Preloader

MqsR toxin as a biotechnological tool for plant pathogen bacterial control

  • Food and Agriculture Organization of the United Nations. The future of food and agriculture – Trends and challenges. 1–180 (2017). http://www.fao.org/3/i6583e/i6583e.pdf. Accessed 1st Apr 2021.

  • Conforti, P. (Food and A. O. of the U. N. Looking ahead in world food and agriculture: Perspectives to 2050. 1–560 (2011). http://www.fao.org/3/i2280e/i2280e.pdf. Accessed 1st Apr 2021.

  • Foreign Agricultural Service (United States Department of Agriculture). Citrus: World Markets and Trade. 1–13 (2021). https://apps.fas.usda.gov/psdonline/circulars/citrus.pdf. Accessed 1st Apr 2021.

  • Richard, D. et al. First report of copper-resistant Xanthomonas citri pv. citri pathotype a causing asiatic citrus canker in reunion, France. Plant Dis. 101, 503 (2017).

    Google Scholar 

  • Wuana, R. A. & Okieimen, F. E. Heavy metals in contaminated soils: A review of sources, chemistry, risks and best available strategies for remediation. ISRN Ecol. 2011, 1–20 (2011).

    Google Scholar 

  • Coletta-Filho, H. D. et al. Citrus variegated chlorosis: An overview of 30 years of research and disease management. Trop. Plant Pathol. 45, 175–191 (2020).

    Google Scholar 

  • Martins, P. M. M., de Oliveira Andrade, M., Benedetti, C. E. & de Souza, A. A. Xanthomonas citri subsp. citri: Host interaction and control strategies. Trop. Plant Pathol. 45, 213–236 (2020).

    Google Scholar 

  • Simpson, A. J. G. et al. The genome sequence of the plant pathogen Xylella fastidiosa. Nature 406, 151–157 (2000).

    ADS 
    CAS 
    PubMed 

    Google Scholar 

  • Da Silva, A. C. R. et al. Comparison of the genomes of two Xanthomonas pathogens with differing host specificities. Nature 417, 459–463 (2002).

    ADS 
    PubMed 

    Google Scholar 

  • Moreira, L. M. et al. Comparative genomics analyses of citrus-associated bacteria. Annu. Rev. Phytopathol. 42, 163–184 (2004).

    CAS 
    PubMed 

    Google Scholar 

  • Burbank, L. P. & Stenger, D. C. The DinJ/RelE toxin-antitoxin system suppresses bacterial proliferation and virulence of Xylella fastidiosa in grapevine. Phytopathology 107, 388–394 (2017).

    CAS 
    PubMed 

    Google Scholar 

  • Lee, M. W., Tan, C. C., Rogers, E. E. & Stenger, D. C. Toxin-antitoxin systems mqsR/ygiT and dinJ/relE of Xylella fastidiosa. Physiol. Mol. Plant Pathol. 87, 59–68 (2014).

    CAS 

    Google Scholar 

  • Martins, P. M. M., Machado, M. A., Silva, N. V., Takita, M. A. & De Souza, A. A. Type II toxin-antitoxin distribution and adaptive aspects on Xanthomonas genomes: Focus on Xanthomonas citri. Front. Microbiol. 7 (2016).

  • Merfa, M. V., Niza, B., Takita, M. A. & De Souza, A. A. The MqsRA toxin-antitoxin system from Xylella fastidiosa plays a key role in bacterial fitness, pathogenicity, and persister cell formation. Front. Microbiol. 7, 1–14 (2016).

    Google Scholar 

  • Muranaka, L. S., Takita, M. A., Olivato, J. C., Kishi, L. T. & de Souza, A. A. Global expression profile of biofilm resistance to antimicrobial compounds in the plant-pathogenic bacterium Xylella fastidiosa reveals evidence of persister cells. J. Bacteriol. 194, 4561–4569 (2012).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • da Santiago, A. S. et al. The antitoxin protein of a toxin-antitoxin system from Xylella fastidiosa is secreted via outer membrane vesicles. Front. Microbiol. 7, 1–14 (2016).

