Preloader

Modular fluorescent nanoparticle DNA probes for detection of peptides and proteins

  • 1.

    Ueno, T. & Nagano, T. Fluorescent probes for sensing and imaging. Nat. Methods 8, 642–645 (2011).

    CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 

  • 2.

    Goldshtein, H., Hausmann, M. J. & Douvdevani, A. A rapid direct fluorescent assay for cell-free DNA quantification in biological fluids. Ann. Clin. Biochem. Int. J. Lab. Med. 46, 488–494 (2009).

    CAS 
    Article 

    Google Scholar 

  • 3.

    Kapanidis, A. N. & Weiss, S. Fluorescent probes and bioconjugation chemistries for single-molecule fluorescence analysis of biomolecules. J. Chem. Phys. 117, 10953–10964 (2002).

    ADS 
    CAS 
    Article 

    Google Scholar 

  • 4.

    Lo Giudice, M. C., Herda, L. M., Polo, E. & Dawson, K. A. In situ characterization of nanoparticle biomolecular interactions in complex biological media by flow cytometry. Nat. Commun. 7, 13475 (2016).

    ADS 
    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 

  • 5.

    Yameen, B. et al. Insight into nanoparticle cellular uptake and intracellular targeting. J. Control. Release 190, 485–499 (2014).

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 

  • 6.

    Welsher, K. & Yang, H. Multi-resolution 3D visualization of the early stages of cellular uptake of peptide-coated nanoparticles. Nat. Nanotechnol. 9, 198–203 (2014).

    ADS 
    CAS 
    PubMed 
    Article 

    Google Scholar 

  • 7.

    Wang, T. et al. Size-dependent regulation of intracellular trafficking of polystyrene nanoparticle-based drug-delivery systems. ACS Appl. Mater. Interfaces 9, 18619–18625 (2017).

    CAS 
    PubMed 
    Article 

    Google Scholar 

  • 8.

    Shi, D. et al. Fluorescent polystyrene-Fe3O4 composite nanospheres for in vivo imaging and hyperthermia. Adv. Mater. 21, 2170–2173 (2009).

    CAS 
    Article 

    Google Scholar 

  • 9.

    Cheng, L. et al. Highly-sensitive multiplexed in vivo imaging using pegylated upconversion nanoparticles. Nano Res. 3, 722–732 (2010).

    CAS 
    Article 

    Google Scholar 

  • 10.

    Ma, D.-L., He, H.-Z., Leung, K.-H., Chan, D.S.-H. & Leung, C.-H. Bioactive luminescent transition-metal complexes for biomedical applications. Angew. Chemie Int. Ed. 52, 7666–7682 (2013).

    CAS 
    Article 

    Google Scholar 

  • 11.

    Chudakov, D. M., Matz, M. V., Lukyanov, S. & Lukyanov, K. A. Fluorescent proteins and their applications in imaging living cells and tissues. Physiol. Rev. 90, 1103–1163 (2010).

    CAS 
    PubMed 
    Article 

    Google Scholar 

  • 12.

    Resch-Genger, U., Grabolle, M., Cavaliere-Jaricot, S., Nitschke, R. & Nann, T. Quantum dots versus organic dyes as fluorescent labels. Nat. Methods 5, 763–775 (2008).

    CAS 
    PubMed 
    Article 

    Google Scholar 

  • 13.

    Buck, S. et al. Nanoscale probes encapsulated by biologically localized embedding (PEBBLEs) for ion sensing and imaging in live cells. Talanta 63, 41–59 (2004).

    CAS 
    PubMed 
    Article 

    Google Scholar 

  • 14.

    Petrizza, L. et al. Dye-doped silica nanoparticle probes for fluorescence lifetime imaging of reductive environments in living cells. RSC Adv. 6, 104164–104172 (2016).

    ADS 
    CAS 
    Article 

    Google Scholar 

  • 15.

    Giepmans, B. N. G., Adams, S. R., Ellisman, M. H. & Tsien, R. Y. The fluorescent toolbox for assessing protein location and function. Science 312, 217–224 (2006).

    ADS 
    CAS 
    PubMed 
    Article 

    Google Scholar 

  • 16.

    Reisch, A. & Klymchenko, A. S. Fluorescent polymer nanoparticles based on dyes: seeking brighter tools for bioimaging. Small 12, 1968–1992 (2016).

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 

  • 17.

    Gref, R. et al. ‘Stealth’ corona-core nanoparticles surface modified by polyethylene glycol (PEG): influences of the corona (PEG chain length and surface density) and of the core composition on phagocytic uptake and plasma protein adsorption. Colloids Surfaces B Biointerfaces 18, 301–313 (2000).

    CAS 
    PubMed 
    Article 

    Google Scholar 

  • 18.

    Coto-García, A. M. et al. Nanoparticles as fluorescent labels for optical imaging and sensing in genomics and proteomics. Anal. Bioanal. Chem. 399, 29–42 (2011).

    PubMed 
    Article 
    CAS 

    Google Scholar 

  • 19.

