Preloader

Multiplexed genome regulation in vivo with hyper-efficient Cas12a

  • Qi, L. S. et al. Repurposing CRISPR as an RNA-guided platform for sequence-specific control of gene expression. Cell 152, 1173–1183 (2013).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Doudna, J. A. & Charpentier, E. The new frontier of genome engineering with CRISPR–Cas9. Science 346, 1258096 (2014).

    PubMed 

    Google Scholar 

  • Zetsche, B. et al. Cpf1 is a single RNA-guided endonuclease of a class 2 CRISPR–Cas system. Cell 163, 759–771 (2015).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Zetsche, B. et al. Multiplex gene editing by CRISPR–Cpf1 using a single crRNA array. Nat. Biotechnol. 35, 31–34 (2017).

    CAS 
    PubMed 

    Google Scholar 

  • Kleinstiver, B. P. et al. Engineered CRISPR–Cas12a variants with increased activities and improved targeting ranges for gene, epigenetic and base editing. Nat. Biotechnol. 37, 276–282 (2019).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Campa, C. C., Weisbach, N. R., Santinha, A. J., Incarnato, D. & Platt, R. J. Multiplexed genome engineering by Cas12a and CRISPR arrays encoded on single transcripts. Nat. Methods 16, 887–893 (2019).

    CAS 
    PubMed 

    Google Scholar 

  • Fonfara, I., Richter, H., Bratovi, M., Le Rhun, Ä. & Charpentier, E. The CRISPR-associated DNA-cleaving enzyme Cpf1 also processes precursor CRISPR RNA. Nature 532, 517–521 (2016).

    CAS 
    PubMed 

    Google Scholar 

  • Gier, R. A. et al. High-performance CRISPR–Cas12a genome editing for combinatorial genetic screening. Nat. Commun. 11, 3455 (2020).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Kim, D. et al. Genome-wide analysis reveals specificities of Cpf1 endonucleases in human cells. Nat. Biotechnol. 34, 863–868 (2016).

    CAS 
    PubMed 

    Google Scholar 

  • Bin Moon, S. et al. Highly efficient genome editing by CRISPR–Cpf1 using CRISPR RNA with a uridinylate-rich 3′-overhang. Nat. Commun. 9, 3651 (2018).

    Google Scholar 

  • Li, F. et al. Comparison of CRISPR/Cas endonucleases for in vivo retinal gene editing. Front. Cell. Neurosci. 14, 570917 (2020).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Tak, Y. E. et al. Inducible and multiplex gene regulation using CRISPR-Cpf1-based transcription factors. Nat. Methods 14, 1163–1166 (2017).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Ling, X. et al. Improving the efficiency of CRISPR-Cas12a-based genome editing with site-specific covalent Cas12a-crRNA conjugates. Mol Cell 81, 4747–4756 (2021).

    CAS 
    PubMed 

    Google Scholar 

  • Zhang, L. et al. AsCas12a ultra nuclease facilitates the rapid generation of therapeutic cell medicines. Nat. Commun. 12, 3908 (2021).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Jones, S. K. et al. Massively parallel kinetic profiling of natural and engineered CRISPR nucleases. Nat. Biotechnol. 39, 84–93 (2021).

    PubMed 

    Google Scholar 

  • Liu, P. et al. Enhanced Cas12a editing in mammalian cells and zebrafish. Nucleic Acids Res. 47, 4169–4180 (2019).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Kocak, D. D. et al. Increasing the specificity of CRISPR systems with engineered RNA secondary structures. Nat. Biotechnol. 37, 657–666 (2019).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Nguyen, L. T., Smith, B. M. & Jain, P. K. Enhancement of trans-cleavage activity of Cas12a with engineered crRNA enables amplified nucleic acid detection. Nat. Commun. 11, 4906 (2020).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Wang, D., Zhang, F. & Gao, G. CRISPR-based therapeutic genome editing: strategies and in vivo delivery by AAV vectors. Cell 181, 136–150 (2020).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Zhang, Y. et al. Enhanced CRISPR–Cas9 correction of Duchenne muscular dystrophy in mice by a self-complementary AAV delivery system. Sci. Adv. 6, eaay6812 (2020).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Yamano, T. et al. Structural basis for the canonical and non-canonical PAM recognition by CRISPR–Cpf1. Mol. Cell 67, 633–645 (2017).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Gao, L. et al. Engineered Cpf1 variants with altered PAM specificities. Nat. Biotechnol. 35, 789–792 (2017).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Kempton, H. R. et al. Multiple input sensing and signal integration using a split Cas12a system. Mol. Cell 78, 184–191 (2020).

    CAS 
    PubMed 

    Google Scholar 

  • Vora, S. et al. Rational design of a compact CRISPR–Cas9 activator for AAV-mediated delivery. Preprint at bioRxiv https://doi.org/10.1101/298620 (2018).

  • Wang, Q. et al. Mouse γ-synuclein promoter-mediated gene expression and editing in mammalian retinal ganglion cells. J. Neurosci. 40, 3896–3914 (2020).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Levy, J. M. et al. Cytosine and adenine base editing of the brain, liver, retina, heart and skeletal muscle of mice via adeno-associated viruses. Nat. Biomed. Eng. 4, 97–110 (2020).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Feng, G. et al. Imaging neuronal subsets in transgenic mice expressing multiple spectral variants of GFP. Neuron 28, 41–51 (2000).