    Google Scholar 

  • Keren, I., Shah, D., Spoering, A., Kaldalu, N. & Lewis, K. Specialized persister cells and the mechanism of multidrug tolerance in Escherichia coli. J. Bacteriol. 186, 8172–8180 (2004).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Kim, Y. & Wood, T. K. Toxins Hha and CspD and small RNA regulator Hfq are involved in persister cell formation through MqsR in Escherichia coli. Biochem. Biophys. Res. Commun. 391, 209–213 (2010).

    CAS 
    PubMed 

    Google Scholar 

  • Wang, X. & Wood, T. K. Toxin-antitoxin systems influence biofilm and persister cell formation and the general stress response. Appl. Environ. Microbiol. 77, 5577–5583 (2011).

    ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Yamaguchi, Y., Park, J. H. & Inouye, M. Toxin-antitoxin systems in bacteria and archaea. Annu. Rev. Genet. 45, 61–79 (2011).

    CAS 
    PubMed 

    Google Scholar 

  • Edzierska, K. B. & Hayes, F. molecules emerging roles of toxin-antitoxin modules in bacterial pathogenesis. Molecules 21, 1–25 (2016).

    Google Scholar 

  • Martins, P. M., Machado, M. A., Silva, N. V, Takita, M. A. & de Souza AA. Type II Toxin-Antitoxin Distribution and Adaptive
    Aspects on Xanthomonas Genomes: Focus on Xanthomonas citri. Front Microbiol. 7, 652. https://doi.org/10.3389/fmicb.2016.00652 (2016).

    PubMed 
    PubMed Central 

    Google Scholar 

  • Unterholzner, S. J., Hailer, B., Poppenberger, B. & Rozhon, W. Plasmid characterisation of the stbD/E toxin—antitoxin system of pEP36, a plasmid of the plant pathogen Erwinia pyrifoliae. Plasmid 70, 216–225 (2013).

    CAS 
    PubMed 

    Google Scholar 

  • Lee, M. W., Rogers, E. E. & Stenger, D. C. Xylella fastidiosa plasmid-encoded PemK toxin is an endoribonuclease. Phytopathology 102, 32–40 (2012).

    CAS 
    PubMed 

    Google Scholar 

  • Chan, W. T., Balsa, D. & Espinosa, M. One cannot rule them all: Are bacterial toxins-antitoxins druggable?. FEMS Microbiol. Rev. 39, 522–540 (2015).

    PubMed 
    PubMed Central 

    Google Scholar 

  • Chan, W. T., Espinosa, M. & Yeo, C. C. Keeping the wolves at bay: Antitoxins of prokaryotic type II toxin-antitoxin systems. Front. Mol. Biosci. 3, 1–20 (2016).

    Google Scholar 

  • Brown, B. L. et al. Three dimensional structure of the MqsR:MqsA complex: A novel TA pair comprised of a toxin homologous to RelE and an antitoxin with unique properties. PLoS Pathog. 5, 1–15 (2009).

    Google Scholar 

  • Yamaguchi, Y., Park, J. H. & Inouye, M. MqsR, a crucial regulator for quorum sensing and biofilm formation, is a GCU-specific mRNA interferase in Escherichia coli. J. Biol. Chem. 284, 28746–28753 (2009).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Boscariol, R. L. et al. Attacin A gene from Tricloplusia ni reduces susceptibility to Xanthomonas axonopodis pv. citri in transgenic Citrus sinesis ‘Hamlin’. J. Am. Soc. Hortic. Sci. 131, 530–536 (2006).

    CAS 

    Google Scholar 

  • Schnell, J. et al. A comparative analysis of insertional effects in genetically engineered plants: Considerations for pre-market assessments. Transgenic Res. 24, 1–17 (2015).