    Larson, D. R. et al. Silica nanoparticle architecture determines radiative properties of encapsulated fluorophores. Chem. Mater. 20, 2677–2684 (2008).

    CAS 
    Article 

    Google Scholar 

  • 20.

    Pinaud, F. et al. Advances in fluorescence imaging with quantum dot bio-probes. Biomaterials 27, 1679–1687 (2006).

    CAS 
    PubMed 
    Article 

    Google Scholar 

  • 21.

    Alivisatos, A. P., Gu, W. & Larabell, C. Quantum dots as cellular probes. Annu. Rev. Biomed. Eng. 7, 55–76 (2005).

    CAS 
    PubMed 
    Article 

    Google Scholar 

  • 22.

    Hartlen, K. D., Athanasopoulos, A. P. T. & Kitaev, V. Facile preparation of highly monodisperse small silica spheres (15 to >200 nm) suitable for colloidal templating and formation of ordered arrays. Langmuir 24, 1714–1720 (2008).

    CAS 
    PubMed 
    Article 

    Google Scholar 

  • 23.

    Valizadeh, A. et al. Quantum dots: synthesis, bioapplications, and toxicity. Nanoscale Res. Lett. 7, 480 (2012).

    ADS 
    PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar 

  • 24.

    Nightingale, A. M. & de Mello, J. C. Microscale synthesis of quantum dots. J. Mater. Chem. 20, 8454 (2010).

    CAS 
    Article 

    Google Scholar 

  • 25.

    LaBauve, A. E. et al. Lipid-coated mesoporous silica nanoparticles for the delivery of the ML336 antiviral to inhibit encephalitic alphavirus infection. Sci. Rep. 8, 13990 (2018).

    ADS 
    PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar 

  • 26.

    Kumar, R. et al. Covalently dye-linked, surface-controlled, and bioconjugated organically modified silica nanoparticles as targeted probes for optical imaging. ACS Nano 2, 449–456 (2008).

    CAS 
    PubMed 
    Article 

    Google Scholar 

  • 27.

    Wu, C. et al. Bioconjugation of ultrabright semiconducting polymer dots for specific cellular targeting. J. Am. Chem. Soc. 132, 15410–15417 (2010).

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 

  • 28.

    Cheang, T., Tang, B., Xu, A., Change, G., Hu, Z., He W., Xing, Z., Xu, J., Wang, M., Wang, S. Promising plasmid DNA vector based on APTES-modified silica nanoparticles. Int. J. Nanomed. 7, 1061 (2012).

    CAS 

    Google Scholar 

  • 29.

    Kumar, R. et al. Modified silica nanoparticles as targeted probes for optical imaging. ACS Nano. 2, 449–456 (2008).

    CAS 
    PubMed 
    Article 

    Google Scholar 

  • 30.

    Rosenthal, S. J., Chang, J. C., Kovtun, O., McBride, J. R. & Tomlinson, I. D. Biocompatible quantum dots for biological applications. Chem. Biol. 18, 10–24 (2011).

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 

  • 31.

    Bartnicki, F., Kowalska, E., Pels, K. & Strzalka, W. Imidazole-free purification of His 3-tagged recombinant proteins using ssDNA aptamer-based affinity chromatography. J. Chromatogr. A 1418, 130–139 (2015).

    CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 

  • 32.

    Potty, A. S. R. et al. Biophysical characterization of DNA aptamer interactions with vascular endothelial growth factor. Biopolymers 91, 145–156 (2009).

    CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 

  • 33.

    Smith, M. E. B. et al. US Patent 8,563,477 B2 Modified Molecular Arrays. (2013).

  • 34.

    Bhattacharjee, S. DLS and zeta potential—What they are and what they are not?. J. Control. Release 235, 337–351 (2016).

    CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 

  • 35.

    Yang, Q. et al. Evading immune cell uptake and clearance requires PEG grafting at densities substantially exceeding the minimum for brush conformation. Mol. Pharm. 11, 1250–1258 (2014).

    CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 

  • 36.

    Hoo, C. M., Starostin, N., West, P. & Mecartney, M. L. A comparison of atomic force microscopy (AFM) and dynamic light scattering (DLS) methods to characterize nanoparticle size distributions. J. Nanoparticle Res. 10, 89–96 (2008).

    ADS 
    CAS 
    Article 

    Google Scholar 

  • 37.

    Suk, J. S., Xu, Q., Kim, N., Hanes, J. & Ensign, L. M. PEGylation as a strategy for improving nanoparticle-based drug and gene delivery. Adv. Drug Deliv. Rev. 99, 28–51 (2016).

    CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 

  • 38.

    Kim, E.-Y. et al. A real-time PCR-based method for determining the surface coverage of thiol-capped oligonucleotides bound onto gold nanoparticles. Nucleic Acids Res. 34, e54–e54 (2006).

    PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar 

  • 39.

    Gijs, M. et al. Improved aptamers for the diagnosis and potential treatment of HER2-positive cancer. Pharmaceuticals 9, 15–19 (2016).

