Amarasinghe, G. K. et al. Taxonomy of the order mononegavirales: Update 2019. Adv. Virol. 164, 1967–1980. https://doi.org/10.1007/s00705-019-04247-4 (2019).
Google Scholar
Yusoff, K. & Tan, W. S. Newcastle disease virus: Macromolecules and opportunities. Avian Pathol. 30, 439–455 (2001).
Google Scholar
Swayne, D. E. & Glisson, J. R. Newcastle Disease, Other Avian Paramyxoviruses, and Avian Matapneumovirus Infections. Diseases of poultry. 13th edn, 89–130 (Wiley, 2013).
Whelan, S., Barr, J. & Wertz, G. in Biology of Negative Strand RNA Viruses: The Power of Reverse Genetics 61–119 (Springer, 2004).
Ganar, K., Das, M., Sinha, S. & Kumar, S. Newcastle disease virus: current status and our understanding. Virus Res. 184, 71–81 (2014).
Google Scholar
Park, M. S. et al. Newcastle disease virus (NDV)-based assay demonstrates interferon-antagonist activity for the NDV V protein and the Nipah virus V, W, and C proteins. J. Virol. 77, 1501–1511. https://doi.org/10.1128/jvi.77.2.1501-1511.2003 (2003).
Google Scholar
Conzelmann, K. K. Nonsegmented negative-strand RNA viruses: genetics and manipulation of viral genomes. Annu. Rev. Genet. 32, 123–162. https://doi.org/10.1146/annurev.genet.32.1.123 (1998).
Google Scholar
Wignall-Fleming, E. B. et al. Analysis of paramyxovirus transcription and replication by high-throughput sequencing. J. Virol. 93, 17 (2019).
Cattaneo, R. et al. Altered transcription of a defective measles virus genome derived from a diseased human brain. EMBO J. 6, 681–688 (1987).
Google Scholar
Abraham, G. & Banerjee, A. K. Sequential transcription of the genes of vesicular stomatitis virus. Proc. Natl. Acad. Sci. USA. 73, 1504–1508. https://doi.org/10.1073/pnas.73.5.1504 (1976).
Google Scholar
Collins, P. L., Hightower, L. E. & Ball, L. A. Transcription and translation of Newcastle disease virus mRNA’s in vitro. J. Virol. 28, 324–336 (1978).
Google Scholar
Noton, S. L. & Fearns, R. Initiation and regulation of paramyxovirus transcription and replication. Virology 479–480, 545–554. https://doi.org/10.1016/j.virol.2015.01.014 (2015).
Google Scholar
Wright, P. J., Crameri, G. & Eaton, B. RNA synthesis during infection by Hendra virus: an examination by quantitative real-time PCR of RNA accumulation, the effect of ribavirin and the attenuation of transcription. Adv. Virol. 150, 521–532 (2005).
Google Scholar
Homann, H., Hofschneider, P. & Neubert, W. Sendai virus gene expression in lytically and persistently infected cells. Virology 177, 131–140 (1990).
Google Scholar
Cattaneo, R., Rebmann, G., Baczko, K., ter Meulen, V. & Billeter, M. A. Altered ratios of measles virus transcripts in diseased human brains. Virology 160, 523–526 (1987).
Google Scholar
Hodges, E. N., Heinrich, B. S. & Connor, J. H. A vesiculovirus showing a steepened transcription gradient and dominant trans-repression of virus transcription. J. Virol. 86, 8884–8889 (2012).
Google Scholar
Piedra, F.-A. et al. Non-gradient and genotype-dependent patterns of RSV gene expression. PLoS ONE 15, e0227558 (2020).
Google Scholar
Pagán, I., Holmes, E. C. & Simon-Loriere, E. Level of gene expression is a major determinant of protein evolution in the viral order Mononegavirales. J. Virol. 86, 5253–5263 (2012).
Google Scholar
Albariño, C. G., Wiggleton Guerrero, L., Chakrabarti, A. K. & Nichol, S. T. Transcriptional analysis of viral mRNAs reveals common transcription patterns in cells infected by five different filoviruses. PLoS ONE 13, e0201827 (2018).
