Preloader

Nano-optogenetic engineering of CAR T cells for precision immunotherapy with enhanced safety

  • 1.

    June, C. H., O’Connor, R. S., Kawalekar, O. U., Ghassemi, S. & Milone, M. C. CAR T cell immunotherapy for human cancer. Science 359, 1361–1365 (2018).

    CAS 
    Article 

    Google Scholar 

  • 2.

    Chmielewski, M., Hombach, A. A. & Abken, H. Antigen-specific T-cell activation independently of the MHC: chimeric antigen receptor-redirected T cells. Front. Immunol. 4, 371 (2013).

    Article 

    Google Scholar 

  • 3.

    Grupp, S. A. et al. Chimeric antigen receptor-modified T cells for acute lymphoid leukemia. N. Engl. J. Med. 368, 1509–1518 (2013).

    CAS 
    Article 

    Google Scholar 

  • 4.

    Maude, S. L. et al. Tisagenlecleucel in children and young adults with B-cell lymphoblastic leukemia. N. Engl. J. Med. 378, 439–448 (2018).

    CAS 
    Article 

    Google Scholar 

  • 5.

    Sadelain, M., Brentjens, R. & Riviere, I. The basic principles of chimeric antigen receptor design. Cancer Discov. 3, 388–398 (2013).

    CAS 
    Article 

    Google Scholar 

  • 6.

    Kochenderfer, J. N. et al. B-cell depletion and remissions of malignancy along with cytokine-associated toxicity in a clinical trial of anti-CD19 chimeric-antigen-receptor-transduced T cells. Blood 119, 2709–2720 (2012).

    CAS 
    Article 

    Google Scholar 

  • 7.

    Neelapu, S. S. et al. Axicabtagene ciloleucel CAR T-cell therapy in refractory large B-cell lymphoma. N. Engl. J. Med. 377, 2531–2544 (2017).

    CAS 
    Article 

    Google Scholar 

  • 8.

    Kennedy, M. J. et al. Rapid blue-light-mediated induction of protein interactions in living cells. Nat. Methods 7, 973–975 (2010).

    CAS 
    Article 

    Google Scholar 

  • 9.

    Guntas, G. et al. Engineering an improved light-induced dimer (iLID) for controlling the localization and activity of signaling proteins. Proc. Natl Acad. Sci. USA 112, 112–117 (2015).

    CAS 
    Article 

    Google Scholar 

  • 10.

    He, L. et al. Near-infrared photoactivatable control of Ca2+ signaling and optogenetic immunomodulation. Elife https://doi.org/10.7554/eLife.10024 (2015).

  • 11.

    Wu, J. et al. An activating immunoreceptor complex formed by NKG2D and DAP10. Science 285, 730–732 (1999).

    CAS 
    Article 

    Google Scholar 

  • 12.

    Wu, C. Y., Roybal, K. T., Puchner, E. M., Onuffer, J. & Lim, W. A. Remote control of therapeutic T cells through a small molecule-gated chimeric receptor. Science 350, aab4077 (2015).

    Article 

    Google Scholar 

  • 13.

    Irving, B. A., Chan, A. C. & Weiss, A. Functional characterization of a signal transducing motif present in the T cell antigen receptor zeta chain. J. Exp. Med. 177, 1093–1103 (1993).

    CAS 
    Article 

    Google Scholar 

  • 14.

    Zimmerman, S. P. et al. Tuning the binding affinities and reversion kinetics of a light inducible dimer allows control of transmembrane protein localization. Biochemistry 55, 5264–5271 (2016).

    CAS 
    Article 

    Google Scholar 

  • 15.

    Chen, J. et al. NR4A transcription factors limit CAR T cell function in solid tumours. Nature 567, 530–534 (2019).

    CAS 
    Article 

    Google Scholar 

  • 16.

    Maraskovsky, E., Chen, W. F. & Shortman, K. IL-2 and IFN-gamma are two necessary lymphokines in the development of cytolytic T cells. J. Immunol. 143, 1210–1214 (1989).

    CAS 

    Google Scholar 

  • 17.

    Yu, N. et al. Near-infrared-light activatable nanoparticles for deep-tissue-penetrating wireless optogenetics. Adv. Healthc. Mater. 8, e1801132 (2019).

    Article 

    Google Scholar 

  • 18.

    Tan, P., He, L., Han, G. & Zhou, Y. Optogenetic immunomodulation: shedding light on antitumor immunity. Trends Biotechnol. 35, 215–226 (2017).

    CAS 
    Article 

    Google Scholar 

  • 19.

    Nguyen, N. T. et al. CRAC channel-based optogenetics. Cell Calcium 75, 79–88 (2018).

    CAS 
    Article 

    Google Scholar 

  • 20.

    Huang, K., Jayakumar, M. K. G. & Zhang, Y. Lutetium doping for making big core and core-shell upconversion nanoparticles. J. Mater. Chem. C 3, 10267–10272 (2015).

    CAS 
    Article 

    Google Scholar 

  • 21.

    Barolet, D. Light-emitting diodes (LEDs) in dermatology. Semin Cutan. Med. Surg. 27, 227–238 (2008).

    CAS 
    Article 

    Google Scholar 

  • 22.

    Pan, Y. et al. Mechanogenetics for the remote and noninvasive control of cancer immunotherapy. Proc. Natl Acad. Sci. USA 115, 992–997 (2018).

    CAS 
    Article 

    Google Scholar 

  • 23.

    Ma, Y. et al. Targeting of antigens to B lymphocytes via CD19 as a means for tumor vaccine development. J. Immunol. 190, 5588–5599 (2013).

    CAS 
    Article 

    Google Scholar 

  • 24.

    Dai, H., Wang, Y., Lu, X. & Han, W. Chimeric antigen receptors modified T-cells for cancer therapy. J Natl Cancer Inst. https://doi.org/10.1093/jnci/djv439 (2016)

  • 25.

    Lee, D. W. et al. T cells expressing CD19 chimeric antigen receptors for acute lymphoblastic leukaemia in children and young adults: a phase 1 dose-escalation trial. Lancet 385, 517–528 (2015).

    CAS 
    Article 

    Google Scholar 

  • 26.

    Maude, S. L. et al. Chimeric antigen receptor T cells for sustained remissions in leukemia. N. Engl. J. Med. 371, 1507–1517 (2014).

    Article 

    Google Scholar 

  • 27.

    Giavridis, T. et al. CAR T cell–induced cytokine release syndrome is mediated by macrophages and abated by IL-1 blockade. Nat. Med. 24, 731–738 (2018).

    CAS 
    Article 

    Google Scholar 

  • 28.

    Allen, M. E. et al. An AND-gated drug and photoactivatable Cre-loxP system for spatiotemporal control in cell-based therapeutics. ACS Synth. Biol. 8, 2359–2371 (2019).

    CAS 
    Article 

    Google Scholar 

  • 29.

    Huang, Z. et al. Engineering light-controllable CAR T cells for cancer immunotherapy. Sci. Adv. 6, eaay9209 (2020).

    CAS 
    Article 

    Google Scholar 

  • Source link