Preloader

Molecular dynamics simulation study of doxorubicin adsorption on functionalized carbon nanotubes with folic acid and tryptophan

  • 1.

    Silambarasan, D., Iyakutti, K. & Vasu, V. Functionalization of single-walled carbon nanotubes with uracil, guanine, thymine and l-alanine. Chem. Phys. Lett. 604, 83–88 (2014).

    ADS 
    CAS 

    Google Scholar 

  • 2.

    Liu, X. et al. Understanding the interaction of single-walled carbon nanotube (SWCNT) on estrogen receptor: A combined molecular dynamics and experimental study. Ecotoxicol. Environ. Saf. 172, 373–379 (2019).

    CAS 
    PubMed 

    Google Scholar 

  • 3.

    Zamani, F. et al. Nanostructures for Drug Delivery 239–270 (Elsevier, 2017).

    Google Scholar 

  • 4.

    Sheikhi, M. et al. Adsorption properties of the molecule resveratrol on CNT (8, 0–10) nanotube: geometry optimization, molecular structure, spectroscopic (NMR, UV/Vis, excited state), FMO, MEP and HOMO-LUMO investigations. J. Mol. Struct. 1160, 479–487 (2018).

    ADS 
    CAS 

    Google Scholar 

  • 5.

    Lotfi, M., Morsali, A. & Bozorgmehr, M. R. Comprehensive quantum chemical insight into the mechanistic understanding of the surface functionalization of carbon nanotube as a nanocarrier with cladribine anticancer drug. Appl. Surf. Sci. 462, 720–729 (2018).

    ADS 
    CAS 

    Google Scholar 

  • 6.

    Khorram, R., Raissi, H. & Morsali, A. Assessment of solvent effects on the interaction of Carmustine drug with the pristine and COOH-functionalized single-walled carbon nanotubes: A DFT perspective. J. Mol. Liq. 240, 87–97 (2017).

    CAS 

    Google Scholar 

  • 7.

    Mousavi, S. Z., Amjad-Iranagh, S., Nademi, Y. & Modarress, H. Carbon nanotube-encapsulated drug penetration through the cell membrane: An investigation based on steered molecular dynamics simulation. J. Membr. Biol. 246, 697–704 (2013).

    CAS 
    PubMed 

    Google Scholar 

  • 8.

    Barzegar, A., Mansouri, A. & Azamat, J. Molecular dynamics simulation of non-covalent single-walled carbon nanotube functionalization with surfactant peptides. J. Mol. Graph. Model. 64, 75–84 (2016).

    CAS 
    PubMed 

    Google Scholar 

  • 9.

    Amjad-Iranagh, S., Yousefpour, A., Haghighi, P. & Modarress, H. Effects of protein binding on a lipid bilayer containing local anesthetic articaine, and the potential of mean force calculation: A molecular dynamics simulation approach. J. Mol. Model. 19, 3831–3842 (2013).

    CAS 
    PubMed 

    Google Scholar 

  • 10.

    Kavyani, S., Dadvar, M., Modarress, H. & Amjad-Iranagh, S. Molecular perspective mechanism for drug loading on carbon nanotube–dendrimer: A coarse-grained molecular dynamics study. J. Phys. Chem. B 122, 7956–7969 (2018).

    CAS 
    PubMed 

    Google Scholar 

  • 11.

    Kavyani, S., Dadvar, M., Modarress, H. & Amjad-Iranagh, S. A coarse grained molecular dynamics simulation study on the structural properties of carbon nanotube–dendrimer composites. Soft Matter 14, 3151–3163 (2018).

    ADS 
    CAS 
    PubMed 

    Google Scholar 

  • 12.

    Kordzadeh, A., Amjad-Iranagh, S., Zarif, M. & Modarress, H. Adsorption and encapsulation of the drug doxorubicin on covalent functionalized carbon nanotubes: A scrutinized study by using molecular dynamics simulation and quantum mechanics calculation. J. Mol. Graph. Model. 88, 11–22 (2019).