Google Scholar
Deist, M. S. et al. Novel mechanisms revealed in the trachea transcriptome of resistant and susceptible chicken lines following infection with Newcastle disease virus. Clin. Vacc. Immunol. 24, 17 (2017).
Peeters, B. P., De Leeuw, O. S., Koch, G. & Gielkens, A. L. Rescue of Newcastle disease virus from cloned cDNA: Evidence that cleavability of the fusion protein is a major determinant for virulence. Virology 73, 5001–5009 (1999).
Google Scholar
Susta, L., Miller, P. J., Afonso, C. L. & Brown, C. C. Clinicopathological characterization in poultry of three strains of Newcastle disease virus isolated from recent outbreaks. Vet. Pathol. 48, 349–360. https://doi.org/10.1177/0300985810375806 (2011).
Google Scholar
Ecco, R. et al. In vivo transcriptional cytokine responses and association with clinical and pathological outcomes in chickens infected with different Newcastle disease virus isolates using formalin-fixed paraffin-embedded samples. Vet. Immunol. Immunopathol. 141, 221–229 (2011).
Google Scholar
Wang, Y. et al. Lack of detection of host associated differences in Newcastle disease viruses of genotype VIId isolated from chickens and geese. Virol. J. 9, 1–15 (2012).
Cornax, I. et al. Newcastle disease virus fusion and haemagglutinin-neuraminidase proteins contribute to its macrophage host range. J. Gen. Virol. 94, 1189–1194. https://doi.org/10.1099/vir.0.048579-0 (2013).
Google Scholar
Kai, Y. et al. The M, F and HN genes of genotype VIId Newcastle disease virus are associated with the severe pathological changes in the spleen of chickens. Virol. J. 12, 1–10 (2015).
Baczko, K., Carter, M. J., Billeter, M. & ter Meulen, V. Measles virus gene expression in subacute sclerosing panencephalitis. Virus Res. 1, 585–595 (1984).
Google Scholar
Merino, R., Villegas, H., Quintana, J. A. & Calderon, N. Comparison of the virulence of pathogenic Newcastle disease viruses belonging to the same or different genotypes. Int. J. Poult. Sci. 10, 713–720 (2011).
Martínez, M. J. et al. Role of Ebola virus VP30 in transcription reinitiation. J. Virol. 82, 12569–12573. https://doi.org/10.1128/jvi.01395-08 (2008).
Google Scholar
Aljabr, W. et al. Investigating the influence of ribavirin on human respiratory syncytial virus RNA synthesis by using a high-resolution transcriptome sequencing approach. J. Virol. 90, 4876–4888 (2016).
Google Scholar
Collins, P. L., Hightower, L. E. & Ball, L. A. Transcriptional map for Newcastle disease virus. J. Virol. 35, 682–693 (1980).
Google Scholar
Wynne, J. W. et al. Proteomics informed by transcriptomics reveals Hendra virus sensitizes bat cells to TRAIL-mediated apoptosis. Genome Biol. 15, 1–21 (2014).
Deist, M. S. et al. Novel analysis of the Harderian gland transcriptome response to Newcastle disease virus in two inbred chicken lines. Sci. Rep. 8, 1–9 (2018).
Google Scholar
Dortmans, J. C., Rottier, P. J., Koch, G. & Peeters, B. P. The viral replication complex is associated with the virulence of Newcastle disease virus. J. Virol. 84, 10113–10120. https://doi.org/10.1128/JVI.00097-10 (2010).
Google Scholar
Ball, L. A., Pringle, C. R., Flanagan, B., Perepelitsa, V. P. & Wertz, G. W. Phenotypic consequences of rearranging the P, M, and G genes of vesicular stomatitis virus. J. Virol. 73, 4705–4712. https://doi.org/10.1128/jvi.73.6.4705-4712.1999 (1999).
Google Scholar
Wirblich, C. & Schnell, M. J. Rabies virus (RV) glycoprotein expression levels are not critical for pathogenicity of RV. J. Virol. 85, 697–704. https://doi.org/10.1128/jvi.01309-10 (2011).