    CAS 
    PubMed 

    Google Scholar 

  • Caserta, R., Souza-Neto, R. R., Takita, M. A., Lindow, S. E. & De Souza, A. A. Ectopic expression of Xylella fastidiosa rpfF conferring production of diffusible signal factor in transgenic tobacco and citrus alters pathogen behavior and reduces disease severity. Mol. Plant Microbe Interact. 30, 866–875 (2017).

    CAS 
    PubMed 

    Google Scholar 

  • Belasque, J. Jr. et al. Escalas diagramáticas para avaliação da severidade do cancro cítrico. Fitopatol. Bras. 30, 387–393 (2005).

    Google Scholar 

  • Muranaka, L. S., Giorgiano, T. E., Takita, M. A., Forim, M. R. & Silva, L. F. C. N-Acetylcysteine in agriculture, a novel use for an old molecule: Focus on controlling the plant-pathogen Xylella fastidiosa. PLoS ONE 8, 1–14 (2013).

    Google Scholar 

  • Caserta, R. et al. Expression of Xylella fastidiosa RpfF in citrus disrupts signaling in Xanthomonas citri subsp. citri and thereby its virulence. Mol. Plant Microbe Interact. 27, 1241–1252 (2014).

    CAS 
    PubMed 

    Google Scholar 

  • Yang, L. et al. Transformation of sweet orange [Citrus sinensis (L.) Osbeck] with pthA-nls for acquiring resistance to citrus canker disease. Plant Mol. Biol. 75, 11–23 (2011).

    CAS 
    PubMed 

    Google Scholar 

  • ISAAA. Global Status of Commercialized Biotech/GM Crops: 2018 (2018). https://www.isaaa.org/resources/publications/briefs/54/. Accessed 1st Apr 2021.

  • Lindow, S. et al. Production of Xylella fastidiosa diffusible signal factor in transgenic grape causes pathogen confusion and reduction in severity of pierce’s disease. Mol. Plant Microbe Interact. 27, 244–254 (2014).

    CAS 
    PubMed 

    Google Scholar 

  • Schikora, A. et al. N-acyl-homoserine lactone confers resistance toward biotrophic and hemibiotrophic pathogens via altered activation of AtMPK6. Plant Physiol. 157, 1407–1418 (2011).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Schenk, S. T. et al. N-acyl-homoserine lactone primes plants for cell wall reinforcement and induces resistance to bacterial pathogens via the salicylic acid/oxylipin pathway. Plant Cell 26, 2708–2723 (2014).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Kasari, V., Kurg, K., Margus, T., Tenson, T. & Kaldalu, N. The Escherichia coli mqsR and ygiT genes encode a new toxin-antitoxin pair. J. Bacteriol. 192, 2908–2919 (2010).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Kim, Y. et al. Escherichia coli toxin/antitoxin pair MqsR/MqsA regulate toxin CspD. Environ. Microbiol. 12, 1105–1121 (2010).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Paget, M. S. & Helmann, J. D. The 70 family of sigma factors. Genome Biol. 4, 203.1-203.6 (2003).

    Google Scholar 

  • Malamud, F. et al. The Xanthomonas axonopodis pv. citri flagellum is required for mature biofilm and canker development. Microbiology 157, 819–829 (2011).

    CAS 
    PubMed 

    Google Scholar 

  • Bakar, F. A., Yeo, C. C. & Harikrishna, J. A. Expression of the streptococcus pneumoniae yoeB chromosomal toxin gene causes cell death in the model plant Arabidopsis thaliana. BMC Biotechnol. 15, 1–10 (2015).

    Google Scholar 

  • Baldacci-Cresp, F. et al. Escherichia coli mazEF toxin-antitoxin system as a tool to target cell ablation in plants. J. Mol. Microbiol. Biotechnol. 26, 277–283 (2016).

    CAS 
    PubMed 

    Google Scholar 

  • Abbasi, P. A., Khabbaz, S. E., Weselowski, B. & Zhang, L. Occurrence of copper-resistant strains and a shift in Xanthomonas spp. causing tomato bacterial spot in Ontario. Can. J. Microbiol. 61, 753–761 (2015).