    CAS 
    PubMed 

    Google Scholar 

  • 13.

    Kamel, M., Raissi, H., Morsali, A. & Shahabi, M. Assessment of the adsorption mechanism of Flutamide anticancer drug on the functionalized single-walled carbon nanotube surface as a drug delivery vehicle: An alternative theoretical approach based on DFT and MD. Appl. Surf. Sci. 434, 492–503 (2018).

    ADS 
    CAS 

    Google Scholar 

  • 14.

    Li, Z., Tozer, T. & Alisaraie, L. Molecular dynamics studies for optimization of noncovalent loading of vinblastine on single-walled carbon nanotube. J. Phys. Chem. C 120, 4061–4070 (2016).

    CAS 

    Google Scholar 

  • 15.

    Dehneshin, N., Raissi, H., Hasanzade, Z. & Farzad, F. Using molecular dynamics simulation to explore the binding of the three potent anticancer drugs sorafenib, streptozotocin, and sunitinib to functionalized carbon nanotubes. J. Mol. Model. 25, 1–15 (2019).

    CAS 

    Google Scholar 

  • 16.

    Wang, C., Li, S., Zhang, R. & Lin, Z. Adsorption and properties of aromatic amino acids on single-walled carbon nanotubes. Nanoscale 4, 1146–1153 (2012).

    ADS 
    CAS 
    PubMed 

    Google Scholar 

  • 17.

    Wang, C., Yang, G. & Jiang, Y. Structure and property of multiple amino acids assembled on the surface of a CNT. Phys. E 85, 7–12 (2017).

    CAS 

    Google Scholar 

  • 18.

    Deborah, M., Jawahar, A., Mathavan, T., Dhas, M. K. & Franklin Benial, A. M. Spectroscopic studies on valine-functionalized single-walled carbon nanotubes. Fullerenes Nanotubes Carbon Nanostruct. 23, 649–657 (2015).

    ADS 
    CAS 

    Google Scholar 

  • 19.

    Mallakpour, S. & Zadehnazari, A. A facile, efficient, and rapid covalent functionalization of multi-walled carbon nanotubes with natural amino acids under microwave irradiation. Prog. Org. Coat. 77, 679–684 (2014).

    CAS 

    Google Scholar 

  • 20.

    Rahmani, L. & Ketabi, S. Solvation of alanine and histidine functionalized carbon nanotubes in aqueous media: A Monte Carlo simulation study. J. Mol. Liq. 208, 191–195 (2015).

    CAS 

    Google Scholar 

  • 21.

    Liu, X. et al. Biocompatible multi-walled carbon nanotube–chitosan–folic acid nanoparticle hybrids as GFP gene delivery materials. Colloids Surf. B 111, 224–231 (2013).

    CAS 

    Google Scholar 

  • 22.

    Modupe, O., Siddiqui, J., Jonnalagadda, A. & Diosady, L. L. Folic acid fortification of double fortified salt. Sci. Rep. 11, 1–10 (2021).

    Google Scholar 

  • 23.

    Castillo, J. J. et al. Computational and experimental studies of the interaction between single-walled carbon nanotubes and folic acid. Chem. Phys. Lett. 564, 60–64 (2013).

    ADS 
    CAS 

    Google Scholar 

  • 24.

    Depan, D., Shah, J. & Misra, R. Controlled release of drug from folate-decorated and graphene mediated drug delivery system: Synthesis, loading efficiency, and drug release response. Mater. Sci. Eng. C 31, 1305–1312 (2011).

    CAS 

    Google Scholar 

  • 25.

    Wolski, P., Narkiewicz-Michalek, J., Panczyk, M., Pastorin, G. & Panczyk, T. Molecular dynamics modeling of the encapsulation and de-encapsulation of the carmustine anticancer drug in the inner volume of a carbon nanotube. J. Phys. Chem. C 121, 18922–18934 (2017).