Google Scholar
Wertz, G. W., Perepelitsa, V. P. & Ball, L. A. Gene rearrangement attenuates expression and lethality of a nonsegmented negative strand RNA virus. Proc. Natl. Acad. Sci. 95, 3501–3506 (1998).
Google Scholar
Novella, I. S., Ball, L. A. & Wertz, G. W. Fitness analyses of vesicular stomatitis strains with rearranged genomes reveal replicative disadvantages. J. Virol. 78, 9837–9841. https://doi.org/10.1128/JVI.78.18.9837-9841.2004 (2004).
Google Scholar
Zhan, Y. et al. Newcastle Disease virus infection activates PI3K/Akt/mTOR and p38 MAPK/Mnk1 pathways to benefit viral mRNA translation via interaction of the viral NP protein and host eIF4E. PLoS Pathog. 16, e1008610. https://doi.org/10.1371/journal.ppat.1008610 (2020).
Google Scholar
Cheng, J.-H. et al. Newcastle disease virus NP and P proteins induce autophagy via the endoplasmic reticulum stress-related unfolded protein response. Sci. Rep. 6, 24721. https://doi.org/10.1038/srep24721 (2016).
Google Scholar
Rabiei, M. et al. Indicators of the molecular pathogenesis of virulent Newcastle disease virus in chickens revealed by transcriptomic profiling of spleen. Sci. Rep. 11, 1–14 (2021).
Noda, T., Kolesnikova, L., Becker, S. & Kawaoka, Y. The importance of the NP: VP35 ratio in Ebola virus nucleocapsid formation. J. Infect. Dis. 204(Suppl 3), S878–S883. https://doi.org/10.1093/infdis/jir310 (2011).
Google Scholar
Doan, P. T. K. et al. Genome sequences of newcastle disease virus strains from two outbreaks in Indonesia. Microbiol. Resour. Announ. 9, 23 (2020).
Miller, P. J. et al. Effects of Newcastle disease virus vaccine antibodies on the shedding and transmission of challenge viruses. Dev. Comp. Immunol. 41, 505–513. https://doi.org/10.1016/j.dci.2013.06.007 (2013).
Google Scholar
Alexander, D. J., Manvell, R. J. & Parsons, G. Newcastle disease virus (strain Herts 33/56) in tissues and organs of chickens infected experimentally. Avian Pathol. 35, 99–101. https://doi.org/10.1080/03079450600597444 (2006).
Google Scholar
Hou, Y., Zhang, H., Miranda, L. & Lin, S. Serious overestimation in quantitative PCR by circular (supercoiled) plasmid standard: Microalgal pcna as the model gene. PLoS ONE 5, e9545 (2010).
Google Scholar
Lee, C., Kim, J., Shin, S. G. & Hwang, S. Absolute and relative QPCR quantification of plasmid copy number in Escherichia coli. J. Biotechnol. 123, 273–280. https://doi.org/10.1016/j.jbiotec.2005.11.014 (2006).
Google Scholar
Andrews, S. Babraham Bioinformatics (Babraham Institute, 2010).
Krueger, F. FelixKrueger/TrimGalore: v0.4.2 -https://www.bioinformatics.babraham.ac.uk/projects/trim_galore/ (2015).
Schubert, M., Lindgreen, S. & Orlando, L. AdapterRemoval v2: Rapid adapter trimming, identification, and read merging. BMC. Res. Notes 9, 88 (2016).
Google Scholar
Kim, D., Langmead, B. & Salzberg, S. L. HISAT: A fast spliced aligner with low memory requirements. Nat. Methods 12, 357–360 (2015).
Google Scholar
Li, H. et al. The sequence alignment/map format and SAMtools. Bioinformatics 25, 2078–2079 (2009).
Google Scholar
Liao, Y., Smyth, G. K. & Shi, W. featureCounts: An efficient general purpose program for assigning sequence reads to genomic features. Bioinformatics 30, 923–930 (2014).
Google Scholar