    CAS 
    PubMed 

    Google Scholar 

  • Cidre, I., Pulido, R. P., Burgos, M. J. G., Galvez, A. & Lucas, R. Copper and zinc tolerance in bacteria isolated from fresh produce. J. Food Prot. 80, 969–975 (2017).

    CAS 
    PubMed 

    Google Scholar 

  • Colombi, E. et al. Evolution of copper resistance in the kiwifruit pathogen Pseudomonas syringae pv. actinidiae through acquisition of integrative conjugative elements and plasmids. Environ. Microbiol. 19, 819–832 (2017).

    CAS 
    PubMed 

    Google Scholar 

  • Itako, A. T., Tolentino, J. B. Jr., Da Silva Jr, T. A. F., Soman, J. M. & Maringoni, A. C. Chemical products induce resistance to Xanthomonas perforans in tomato. Braz. J. Microbiol. 46, 701–706 (2015).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Kovach, M. E. et al. Four new derivatives of the broad-host-range cloning vector pBBR1MCS, carrying different antibiotic-resistance cassettes. Gene 166, 175–176 (1995).

    CAS 
    PubMed 

    Google Scholar 

  • Zhao, S. & Fernald, R. D. Comprehensive algorithm for quantitative real-time polymerase chain reaction. J. Comput. Biol. 12, 1047–1064 (2005).

    CAS 
    PubMed 

    Google Scholar 

  • Livak, K. J. & Schmittgen, T. D. Analysis of relative gene expression data using real-time quantitative PCR and the 2ΔΔCT method. Methods 25, 402–408 (2001).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Shepherd, C. T., Lauter, A. N. M. & Scott, M. P. Determination of transgene copy number by real-time quantitative PCR. Methods Mol. Biol. 526, 129–134 (2009).

    CAS 
    PubMed 

    Google Scholar 

  • Omar, A. A., Dekkers, M. G. H., Graham, J. H. & Grosser, J. W. Estimation of transgene copy number in transformed citrus plants by quantitative multiplex real-time PCR. Biotechnol. Prog. 24, 1241–1248 (2008).

    CAS 
    PubMed 

    Google Scholar 

  • Wu, Z. & Burns, J. K. Isolation and characterization of a cDNA encoding a lipid transfer protein expressed in ‘Valencia’ orange during abscission. J. Exp. Bot. 54, 1183–1191 (2003).

    CAS 
    PubMed 

    Google Scholar 

  • De Oliveira, M. L. P. et al. Increased resistance against citrus canker mediated by a citrus mitogen-activated protein kinase. Mol. Plant Microbe Interact. 26, 1190–1199 (2013).

    PubMed 

    Google Scholar 

  • Scott, M. P. Tissue-print immunodetection of transgene products in endosperm for high-throughput screening of seeds. Methods Mol. Biol. 526, 123–128 (2009).

    CAS 
    PubMed 

    Google Scholar 

  • Rigano, L. A. et al. Biofilm formation, epiphytic fitness, and canker development in Xanthomonas axonopodis pv. citri. Mol. Plant Microbe Interact. 20, 1222–1230 (2007).

    CAS 
    PubMed 

    Google Scholar 

  • Coletta-Filho, H. D. et al. Analysis of resistance to Xylella fastidiosa within a hybrid population of Pera sweet orange × Murcott tangor. Plant Pathol. 56, 661–668 (2007).

    Google Scholar 

  • Minsavage, G. V., Thompson, C. M., Hopkins, D. L., Leite, R. M. V. B. & Stall, R. E. Development of a polymerase chain reaction protocol for detection of Xylella fastidiosa in plant tissue. Phytopathology 84, 456–461 (1994).

    CAS 

    Google Scholar 

  • Berger, R. D. The analysis of effects of control measures on the development of epidemics. In Experimental Techniques in Plant Disease Epidemiology 137–151 (Springer, Berlin, 1988). https://doi.org/10.1007/978-3-642-95534-1_10

  • Source link