Ueno, T. & Nagano, T. Fluorescent probes for sensing and imaging. Nat. Methods 8, 642–645 (2011).
Google Scholar
Goldshtein, H., Hausmann, M. J. & Douvdevani, A. A rapid direct fluorescent assay for cell-free DNA quantification in biological fluids. Ann. Clin. Biochem. Int. J. Lab. Med. 46, 488–494 (2009).
Google Scholar
Kapanidis, A. N. & Weiss, S. Fluorescent probes and bioconjugation chemistries for single-molecule fluorescence analysis of biomolecules. J. Chem. Phys. 117, 10953–10964 (2002).
Google Scholar
Lo Giudice, M. C., Herda, L. M., Polo, E. & Dawson, K. A. In situ characterization of nanoparticle biomolecular interactions in complex biological media by flow cytometry. Nat. Commun. 7, 13475 (2016).
Google Scholar
Yameen, B. et al. Insight into nanoparticle cellular uptake and intracellular targeting. J. Control. Release 190, 485–499 (2014).
Google Scholar
Welsher, K. & Yang, H. Multi-resolution 3D visualization of the early stages of cellular uptake of peptide-coated nanoparticles. Nat. Nanotechnol. 9, 198–203 (2014).
Google Scholar
Wang, T. et al. Size-dependent regulation of intracellular trafficking of polystyrene nanoparticle-based drug-delivery systems. ACS Appl. Mater. Interfaces 9, 18619–18625 (2017).
Google Scholar
Shi, D. et al. Fluorescent polystyrene-Fe3O4 composite nanospheres for in vivo imaging and hyperthermia. Adv. Mater. 21, 2170–2173 (2009).
Google Scholar
Cheng, L. et al. Highly-sensitive multiplexed in vivo imaging using pegylated upconversion nanoparticles. Nano Res. 3, 722–732 (2010).
Google Scholar
Ma, D.-L., He, H.-Z., Leung, K.-H., Chan, D.S.-H. & Leung, C.-H. Bioactive luminescent transition-metal complexes for biomedical applications. Angew. Chemie Int. Ed. 52, 7666–7682 (2013).
Google Scholar
Chudakov, D. M., Matz, M. V., Lukyanov, S. & Lukyanov, K. A. Fluorescent proteins and their applications in imaging living cells and tissues. Physiol. Rev. 90, 1103–1163 (2010).
Google Scholar
Resch-Genger, U., Grabolle, M., Cavaliere-Jaricot, S., Nitschke, R. & Nann, T. Quantum dots versus organic dyes as fluorescent labels. Nat. Methods 5, 763–775 (2008).
Google Scholar
Buck, S. et al. Nanoscale probes encapsulated by biologically localized embedding (PEBBLEs) for ion sensing and imaging in live cells. Talanta 63, 41–59 (2004).
Google Scholar
Petrizza, L. et al. Dye-doped silica nanoparticle probes for fluorescence lifetime imaging of reductive environments in living cells. RSC Adv. 6, 104164–104172 (2016).
Google Scholar
Giepmans, B. N. G., Adams, S. R., Ellisman, M. H. & Tsien, R. Y. The fluorescent toolbox for assessing protein location and function. Science 312, 217–224 (2006).
Google Scholar
Reisch, A. & Klymchenko, A. S. Fluorescent polymer nanoparticles based on dyes: seeking brighter tools for bioimaging. Small 12, 1968–1992 (2016).
Google Scholar
Gref, R. et al. ‘Stealth’ corona-core nanoparticles surface modified by polyethylene glycol (PEG): influences of the corona (PEG chain length and surface density) and of the core composition on phagocytic uptake and plasma protein adsorption. Colloids Surfaces B Biointerfaces 18, 301–313 (2000).
Google Scholar
Coto-García, A. M. et al. Nanoparticles as fluorescent labels for optical imaging and sensing in genomics and proteomics. Anal. Bioanal. Chem. 399, 29–42 (2011).
Google Scholar
Larson, D. R. et al. Silica nanoparticle architecture determines radiative properties of encapsulated fluorophores. Chem. Mater. 20, 2677–2684 (2008).