    CAS 

    Google Scholar 

  • 26.

    Merzel, R. L. et al. Folate binding protein: Therapeutic natural nanotechnology for folic acid, methotrexate, and leucovorin. Nanoscale 9, 2603–2615 (2017).

    CAS 
    PubMed 

    Google Scholar 

  • 27.

    Gupta, R., Kalita, P., Patil, O. & Mohanty, S. An investigation of folic acid–protein association sites and the effect of this association on folic acid self-assembly. J. Mol. Model. 21, 1–8 (2015).

    CAS 

    Google Scholar 

  • 28.

    Talaulikar, V. & Arulkumaran, S. Folic acid in pregnancy. Obstet. Gynaecol. Reprod. Med. 23, 286–288 (2013).

    Google Scholar 

  • 29.

    Tavakolifard, S., Biazar, E., Pourshamsian, K. & Moslemin, M. H. Synthesis and evaluation of single-wall carbon nanotube–paclitaxel–folic acid conjugate as an anti-cancer targeting agent. Artif. Cells Nanomed. Biotechnol. 44, 1247–1253 (2016).

    CAS 
    PubMed 

    Google Scholar 

  • 30.

    Mehra, N. K. & Jain, N. K. One platform comparison of estrone and folic acid anchored surface engineered MWCNTs for doxorubicin delivery. Mol. Pharm. 12, 630–643 (2015).

    CAS 
    PubMed 

    Google Scholar 

  • 31.

    Ellison, M. D. & Chorney, M. Reaction of folic acid with single-walled carbon nanotubes. Surf. Sci. 652, 300–303 (2016).

    ADS 
    CAS 

    Google Scholar 

  • 32.

    Karnati, K. R. & Wang, Y. Understanding the co-loading and releasing of doxorubicin and paclitaxel using chitosan functionalized single-walled carbon nanotubes by molecular dynamics simulations. Phys. Chem. Chem. Phys. 20, 9389–9400 (2018).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • 33.

    Wu, H. et al. Prostate stem cell antigen antibody-conjugated multiwalled carbon nanotubes for targeted ultrasound imaging and drug delivery. Biomaterials 35, 5369–5380 (2014).

    CAS 
    PubMed 

    Google Scholar 

  • 34.

    Ganji, M. D., Mirzaei, S. & Dalirandeh, Z. Molecular origin of drug release by water boiling inside carbon nanotubes from reactive molecular dynamics simulation and DFT perspectives. Sci. Rep. 7, 1–13 (2017).

    CAS 

    Google Scholar 

  • 35.

    Izadyar, A., Farhadian, N. & Chenarani, N. Molecular dynamics simulation of doxorubicin adsorption on a bundle of functionalized CNT. J. Biomol. Struct. Dyn. 34, 1797–1805 (2016).

    CAS 
    PubMed 

    Google Scholar 

  • 36.

    Wolski, P., Nieszporek, K. & Panczyk, T. Pegylated and folic acid functionalized carbon nanotubes as pH controlled carriers of doxorubicin. Molecular dynamics analysis of the stability and drug release mechanism. Phys. Chem. Chem. Phys. 19, 9300–9312 (2017).

    CAS 
    PubMed 

    Google Scholar 

  • 37.

    Kavyani, S., Amjad-Iranagh, S. & Modarress, H. Aqueous poly (amidoamine) dendrimer G3 and G4 generations with several interior cores at pHs 5 and 7: A molecular dynamics simulation study. J. Phys. Chem. B 118, 3257–3266 (2014).

    CAS 
    PubMed 

    Google Scholar 

  • 38.

    Panczyk, T., Wolski, P. & Lajtar, L. Coadsorption of doxorubicin and selected dyes on carbon nanotubes. Theoretical investigation of potential application as a pH-controlled drug delivery system. Langmuir 32, 4719–4728 (2016).

