Preloader

Monitoring protein conformational changes using fluorescent nanoantennas

  • 1.

    Hammes-Schiffer, S. & Klinman, J. Emerging concepts about the role of protein motion in enzyme catalysis. Acc. Chem. Res. 48, 899–899 (2015).

    CAS 
    PubMed 

    Google Scholar 

  • 2.

    Lobb, R. R. & Auld, D. S. Determination of enzyme mechanisms by radiationless energy transfer kinetics. Proc. Natl Acad. Sci. USA 76, 2684–2688 (1979).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • 3.

    Au, H.-W., Tsang, M.-W., So, P.-K., Wong, K.-Y. & Leung, Y.-C. Thermostable β-lactamase mutant with its active site conjugated with fluorescein for efficient β-lactam antibiotic detection. ACS Omega 4, 20493–20502 (2019).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • 4.

    Vallée-Bélisle, A. & Michnick, S. W. Visualizing transient protein-folding intermediates by tryptophan-scanning mutagenesis. Nat. Struct. Mol. Biol. 19, 731–736 (2012).

    PubMed 

    Google Scholar 

  • 5.

    Gregorio, G. G. et al. Single-molecule analysis of ligand efficacy in β2AR–G-protein activation. Nature 547, 68–73 (2017).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • 6.

    Comstock, M. J. et al. Direct observation of structure-function relationship in a nucleic acid–processing enzyme. Science 348, 352–354 (2015).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • 7.

    Hwang, H. & Myong, S. Protein induced fluorescence enhancement (PIFE) for probing protein–nucleic acid interactions. Chem. Soc. Rev. 43, 1221–1229 (2014).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • 8.

    Lerner, E. et al. Toward dynamic structural biology: two decades of single-molecule Förster resonance energy transfer. Science 359, eaan1133 (2018).

    PubMed 
    PubMed Central 

    Google Scholar 

  • 9.

    Chen, Y., Tsao, K. & Keillor, J. W. Fluorogenic protein labelling: a review of photophysical quench mechanisms and principles of fluorogen design. Can. J. Chem. 93, 389–398 (2015).

    CAS 

    Google Scholar 

  • 10.

    Unnikrishnan, B., Wu, R.-S., Wei, S.-C., Huang, C.-C. & Chang, H.-T. Fluorescent carbon dots for selective labeling of subcellular organelles. ACS Omega 5, 11248–11261 (2020).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • 11.

    Eisenmesser, E. Z., Bosco, D. A., Akke, M. & Kern, D. Enzyme dynamics during catalysis. Science 295, 1520–1523 (2002).

    CAS 
    PubMed 

    Google Scholar 

  • 12.

    Ma, X., Hortelão, A. C., Patiño, T. & Sánchez, S. Enzyme catalysis to power micro/nanomachines. ACS Nano 10, 9111–9122 (2016).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • 13.

    Abou-Zied, O. K. & Sulaiman, S. A. J. Site-specific recognition of fluorescein by human serum albumin: a steady-state and time-resolved spectroscopic study. Dyes Pigment. 110, 89–96 (2014).

    CAS 

    Google Scholar 

  • 14.

    Pisoni, D. S. et al. Symmetrical and asymmetrical cyanine dyes. Synthesis, spectral properties, and BSA association study. J. Org. Chem. 79, 5511–5520 (2014).

    CAS 
    PubMed 

    Google Scholar 

  • 15.

    Millán, J.L. Mammalian Alkaline Phosphatases: From Biology to Applications in Medicine and Biotechnology (John Wiley & Sons, 2006).

  • 16.

    Lallès, J.-P. Recent advances in intestinal alkaline phosphatase, inflammation, and nutrition. Nutr. Rev. 77, 710–724 (2019).

    PubMed 

    Google Scholar 

  • 17.

    Bates, J. M., Akerlund, J., Mittge, E. & Guillemin, K. Intestinal alkaline phosphatase detoxifies lipopolysaccharide and prevents inflammation in zebrafish in response to the gut microbiota. Cell Host Microbe 2, 371–382 (2007).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • 18.

    Malo, M. S. et al. Intestinal alkaline phosphatase promotes gut bacterial growth by reducing the concentration of luminal nucleotide triphosphates. Am. J. Physiol. Gastrointest. Liver Physiol. 306, G826–G838 (2014).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • 19.

    Mizumori, M. et al. Intestinal alkaline phosphatase regulates protective surface microclimate pH in rat duodenum. J. Physiol. 587, 3651–3663 (2009).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • 20.

