Preloader

Metabolic modulation of tumours with engineered bacteria for immunotherapy

  • 1.

    Rodriguez, P. C. & Ochoa, A. C. Arginine regulation by myeloid derived suppressor cells and tolerance in cancer: mechanisms and therapeutic perspectives. Immunol. Rev. 222, 180-191 (2008).

    CAS 
    Article 

    Google Scholar 

  • 2.

    Bronte, V. & Zanovello, P. Regulation of immune responses by l-arginine metabolism. Nat. Rev. Immunol. 5, 641-654 (2005).

    CAS 
    Article 

    Google Scholar 

  • 3.

    Geiger, R. et al. l-Arginine modulates T cell metabolism and enhances survival and anti-tumor activity. Cell 167, 829-842.e813 (2016).

    CAS 
    Article 

    Google Scholar 

  • 4.

    Martí i Líndez, A.-A. M. et al. Mitochondrial arginase-2 is a cell‑autonomous regulator of CD8+ T cell function and antitumor efficacy. JCI Insight 4, e132975 (2019).

    Article 

    Google Scholar 

  • 5.

    He, X., Lin, H., Yuan, L. & Li, B. Combination therapy with l-arginine and α-PD-L1 antibody boosts immune response against osteosarcoma in immunocompetent mice. Cancer Biol. Ther. 18, 94-100 (2017).

    CAS 
    Article 

    Google Scholar 

  • 6.

    Spinelli, J. B. et al. Metabolic recycling of ammonia via glutamate dehydrogenase supports breast cancer biomass. Science 358, 941-946 (2017).

    ADS 
    CAS 
    Article 

    Google Scholar 

  • 7.

    Forbes, N. S. Engineering the perfect (bacterial) cancer therapy. Nat. Rev. Cancer 10, 785 (2010).

    CAS 
    Article 

    Google Scholar 

  • 8.

    Kitada, T., DiAndreth, B., Teague, B. & Weiss, R. Programming gene and engineered-cell therapies with synthetic biology. Science 359, eaad1067 (2018).

    Article 

    Google Scholar 

  • 9.

    Zhao, G., Jin, Z., Allewell, N. M., Tuchman, M. & Shi, D. Crystal structure of the N-acetyltransferase domain of human N-acetyl-l-glutamate synthase in complex with N-acetyl-l-glutamate provides insights into its catalytic and regulatory mechanisms. PLoS ONE 8, e70369 (2013).

    ADS 
    CAS 
    Article 

    Google Scholar 

  • 10.

    Sancho-Vaello, E., Fernandez-Murga, M. L. & Rubio, V. Mechanism of arginine regulation of acetylglutamate synthase, the first enzyme of arginine synthesis. FEBS Lett. 583, 202-206 (2009).

    CAS 
    Article 

    Google Scholar 

  • 11.

    Rajagopal, B. S., DePonte, J., 3rd, Tuchman, M. & Malamy, M. H. Use of inducible feedback-resistant N-acetylglutamate synthetase (argA) genes for enhanced arginine biosynthesis by genetically engineered Escherichia coli K-12 strains. Appl. Environ. Microbiol. 64, 1805-1811 (1998).

    ADS 
    CAS 
    Article 

    Google Scholar 

  • 12.

    Aebersold, R. & Mann, M. Mass spectrometry-based proteomics. Nature 422, 198-207 (2003).

    ADS 
    CAS 
    Article 

    Google Scholar 

  • 13.

    Malissen, M. et al. Altered T cell development in mice with a targeted mutation of the CD3‐epsilon gene. EMBO J. 14, 4641-4653 (1995).

    CAS 
    Article 

    Google Scholar 

  • 14.

    Kurtz, C. B. et al. An engineered E. coli Nissle improves hyperammonemia and survival in mice and shows dose-dependent exposure in healthy humans. Sci. Transl. Med. 11, aau7975 (2019).

    Article 

    Google Scholar 

  • 15.

    Isabella, V. M. et al. Development of a synthetic live bacterial therapeutic for the human metabolic disease phenylketonuria. Nat. Biotechnol. 36, 857-864 (2018).

    CAS 
    Article 

    Google Scholar 

  • 16.

    Malissen, M. et al. Altered T cell development in mice with a targeted mutation of the CD3-epsilon gene. EMBO J. 14, 4641-4653 (1995).

    CAS 
    Article 

    Google Scholar 

  • 17.

    Rappsilber, J., Mann, M. & Ishihama, Y. Protocol for micro-purification, enrichment, pre-fractionation and storage of peptides for proteomics using StageTips. Nat. Protoc. 2, 1896-1906 (2007).

    CAS 
    Article 

    Google Scholar 

  • 18.

    Scheltema, R. A. et al. The Q Exactive HF, a benchtop mass spectrometer with a pre-filter, high-performance quadrupole and an ultra-high-field Orbitrap analyzer. Mol. Cell. Proteomics 13, 3698-3708 (2014).

    CAS 
    Article 

    Google Scholar 

  • 19.

    Cox, J. & Mann, M. MaxQuant enables high peptide identification rates, individualized p.p.b.-range mass accuracies and proteome-wide protein quantification. Nat. Biotechnol. 26, 1367-1372 (2008).

    CAS 
    Article 

    Google Scholar 

  • 20.

    Cox, J. et al. Andromeda: a peptide search engine integrated into the MaxQuant environment. J. Proteome Res. 10, 1794-1805 (2011).

    ADS 
    CAS 
    Article 

    Google Scholar 

  • Source link