Google Scholar
Pinaud, F. et al. Advances in fluorescence imaging with quantum dot bio-probes. Biomaterials 27, 1679–1687 (2006).
Google Scholar
Alivisatos, A. P., Gu, W. & Larabell, C. Quantum dots as cellular probes. Annu. Rev. Biomed. Eng. 7, 55–76 (2005).
Google Scholar
Hartlen, K. D., Athanasopoulos, A. P. T. & Kitaev, V. Facile preparation of highly monodisperse small silica spheres (15 to >200 nm) suitable for colloidal templating and formation of ordered arrays. Langmuir 24, 1714–1720 (2008).
Google Scholar
Valizadeh, A. et al. Quantum dots: synthesis, bioapplications, and toxicity. Nanoscale Res. Lett. 7, 480 (2012).
Google Scholar
Nightingale, A. M. & de Mello, J. C. Microscale synthesis of quantum dots. J. Mater. Chem. 20, 8454 (2010).
Google Scholar
LaBauve, A. E. et al. Lipid-coated mesoporous silica nanoparticles for the delivery of the ML336 antiviral to inhibit encephalitic alphavirus infection. Sci. Rep. 8, 13990 (2018).
Google Scholar
Kumar, R. et al. Covalently dye-linked, surface-controlled, and bioconjugated organically modified silica nanoparticles as targeted probes for optical imaging. ACS Nano 2, 449–456 (2008).
Google Scholar
Wu, C. et al. Bioconjugation of ultrabright semiconducting polymer dots for specific cellular targeting. J. Am. Chem. Soc. 132, 15410–15417 (2010).
Google Scholar
Cheang, T., Tang, B., Xu, A., Change, G., Hu, Z., He W., Xing, Z., Xu, J., Wang, M., Wang, S. Promising plasmid DNA vector based on APTES-modified silica nanoparticles. Int. J. Nanomed. 7, 1061 (2012).
Google Scholar
Kumar, R. et al. Modified silica nanoparticles as targeted probes for optical imaging. ACS Nano. 2, 449–456 (2008).
Google Scholar
Rosenthal, S. J., Chang, J. C., Kovtun, O., McBride, J. R. & Tomlinson, I. D. Biocompatible quantum dots for biological applications. Chem. Biol. 18, 10–24 (2011).
Google Scholar
Bartnicki, F., Kowalska, E., Pels, K. & Strzalka, W. Imidazole-free purification of His 3-tagged recombinant proteins using ssDNA aptamer-based affinity chromatography. J. Chromatogr. A 1418, 130–139 (2015).
Google Scholar
Potty, A. S. R. et al. Biophysical characterization of DNA aptamer interactions with vascular endothelial growth factor. Biopolymers 91, 145–156 (2009).
Google Scholar
Smith, M. E. B. et al. US Patent 8,563,477 B2 Modified Molecular Arrays. (2013).
Bhattacharjee, S. DLS and zeta potential—What they are and what they are not?. J. Control. Release 235, 337–351 (2016).
Google Scholar
Yang, Q. et al. Evading immune cell uptake and clearance requires PEG grafting at densities substantially exceeding the minimum for brush conformation. Mol. Pharm. 11, 1250–1258 (2014).
Google Scholar
Hoo, C. M., Starostin, N., West, P. & Mecartney, M. L. A comparison of atomic force microscopy (AFM) and dynamic light scattering (DLS) methods to characterize nanoparticle size distributions. J. Nanoparticle Res. 10, 89–96 (2008).
Google Scholar
Suk, J. S., Xu, Q., Kim, N., Hanes, J. & Ensign, L. M. PEGylation as a strategy for improving nanoparticle-based drug and gene delivery. Adv. Drug Deliv. Rev. 99, 28–51 (2016).
Google Scholar
Kim, E.-Y. et al. A real-time PCR-based method for determining the surface coverage of thiol-capped oligonucleotides bound onto gold nanoparticles. Nucleic Acids Res. 34, e54–e54 (2006).
Google Scholar
Gijs, M. et al. Improved aptamers for the diagnosis and potential treatment of HER2-positive cancer. Pharmaceuticals 9, 15–19 (2016).