    Giatromanolaki, A., Sivridis, E., Maltezos, E. & Koukourakis, M. I. Down-regulation of intestinal-type alkaline phosphatase in the tumor vasculature and stroma provides a strong basis for explaining amifostine selectivity. Semin. Oncol. 29, 14–21 (2002).

    CAS 
    PubMed 

    Google Scholar 

  • 21.

    Hofer, M. et al. Two new faces of amifostine: protector from DNA damage in normal cells and inhibitor of DNA repair in cancer cells. J. Med. Chem. 59, 3003–3017 (2016).

    CAS 
    PubMed 

    Google Scholar 

  • 22.

    Riedel, C. et al. The heat released during catalytic turnover enhances the diffusion of an enzyme. Nature 517, 227–230 (2015).

    CAS 
    PubMed 

    Google Scholar 

  • 23.

    Tsai, L.-C. et al. Expression and regulation of alkaline phosphatases in human breast cancer MCF-7 cells. Eur. J. Biochem. 267, 1330–1339 (2000).

    CAS 
    PubMed 

    Google Scholar 

  • 24.

    Rao, S. R. et al. Tumour-derived alkaline phosphatase regulates tumour growth, epithelial plasticity and disease-free survival in metastatic prostate cancer. Br. J. Cancer 116, 227–236 (2017).

    CAS 
    PubMed 

    Google Scholar 

  • 25.

    Hung, H.-Y. et al. Preoperative alkaline phosphatase elevation was associated with poor survival in colorectal cancer patients. Int. J. Colorectal Dis. 32, 1775–1778 (2017).

    PubMed 

    Google Scholar 

  • 26.

    Namikawa, T. et al. Prognostic significance of serum alkaline phosphatase and lactate dehydrogenase levels in patients with unresectable advanced gastric cancer. Gastric Cancer 22, 684–691 (2019).

    CAS 
    PubMed 

    Google Scholar 

  • 27.

    Kaliannan, K. et al. Intestinal alkaline phosphatase prevents metabolic syndrome in mice. Proc. Natl Acad. Sci. USA 110, 7003–7008 (2013).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • 28.

    José, L. M. & Michael, P. W. Alkaline Phosphatase and Hypophosphatasia. Calcif. Tissue Int. 98, 398–416 (2016).

    Google Scholar 

  • 29.

    Waymire, K. G. et al. Mice lacking tissue non-specific alkaline phosphatase die from seizures due to defective metabolism of vitamin B-6. Nat. Genet. 11, 45–51 (1995).

    CAS 
    PubMed 

    Google Scholar 

  • 30.

    Park, J.-B. et al. Serum alkaline phosphatase is a predictor of mortality, myocardial infarction, or stent thrombosis after implantation of coronary drug-eluting stent. Eur. Heart J. 34, 920–931 (2012).

    PubMed 

    Google Scholar 

  • 31.

    Yang, W. H. et al. Recurrent infection progressively disables host protection against intestinal inflammation. Science 358, eaao5610 (2017).

    PubMed 
    PubMed Central 

    Google Scholar 

  • 32.

    To, K. K.-W. et al. Temporal profiles of viral load in posterior oropharyngeal saliva samples and serum antibody responses during infection by SARS-CoV-2: an observational cohort study. Lancet Infect. Dis. 20, 565–574 (2020).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • 33.

    Stec, B., Holtz, K. M. & Kantrowitz, E. R. A revised mechanism for the alkaline phosphatase reaction involving three metal ions. J. Mol. Biol. 299, 1303–1311 (2000).

    CAS 
    PubMed 

    Google Scholar 

  • 34.

    Holtz, K. M., Stec, B. & Kantrowitz, E. R. A model of the transition state in the alkaline phosphatase reaction. J. Biol. Chem. 274, 8351–8354 (1999).

    CAS 
    PubMed 

    Google Scholar 

  • 35.

    Peck, A., Sunden, F., Andrews, L. D., Pande, V. S. & Herschlag, D. Tungstate as a transition state analog for catalysis by alkaline phosphatase. J. Mol. Biol. 428, 2758–2768 (2016).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • 36.

    Roston, D., Demapan, D. & Cui, Q. Leaving group ability observably affects transition state structure in a single enzyme active site. J. Am. Chem. Soc. 138, 7386–7394 (2016).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • 37.

    Bortolato, M., Besson, F. & Roux, B. Role of metal ions on the secondary and quaternary structure of alkaline phosphatase from bovine intestinal mucosa. Proteins 37, 310–318 (1999).