    CAS 
    PubMed 

    Google Scholar 

  • Kleinstiver, B. P. et al. Genome-wide specificities of CRISPR–Cas Cpf1 nucleases in human cells. Nat. Biotechnol. 34, 869–874 (2016).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Liu, Y. et al. CRISPR activation screens systematically identify factors that drive neuronal fate and reprogramming. Cell Stem Cell 23, 758–771 (2018).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Lu, Y. et al. Reprogramming to recover youthful epigenetic information and restore vision. Nature 588, 124–129 (2020).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Liu, P., Chen, M., Liu, Y., Qi, L. S. & Ding, S. CRISPR-based chromatin remodeling of the endogenous Oct4 or Sox2 locus enables reprogramming to pluripotency. Cell Stem Cell 22, 252–261 (2018).

    CAS 
    PubMed 

    Google Scholar 

  • Lu, Y. et al. Reprogramming to recover youthful epigenetic information and restore vision. Nature 588, 124–129 (2020).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Gonatopoulos-Pournatzis, T. et al. Genetic interaction mapping and exon-resolution functional genomics with a hybrid Cas9–Cas12a platform. Nat. Biotechnol. 38, 638–648 (2020).

    CAS 
    PubMed 

    Google Scholar 

  • Breinig, M. et al. Multiplexed orthogonal genome editing and transcriptional activation by Cas12a. Nat. Methods 16, 51–54 (2019).

    CAS 
    PubMed 

    Google Scholar 

  • Matsuda, T. & Cepko, C. L. Controlled expression of transgenes introduced by in vivo electroporation. Proc. Natl Acad. Sci. USA 104, 1027–1032 (2007).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Wang, S., Sengel, C., Emerson, M. M. & Cepko, C. L. A gene regulatory network controls the binary fate decision of rod and bipolar cells in the vertebrate retina. Dev. Cell 30, 513–527 (2014).

    PubMed 
    PubMed Central 

    Google Scholar 

  • Chan, C. S. Y. et al. Cell type- and stage-specific expression of Otx2 is regulated by multiple transcription factors and cis-regulatory modules in the retina. Development 147, dev187922 (2020).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Rocha-Martins, M. et al. De novo genesis of retinal ganglion cells by targeted expression of Klf4 in vivo. Development 146, dev176586 (2019).

    CAS 
    PubMed 

    Google Scholar 

  • Sharma, P. et al. Oct4 mediates Müller glia reprogramming and cell cycle exit during retina regeneration in zebrafish. Life Sci. Alliance 2, e201900548 (2019).

    PubMed 
    PubMed Central 

    Google Scholar 

  • Lin, Y. P., Ouchi, Y., Satoh, S. & Watanabe, S. Sox2 plays a role in the induction of amacrine and Müller glial cells in mouse retinal progenitor cells. Investig. Ophthalmol. Vis. Sci. 50, 68–74 (2009).

    Google Scholar 

  • Takahashi, K. & Yamanaka, S. Induction of pluripotent stem cells from mouse embryonic and adult fibroblast cultures by defined factors. Cell 126, 663–676 (2006).

    CAS 
    PubMed 

    Google Scholar 

  • Venkatesh, A., Ma, S., Langellotto, F., Gao, G. & Punzo, C. Retinal gene delivery by rAAV and DNA electroporation. Curr. Protoc. Microbiol. https://doi.org/10.1002/9780471729259.mc14d04s28 (2013).

  • Matharu, N. et al. CRISPR-mediated activation of a promoter or enhancer rescues obesity caused by haploinsufficiency. Science 363, eaau0629 (2019).

    CAS 
    PubMed 

    Google Scholar 

  • Liao, C. et al. Modular one-pot assembly of CRISPR arrays enables library generation and reveals factors influencing crRNA biogenesis. Nat. Commun. 10, 2948 (2019).

    PubMed 
    PubMed Central 

    Google Scholar 

  • Magnusson, J. P. et al. Enhanced Cas12a multi-gene regulation using a CRISPR array separator. eLife 10:e66406 (2021).

  • Black, J. B. et al. Targeted epigenetic remodeling of endogenous loci by CRISPR/Cas9-based transcriptional activators directly converts fibroblasts to neuronal cells. Cell Stem Cell 19, 406–414 (2016).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Nuñez, J. K. et al. Genome-wide programmable transcriptional memory by CRISPR-based epigenome editing. Cell 184, 2503–2519 (2021).

    PubMed 

    Google Scholar 

  • Nakamura, M., Ivec, A. E., Gao, Y. & Qi, L. S. Durable CRISPR-based epigenetic silencing. BioDesign Res. 2021, 981582 (2021).

  • Kemaladewi, D. U. et al. A mutation-independent approach for muscular dystrophy via upregulation of a modifier gene. Nature 572, 125–130 (2019).

    CAS 
    PubMed 

    Google Scholar 

  • Xu, X. et al. Engineered miniature CRISPR–Cas system for mammalian genome regulation and editing. Mol. Cell. 81, 4333–4345 (2021).

    CAS 
    PubMed 

    Google Scholar 

  • Guo, L. Y. et al. Multiplex CRISPR genome regulation in mouse retina with hyper-efficient Cas12a. Protoc. Exch. https://doi.org/10.21203/rs.3.pex-1811/v1 (2022).

  • Clement, K. et al. CRISPResso2 provides accurate and rapid genome editing sequence analysis. Nat. Biotechnol. 37, 224–226 (2019).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Dobin, A. et al. STAR: ultrafast universal RNA-seq aligner. Bioinformatics 29, 15–21 (2013).

    CAS 

    Google Scholar 

  • Anders, S., Pyl, P. T. & Huber, W. HTSeq-A Python framework to work with high-throughput sequencing data. Bioinformatics 31, 166–169 (2015).

    CAS 
    PubMed 

    Google Scholar 

  • Kwong, J. M. K., Caprioli, J. & Piri, N. RNA binding protein with multiple splicing: a new marker for retinal ganglion cells. Investig. Ophthalmol. Vis. Sci. 51, 1052–1058 (2010).

    Google Scholar 

  • Source link