Google Scholar
Amoozgar, Z. & Yeo, Y. Recent advances in stealth coating of nanoparticle drug delivery systems. WIREs Nanomed. Nanobiotechnol. 4, 219–233 (2012).
Google Scholar
Verma, A. & Stellacci, F. Effect of surface properties on nanoparticle-cell interactions. Small 6, 12–21 (2010).
Google Scholar
Otsuka, H., Nagasaki, Y. & Kataoka, K. PEGylated nanoparticles for biological and pharmaceutical applications. Adv. Drug Deliv. Rev. 64, 246–255 (2012).
Google Scholar
Damodaran, V. B., Fee, C. J., Ruckh, T. & Popat, K. C. Conformational studies of covalently grafted poly (ethylene glycol) on modified solid matrices using X-ray photoelectron spectroscopy. Langmuir 26, 7299–7306 (2010).
Google Scholar
Perry, J. L. et al. PEGylated PRINT nanoparticles: The impact of PEG density on protein binding, macrophage association, biodistribution, and pharmacokinetics. Nano Lett. 12 5304-5310 (2012).
Chandradoss, S. D. et al. Surface passivation for single-molecule protein studies. J. Vis. Exp. https://doi.org/10.3791/50549 (2014).
Google Scholar
Hadjesfandiari, N. & Parambath, A. Stealth coatings for nanoparticles: polyethylene glycol alternatives. in Engineering of Biomaterials for Drug Delivery Systems 345–361 (Elsevier, 2018). https://doi.org/10.1016/B978-0-08-101750-0.00013-1.
Hagedorn, P. H. et al. Locked nucleic acid: modality, diversity, and drug discovery. Drug Discov. Today 23, 101–114 (Anilkumar Parambath, 2018).
Google Scholar
Lichty, J. J., Malecki, J. L., Agnew, H. D., Michelson-Horowitz, D. J. & Tan, S. Comparison of affinity tags for protein purification. Protein Expr. Purif. 41, 98–105 (2005).
Google Scholar
Hong, S. et al. The binding avidity of a nanoparticle-based multivalent targeted drug delivery platform. Chem. Biol. 14, 107–115 (2007).
Google Scholar
Vauquelin, G. & Charlton, S. J. Exploring avidity: understanding the potential gains in functional affinity and target residence time of bivalent and heterobivalent ligands. Br. J. Pharmacol. 168, 1771–1785 (2013).
Google Scholar
Lin, A. et al. Shear-regulated uptake of nanoparticles by endothelial cells and development of endothelial-targeting nanoparticles. J. Biomed. Mater. Res. Part A 93, 833–842 (2010).
Braeckmans, K. et al. Transport of nanoparticles in cystic fibrosis sputum and bacterial biofilms by single-particle tracking microscopy. Nanomedicine 8, 935–949 (2012).
Google Scholar
Bagalkot, V. et al. Quantum dot—Aptamer conjugates for synchronous cancer imaging, therapy, and sensing of drug delivery based on Bi-fluorescence resonance energy transfer. Nano Lett. 7, 3065–3070 (2007).
Google Scholar
Li, Z. et al. Aptamer-conjugated dendrimer-modified quantum dots for cancer cell targeting and imaging. Mater. Lett. 64, 375–378 (2010).
Google Scholar
Liu, H., Xu, S., He, Z., Deng, A. & Zhu, J. Supersandwich cytosensor for selective and ultrasensitive detection of cancer cells using aptamer-DNA concatamer-quantum dots probes. Anal. Chem. 85, 1–5 (2013).
Google Scholar
Chen, X., Deng, Y., Lin, Y., Pang, D., Qing, H., Qu, F., Xie, H. Quantum dot-labeled aptamer nanoprobes specifically targeting glioma cells. Nanotechnology 19, 235105 (2008).
Google Scholar
Kim, G. I., Kim, K. W., Oh, M. K. & Sung, Y. M. The detection of platelet derived growth factor using decoupling of quencher-oligonucleotide from aptamer/quantum dot bioconjugates. Nanotechnology 20, 175503 (2009).
Google Scholar