    CAS 
    PubMed 

    Google Scholar 

  • 38.

    Ásgeirsson, B., Markússon, S., Hlynsdóttir, S. S., Helland, R. & Hjörleifsson, J. G. X-ray crystal structure of Vibrio alkaline phosphatase with the non-competitive inhibitor cyclohexylamine. Biochem. Biophys. Rep. 24, 100830 (2020).

    PubMed 
    PubMed Central 

    Google Scholar 

  • 39.

    Aziz, H. et al. Synthesis, characterization, in vitro tissue-nonspecific alkaline phosphatase (TNAP) and intestinal alkaline phosphatase (IAP) inhibition studies and computational evaluation of novel thiazole derivatives. Bioorg. Chem. 102, 104088 (2020).

    CAS 
    PubMed 

    Google Scholar 

  • 40.

    Kiffer-Moreira, T. et al. Catalytic signature of a heat-stable, chimeric human alkaline phosphatase with therapeutic potential. PLoS ONE 9, e89374 (2014).

    PubMed 
    PubMed Central 

    Google Scholar 

  • 41.

    Jiang, Y., Li, X. & Walt, D. R. Single-molecule analysis determines isozymes of human alkaline phosphatase in serum. Angew. Chem. Int. Ed. Engl. 59, 18010–18015 (2020).

    CAS 
    PubMed 

    Google Scholar 

  • 42.

    Bessey, O. A., Lowry, O. H. & Brock, M. J. A method for the rapid determination of alkaline phosphatase with five cubic millimeters of serum. J. Biol. Chem. 164, 321–329 (1946).

    CAS 
    PubMed 

    Google Scholar 

  • 43.

    Fernley, H. & Walker, P. Kinetic behaviour of calf-intestinal alkaline phosphatase with 4-methylumbelliferyl phosphate. Biochem. J. 97, 95–103 (1965).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • 44.

    Deng, J., Yu, P., Wang, Y. & Mao, L. Real-time ratiometric fluorescent assay for alkaline phosphatase activity with stimulus responsive infinite coordination polymer nanoparticles. Anal. Chem. 87, 3080–3086 (2015).

    CAS 
    PubMed 

    Google Scholar 

  • 45.

    Sanzhaeva, U. et al. Imaging of enzyme activity by electron paramagnetic resonance: concept and experiment using a paramagnetic substrate of alkaline phosphatase. Angew. Chem. Int. Ed. Engl. 57, 11701–11705 (2018).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • 46.

    Gyurcsányi, R. E., Bereczki, A., Nagy, G., Neuman, M. R. & Lindner, E. Amperometric microcells for alkaline phosphatase assay. Analyst 127, 235–240 (2002).

    PubMed 

    Google Scholar 

  • 47.

    Baykov, A. A., Evtushenko, O. A. & Avaeva, S. M. A malachite green procedure for orthophosphate determination and its use in alkaline phosphatase-based enzyme immunoassay. Anal. Biochem. 171, 266–270 (1988).

    CAS 
    PubMed 

    Google Scholar 

  • 48.

    Liu, Y. & Schanze, K. S. Conjugated polyelectrolyte-based real-time fluorescence assay for alkaline phosphatase with pyrophosphate as substrate. Anal. Chem. 80, 8605–8612 (2008).

    CAS 
    PubMed 

    Google Scholar 

  • 49.

    Liu, Y. et al. Selective sensing of phosphorylated peptides and monitoring kinase and phosphatase activity with a supramolecular tandem assay. J. Am. Chem. Soc. 140, 13869–13877 (2018).

    CAS 
    PubMed 

    Google Scholar 

  • 50.

    Wang, Y., Wang, G., Moitessier, N. & Mittermaier, A. K. Enzyme kinetics by isothermal titration calorimetry: allostery, inhibition, and dynamics. Front. Mol. Biosci. 7, 583826 (2020).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • 51.

    Di Trani, J. M., Moitessier, N. & Mittermaier, A. K. Complete kinetic characterization of enzyme inhibition in a single isothermal titration calorimetric experiment. Anal. Chem. 90, 8430–8435 (2018).

    PubMed 

    Google Scholar 

  • 52.

    Honarmand Ebrahimi, K., Hagedoorn, P.-L., Jacobs, D. & Hagen, W. R. Accurate label-free reaction kinetics determination using initial rate heat measurements. Sci. Rep. 5, 16380 (2015).

