et al. Polymeric and lipid nanoparticles for delivery of self-amplifying RNA vaccines. J Controlled Release. 2021;338:201–10.

    CAS 

    Google Scholar 

  • Dienz O, Eaton SM, Bond JP, Neveu W, Moquin D, Noubade R, et al. The induction of antibody production by IL-6 is indirectly mediated by IL-21 produced by CD4+ T cells. J Exp Med. 2009;206:69–78.

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Nurieva RI, Chung Y, Hwang D, Yang XO, Kang HS, Ma L, et al. Generation of T follicular helper cells is mediated by interleukin-21 but independent of T helper 1, 2, or 17 cell lineages. Immunity. 2008;29:138–49.

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Longhi MP, Wright K, Lauder SN, Nowell MA, Jones GW, Godkin AJ, et al. Interleukin-6 is crucial for recall of influenza-specific memory CD4+ T cells. PLOS Pathog. 2008;4:e1000006.

    PubMed 
    PubMed Central 

    Google Scholar 

  • Moderna’s Zika Virus Vaccine Data Supports COVID-19 Vaccine Approach. https://www.biospace.com/article/moderna-s-zika-virus-vaccine-data-supports-covid-19-vaccine-approach/.

  • Feldman RA, Fuhr R, Smolenov I, Mick Ribeiro A, Panther L, Watson M, et al. mRNA vaccines against H10N8 and H7N9 influenza viruses of pandemic potential are immunogenic and well tolerated in healthy adults in phase 1 randomized clinical trials. Vaccine. 2019;37:3326–34.

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Moderna Clinical Study Protocol: A Phase 3, Randomized, Stratified, Observer-Blind, Placebo-Controlled Study to Evaluate the Efficacy, Safety, and Immunogenicity of mRNA-1273 SARS-CoV-2 Vaccine in Adults Aged 18 Years and Older. https://www.modernatx.com/sites/default/files/mRNA-1273-P301-Protocol.pdf.

  • Anderson EJ, Rouphael NG, Widge AT, Jackson LA, Roberts PC, Makhene M, et al. Safety and immunogenicity of SARS-CoV-2 mRNA-1273 vaccine in older adults. N. Engl J Med. 2020;383:2427–38.

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Mulligan MJ, Lyke KE, Kitchin N, Absalon J, Gurtman A, Lockhart S, et al. Phase I/II study of COVID-19 RNA vaccine BNT162b1 in adults. Nature. 2020;586:589–93.

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • WHO SAGE Working Group: mRNA vaccines against COVID-19: Pfizer-BioNTech COVID-19 vaccine BNT162b2. https://apps.who.int/iris/bitstream/handle/10665/338096/WHO-2019-nCoV-vaccines-SAGE_evaluation-BNT162b2-2020.1-eng.pdf?sequence=1&isAllowed=y.

  • Kremsner PG, Mann P, Kroidl A, Leroux-Roels I, Schindler C, Gabor JJ, et al. Safety and immunogenicity of an mRNA-lipid nanoparticle vaccine candidate against SARS-CoV-2. Wien Klin Wochenschr. 2021;133:931–41.

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • CORAL-BOOST Study Data Presentation. CORAL-BOOST Study Data Present. https://ir.gritstonebio.com/static-files/0904cdf4-3208-4704-b17b-2abf1d48392b.

  • Sanofi announces positive Phase 1/2 study interim results for its first mRNA-based vaccine candidate. 2021. https://www.sanofi.com/en/media-room/press-releases/2021/2021-09-28-08-00-00-2304069.

  • Vaccines Investor Event. Vaccines Invest. Event. 2021. https://www.sanofi.com/en/investors/financial-results-and-events/investor-presentations/Vaccines-Day-2021#.

  • Aldrich C, Leroux–Roels I, Huang KB, Bica MA, Loeliger E, Schoenborn-Kellenberger O, et al. Proof-of-concept of a low-dose unmodified mRNA-based rabies vaccine formulated with lipid nanoparticles in human volunteers: a phase 1 trial. Vaccine. 2021;39:1310–8.

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Gritstone Oncology, Inc. UNITED STATES SECURITIES AND EXCHANGE COMMISSION FORM 8-K. 2020. https://ir.gritstonebio.com/static-files/9b5ca365-6556-4d32-b0fa-b01b77550ab6.

  • Papachristofilou A, Hipp MM, Klinkhardt U, Früh M, Sebastian M, Weiss C, et al. Phase Ib evaluation of a self-adjuvanted protamine formulated mRNA-based active cancer immunotherapy, BI1361849 (CV9202), combined with local radiation treatment in patients with stage IV non-small cell lung cancer. J Immunother Cancer. 2019;7:38.

    PubMed 
    PubMed Central 

    Google Scholar 

  • Source link