    CAS 
    PubMed 

    Google Scholar 

  • 39.

    Yousefpour, A., Amjad-Iranagh, S., Goharpey, F. & Modarress, H. Effect of drug amlodipine on the charged lipid bilayer cell membranes DMPS and DMPS+ DMPC: A molecular dynamics simulation study. Eur. Biophys. J. 47, 939–950 (2018).

    CAS 
    PubMed 

    Google Scholar 

  • 40.

    Yousefpour, A., Amjad Iranagh, S., Nademi, Y. & Modarress, H. Molecular dynamics simulation of nonsteroidal antiinflammatory drugs, naproxen and relafen, in a lipid bilayer membrane. Int. J. Quantum Chem. 113, 1919–1930 (2013).

    CAS 

    Google Scholar 

  • 41.

    Nademi, Y., Iranagh, S. A., Yousefpour, A., Mousavi, S. Z. & Modarress, H. Molecular dynamics simulations and free energy profile of Paracetamol in DPPC and DMPC lipid bilayers. J. Chem. Sci. 126, 637–647 (2014).

    CAS 

    Google Scholar 

  • 42.

    Yousefpour, A., Modarress, H., Goharpey, F. & Amjad-Iranagh, S. Combination of anti-hypertensive drugs: A molecular dynamics simulation study. J. Mol. Model. 23, 1–18 (2017).

    CAS 

    Google Scholar 

  • 43.

    Wenninger, J. et al. Associations between tryptophan and iron metabolism observed in individuals with and without iron deficiency. Sci. Rep. 9, 1–9 (2019).

    ADS 
    CAS 

    Google Scholar 

  • 44.

    Nanotube modeler, http://www.jcrystal.com/products/wincnt/ (2019).

  • 45.

    Drugbank, http://www.drugbank.ca (2019).

  • 46.

    Yousefpour, A., Modarress, H., Goharpey, F. & Amjad-Iranagh, S. Interaction of PEGylated anti-hypertensive drugs, amlodipine, atenolol and lisinopril with lipid bilayer membrane: A molecular dynamics simulation study. Biochim. Biophys. Acta BBA Biomembr. 1848, 1687–1698 (2015).

    CAS 

    Google Scholar 

  • 47.

    Schmidt, M. W. et al. General atomic and molecular electronic structure system. J. Comput. Chem. 14, 1347–1363 (1993).

    CAS 

    Google Scholar 

  • 48.

    pubchem, http://pubchem.ncbi.nlm.nih.gov (2019).

  • 49.

    Hess, B., Kutzner, C., Van Der Spoel, D. & Lindahl, E. GROMACS 4: Algorithms for highly efficient, load-balanced, and scalable molecular simulation. J. Chem. Theory Comput. 4, 435–447 (2008).

    CAS 
    PubMed 

    Google Scholar 

  • 50.

    Yousefpour, A., Modarress, H., Goharpey, F. & Amjad-Iranagh, S. Interaction of drugs amlodipine and paroxetine with the metabolizing enzyme CYP2B4: A molecular dynamics simulation study. J. Mol. Model. 24, 1–11 (2018).

    CAS 

    Google Scholar 

  • 51.

    Kavyani, S., Amjad-Iranagh, S., Dadvar, M. & Modarress, H. Hybrid dendrimers of PPI (core)–PAMAM (shell): A molecular dynamics simulation study. J. Phys. Chem. B 120, 9564–9575 (2016).

    CAS 
    PubMed 

    Google Scholar 

  • 52.

    Az’hari, S. & Ghayeb, Y. Effect of chirality, length and diameter of carbon nanotubes on the adsorption of 20 amino acids: A molecular dynamics simulation study. Mol. Simul. 40, 392–398 (2014).

    CAS 

    Google Scholar 

  • 53.