    Article 
    CAS 

    Google Scholar 

  • 40.

    Amoozgar, Z. & Yeo, Y. Recent advances in stealth coating of nanoparticle drug delivery systems. WIREs Nanomed. Nanobiotechnol. 4, 219–233 (2012).

    CAS 
    Article 

    Google Scholar 

  • 41.

    Verma, A. & Stellacci, F. Effect of surface properties on nanoparticle-cell interactions. Small 6, 12–21 (2010).

    CAS 
    PubMed 
    Article 

    Google Scholar 

  • 42.

    Otsuka, H., Nagasaki, Y. & Kataoka, K. PEGylated nanoparticles for biological and pharmaceutical applications. Adv. Drug Deliv. Rev. 64, 246–255 (2012).

    Article 

    Google Scholar 

  • 43.

    Damodaran, V. B., Fee, C. J., Ruckh, T. & Popat, K. C. Conformational studies of covalently grafted poly (ethylene glycol) on modified solid matrices using X-ray photoelectron spectroscopy. Langmuir 26, 7299–7306 (2010).

    CAS 
    PubMed 
    Article 

    Google Scholar 

  • 44.

    Perry, J. L. et al. PEGylated PRINT nanoparticles: The impact of PEG density on protein binding, macrophage association, biodistribution, and pharmacokinetics. Nano Lett. 12 5304-5310 (2012).

  • 45.

    Chandradoss, S. D. et al. Surface passivation for single-molecule protein studies. J. Vis. Exp. https://doi.org/10.3791/50549 (2014).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • 46.

    Hadjesfandiari, N. & Parambath, A. Stealth coatings for nanoparticles: polyethylene glycol alternatives. in Engineering of Biomaterials for Drug Delivery Systems 345–361 (Elsevier, 2018). https://doi.org/10.1016/B978-0-08-101750-0.00013-1.

  • 47.

    Hagedorn, P. H. et al. Locked nucleic acid: modality, diversity, and drug discovery. Drug Discov. Today 23, 101–114 (Anilkumar Parambath, 2018).

    CAS 
    PubMed 
    Article 

    Google Scholar 

  • 48.

    Lichty, J. J., Malecki, J. L., Agnew, H. D., Michelson-Horowitz, D. J. & Tan, S. Comparison of affinity tags for protein purification. Protein Expr. Purif. 41, 98–105 (2005).

    CAS 
    PubMed 
    Article 

    Google Scholar 

  • 49.

    Hong, S. et al. The binding avidity of a nanoparticle-based multivalent targeted drug delivery platform. Chem. Biol. 14, 107–115 (2007).

    MathSciNet 
    CAS 
    PubMed 
    Article 

    Google Scholar 

  • 50.

    Vauquelin, G. & Charlton, S. J. Exploring avidity: understanding the potential gains in functional affinity and target residence time of bivalent and heterobivalent ligands. Br. J. Pharmacol. 168, 1771–1785 (2013).

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 

  • 51.

    Lin, A. et al. Shear-regulated uptake of nanoparticles by endothelial cells and development of endothelial-targeting nanoparticles. J. Biomed. Mater. Res. Part A 93, 833–842 (2010).

    Google Scholar 

  • 52.

    Braeckmans, K. et al. Transport of nanoparticles in cystic fibrosis sputum and bacterial biofilms by single-particle tracking microscopy. Nanomedicine 8, 935–949 (2012).

    PubMed 
    Article 
    CAS 

    Google Scholar 

  • 53.

    Bagalkot, V. et al. Quantum dot—Aptamer conjugates for synchronous cancer imaging, therapy, and sensing of drug delivery based on Bi-fluorescence resonance energy transfer. Nano Lett. 7, 3065–3070 (2007).

    ADS 
    CAS 
    PubMed 
    Article 

    Google Scholar 

  • 54.

    Li, Z. et al. Aptamer-conjugated dendrimer-modified quantum dots for cancer cell targeting and imaging. Mater. Lett. 64, 375–378 (2010).

    CAS 
    Article 

    Google Scholar 

  • 55.

    Liu, H., Xu, S., He, Z., Deng, A. & Zhu, J. Supersandwich cytosensor for selective and ultrasensitive detection of cancer cells using aptamer-DNA concatamer-quantum dots probes. Anal. Chem. 85, 1–5 (2013).

    CAS 
    Article 

    Google Scholar 

  • 56.

    Chen, X., Deng, Y., Lin, Y., Pang, D., Qing, H., Qu, F., Xie, H. Quantum dot-labeled aptamer nanoprobes specifically targeting glioma cells. Nanotechnology 19, 235105 (2008).

    ADS 
    PubMed 
    Article 
    CAS 

    Google Scholar 

  • 57.

    Kim, G. I., Kim, K. W., Oh, M. K. & Sung, Y. M. The detection of platelet derived growth factor using decoupling of quencher-oligonucleotide from aptamer/quantum dot bioconjugates. Nanotechnology 20, 175503 (2009).

    ADS 
    PubMed 
    Article 
    CAS 

    Google Scholar 

  • Source link