    CAS 

    Google Scholar 

  • 53.

    Zhang, L., Buchet, R. & Azzar, G. Phosphate binding in the active site of alkaline phosphatase and the interactions of 2-nitrosoacetophenone with alkaline phosphatase-induced small structural changes. Biophys. J. 86, 3873–3881 (2004).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • 54.

    Akerström, B., Brodin, T., Reis, K. & Björck, L. Protein G: a powerful tool for binding and detection of monoclonal and polyclonal antibodies. J. Immunol. 135, 2589–2592 (1985).

    PubMed 

    Google Scholar 

  • 55.

    Kada, G., Falk, H. & Gruber, H. J. Accurate measurement of avidin and streptavidin in crude biofluids with a new, optimized biotin–fluorescein conjugate. Biochim. Biophys. Acta 1427, 33–43 (1999).

    CAS 
    PubMed 

    Google Scholar 

  • 56.

    Buranda, T. et al. Ligand receptor dynamics at streptavidin-coated particle surfaces: a flow cytometric and spectrofluorimetric study. J. Phys. Chem. B 103, 3399–3410 (1999).

    CAS 

    Google Scholar 

  • 57.

    Iyer, A., Chandra, A. & Swaminathan, R. Hydrolytic enzymes conjugated to quantum dots mostly retain whole catalytic activity. Biochim. Biophys. Acta Gen. Subj. 1840, 2935–2943 (2014).

    CAS 

    Google Scholar 

  • 58.

    Fairhead, M., Krndija, D., Lowe, E. D. & Howarth, M. Plug-and-play pairing via defined divalent streptavidins. J. Mol. Biol. 426, 199–214 (2014).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • 59.

    Neish, C. S., Martin, I. L., Henderson, R. M. & Edwardson, J. M. Direct visualization of ligand-protein interactions using atomic force microscopy. Br. J. Pharmacol. 135, 1943–1950 (2002).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • 60.

    Deetanya, P. et al. Interaction of 8-anilinonaphthalene-1-sulfonate with SARS-CoV-2 main protease and its application as a fluorescent probe for inhibitor identification. Comput. Struct. Biotechnol. J. 19, 3364–3371 (2021).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • 61.

    Chen, H., Ahsan, S. S., Santiago-Berrios, M. E. B., Abruña, H. D. & Webb, W. W. Mechanisms of quenching of Alexa fluorophores by natural amino acids. J. Am. Chem. Soc. 132, 7244–7245 (2010).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • 62.

    Togashi, D. M., Szczupak, B., Ryder, A. G., Calvet, A. & O’Loughlin, M. Investigating tryptophan quenching of fluorescein fluorescence under protolytic equilibrium. J. Phys. Chem. A 113, 2757–2767 (2009).

    CAS 
    PubMed 

    Google Scholar 

  • 63.

    Nguyen, B., Ciuba, M. A., Kozlov, A. G., Levitus, M. & Lohman, T. M. Protein environment and DNA orientation affect protein-induced Cy3 fluorescence enhancement. Biophys. J. 117, 66–73 (2019).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • 64.

    Rashid, F. et al. Initial state of DNA-Dye complex sets the stage for protein induced fluorescence modulation. Nat. Commun. 10, 2104 (2019).

    PubMed 
    PubMed Central 

    Google Scholar 

  • 65.

    Marras, S. A. E., Kramer, F. R. & Tyagi, S. Efficiencies of fluorescence resonance energy transfer and contact‐mediated quenching in oligonucleotide probes. Nucleic Acids Res. 30, e122 (2002).

    PubMed 
    PubMed Central 

    Google Scholar 

  • 66.

    Zimmerle, C. T. & Frieden, C. Analysis of progress curves by simulations generated by numerical integration. Biochem. J. 258, 381–387 (1989).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • 67.

    Palmier, M. O. & Van Doren, S. R. Rapid determination of enzyme kinetics from fluorescence: overcoming the inner filter effect. Anal. Biochem. 371, 43–51 (2007).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • 68.

    Komazin, G. et al. Substrate structure-activity relationship reveals a limited lipopolysaccharide chemotype range for intestinal alkaline phosphatase. J. Biol. Chem. 294, 19405–19423 (2019).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • 69.

    Ziegler, A. J., Florian, J., Ballicora, M. A. & Herlinger, A. W. Alkaline phosphatase inhibition by vanadyl-β-diketone complexes: electron density effects. J. Enzym. Inhib. Med. Chem. 24, 22–28 (2009).