    He, Z. & Zhou, J. Probing carbon nanotube–amino acid interactions in aqueous solution with molecular dynamics simulations. Carbon 78, 500–509 (2014).

    CAS 

    Google Scholar 

  • 54.

    Swissparam, http://www.swissparam.ch/ (2019).

  • 55.

    Jorgensen, W. L., Chandrasekhar, J., Madura, J. D., Impey, R. W. & Klein, M. L. Comparison of simple potential functions for simulating liquid water. J. Chem. Phys. 79, 926–935 (1983).

    ADS 
    CAS 

    Google Scholar 

  • 56.

    Berendsen, H. J., Postma, J. V., van Gunsteren, W. F., DiNola, A. & Haak, J. R. Molecular dynamics with coupling to an external bath. J. Chem. Phys. 81, 3684–3690 (1984).

    ADS 
    CAS 

    Google Scholar 

  • 57.

    Parrinello, M. & Rahman, A. Polymorphic transitions in single crystals: A new molecular dynamics method. J. Appl. Phys. 52, 7182–7190 (1981).

    ADS 
    CAS 

    Google Scholar 

  • 58.

    Rahimi, A., Amjad-Iranagh, S. & Modarress, H. Molecular dynamics simulation of coarse-grained poly (l-lysine) dendrimers. J. Mol. Model. 22, 59 (2016).

    PubMed 

    Google Scholar 

  • 59.

    Darden, T., York, D. & Pedersen, L. Particle mesh Ewald: An N log (N) method for Ewald sums in large systems. J. Chem. Phys. 98, 10089–10092 (1993).

    ADS 
    CAS 

    Google Scholar 

  • 60.

    Amjad-Iranagh, S., Golzar, K. & Modarress, H. Molecular simulation study of PAMAM dendrimer composite membranes. J. Mol. Model. 20, 1–20 (2014).

    CAS 

    Google Scholar 

  • 61.

    Humphrey, W., Dalke, A. & Schulten, K. VMD: Visual molecular dynamics. J. Mol. Graph. 14, 33–38 (1996).

    CAS 
    PubMed 

    Google Scholar 

  • 62.

    Anzar, N., Hasan, R., Tyagi, M., Yadav, N. & Narang, J. Carbon nanotube-A review on synthesis, properties and plethora of applications in the field of biomedical science. Sens. Int. 1, 100003 (2020).

    Google Scholar 

  • 63.

    Eisenberg, D. & McLachlan, A. D. Solvation energy in protein folding and binding. Nature 319, 199–203 (1986).

    ADS 
    CAS 
    PubMed 

    Google Scholar 

  • 64.

    Hasanzade, Z. & Raissi, H. Molecular mechanism for the encapsulation of the Doxorubicin in the cucurbit [n] urils cavity and the effects of diameter, protonation on loading and releasing of the anticancer drug: Mixed quantum mechanical/molecular dynamics simulations. Comput. Methods Prog. Biomed. 196, 105563 (2020).

    Google Scholar 

  • 65.

    Razmimanesh, F., Amjad-Iranagh, S. & Modarress, H. Molecular dynamics simulation study of chitosan and gemcitabine as a drug delivery system. J. Mol. Model. 21, 1–14 (2015).

    CAS 

    Google Scholar 

  • 66.

    Qiu, L. Y. & Yan, M. Q. Constructing doxorubicin-loaded polymeric micelles through amphiphilic graft polyphosphazenes containing ethyl tryptophan and PEG segments. Acta Biomater. 5, 2132–2141 (2009).

    CAS 
    PubMed 

    Google Scholar 

  • 67.

    Chen, T., Li, M. & Liu, J. π–π stacking interaction: A nondestructive and facile means in material engineering for bioapplications. Cryst. Growth Des. 18, 2765–2783. https://doi.org/10.1021/acs.cgd.7b01503 (2018).

    CAS 
    Article 

    Google Scholar 

  • Source link