    CAS 

    Google Scholar 

  • 70.

    Chen, S. et al. Detection of dihydrofolate reductase conformational change by FRET using two fluorescent amino acids. J. Am. Chem. Soc. 135, 12924–12927 (2013).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • 71.

    Schwaminger, S. P. et al. Immobilization of PETase enzymes on magnetic iron oxide nanoparticles for the decomposition of microplastic PET. Nanoscale Adv. 3, 4395–4399 (2021).

    CAS 

    Google Scholar 

  • 72.

    Ritchie, R. J. & Prvan, T. A simulation study on designing experiments to measure the Km of Michaelis–Menten kinetics curves. J. Theor. Biol. 178, 239–254 (1996).

    CAS 

    Google Scholar 

  • 73.

    Mao, H., Yang, T. & Cremer, P. S. Design and characterization of immobilized enzymes in microfluidic systems. Anal. Chem. 74, 379–385 (2002).

    CAS 
    PubMed 

    Google Scholar 

  • 74.

    Gordon, S. E., Munari, M. & Zagotta, W. N. Visualizing conformational dynamics of proteins in solution and at the cell membrane. eLife 7, e37248 (2018).

    Google Scholar 

  • 75.

    Pantazis, A., Westerberg, K., Althoff, T., Abramson, J. & Olcese, R. Harnessing photoinduced electron transfer to optically determine protein sub-nanoscale atomic distances. Nat. Commun. 9, 4738 (2018).

    PubMed 
    PubMed Central 

    Google Scholar 

  • 76.

    Jarecki, BrianW. et al. Tethered spectroscopic probes estimate dynamic distances with subnanometer resolution in voltage-dependent potassium channels. Biophys. J. 105, 2724–2732 (2013).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • 77.

    Mansoor, S. E., DeWitt, M. A. & Farrens, D. L. Distance mapping in proteins using fluorescence spectroscopy: the tryptophan-induced quenching (TrIQ) method. Biochemistry 49, 9722–9731 (2010).

    CAS 
    PubMed 

    Google Scholar 

  • 78.

    Perri, M. J. & Weber, S. H. Web-Based Job Submission Interface for the GAMESS Computational Chemistry Program. J. Chem. Educ. 91, 2206–2208 (2014).

    CAS 

    Google Scholar 

  • 79.

    Grosdidier, A., Zoete, V. & Michielin, O. SwissDock, a protein-small molecule docking web service based on EADock DSS. Nucleic Acids Res. 39, W270–W277 (2011).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • 80.

    Grosdidier, A., Zoete, V. & Michielin, O. Fast docking using the CHARMM force field with EADock DSS. J. Comput. Chem. 32, 2149–2159 (2011).

    CAS 
    PubMed 

    Google Scholar 

  • 81.

    Basu, S., Finke, A., Vera, L., Wang, M. & Olieric, V. Making routine native SAD a reality: lessons from beamline X06DA at the Swiss Light Source. Acta Crystallogr. D Struct. Biol. 75, 262–271 (2019).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • 82.

    Weissig, H., Schildge, A., Hoylaerts, M. F., Iqbal, M. & Millán, J. L. Cloning and expression of the bovine intestinal alkaline phosphatase gene: biochemical characterization of the recombinant enzyme. Biochem. J. 290, 503–508 (1993).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • 83.

    Llinas, P. et al. Structural studies of human placental alkaline phosphatase in complex with functional ligands. J. Mol. Biol. 350, 441–451 (2005).

    CAS 
    PubMed 

    Google Scholar 

  • 84.

    Harada, T. et al. Characterization of structural and catalytic differences in rat intestinal alkaline phosphatase isozymes. FEBS J. 272, 2477–2486 (2005).

    CAS 
    PubMed 

    Google Scholar 

  • 85.

    Hanwell, M. D. et al. Avogadro: an advanced semantic chemical editor, visualization, and analysis platform. J. Cheminformatics 4, 17 (2012).

    CAS 

    Google Scholar 

  • 86.

    Pettersen, E. F. et al. UCSF Chimera—a visualization system for exploratory research and analysis. J. Comput. Chem. 25, 1605–1612 (2004).

    CAS 
    PubMed 

    Google Scholar 

  • 87.

    Molecular Operating Environment (MOE) v.2019.01 (Chemical Computing Group, 2019).

  • 88.

    Case, D. A. et al. Amber 2020 (University of California, San Francisco, 2020).

  • Source link