Preloader

Maternal anthropometric variables and clinical factors shape neonatal microbiome

  • Jiménez, E. et al. Is meconium from healthy newborns actually sterile?. Res. Microbiol. 159, 187–193 (2008).

    PubMed 

    Google Scholar 

  • Mackie, R. I., Sghir, A. & Gaskins, H. R. Developmental microbial ecology of the neonatal gastrointestinal tract. Am. J. Clin. Nutr. 69, 1 (1999).

    Google Scholar 

  • Adamek, K., Skonieczna-Żydecka, K., Węgrzyn, D. & Łoniewska, B. Prenatal and early childhood development of gut microbiota. Eur. Rev. Med. Pharmacol. Sci. 23, 9667–9680 (2019).

    CAS 
    PubMed 

    Google Scholar 

  • Aagaard, K. et al. The placenta harbors a unique microbiome. Sci. Transl. Med. 6, 23ra765 (2014).

    Google Scholar 

  • Pelzer, E., Gomez-Arango, L. F., Barrett, H. L. & Nitert, M. D. Review: Maternal health and the placental microbiome. Placenta 54, 30–37 (2017).

    CAS 
    PubMed 

    Google Scholar 

  • Jiménez, E. et al. Isolation of commensal bacteria from umbilical cord blood of healthy neonates born by cesarean section. Curr. Microbiol. 51, 270–274 (2005).

    PubMed 

    Google Scholar 

  • Collado, M. C., Rautava, S., Aakko, J., Isolauri, E. & Salminen, S. Human gut colonisation may be initiated in utero by distinct microbial communities in the placenta and amniotic fluid. Sci. Rep. 6, 1–13 (2016).

    Google Scholar 

  • Wilczyńska, P., Skarżyńska, E. & Lisowska-Myjak, B. Meconium microbiome as a new source of information about long-term health and disease: questions and answers. J. Matern. Fetal Neonatal Med. 32, 681–686 (2019).

    PubMed 

    Google Scholar 

  • Stinson, L. F., Boyce, M. C., Payne, M. S. & Keelan, J. A. The not-so-sterile womb: Evidence that the human fetus is exposed to bacteria prior to birth. Front. Microbiol. 10, 1–15 (2019).

    Google Scholar 

  • Gómez, M. et al. Bacteriological and immunological profiling of meconium and fecal samples from preterm infants: A two-year follow-up study. Nutrients 9, 1–19 (2017).

    Google Scholar 

  • Stinson, L. F., Payne, M. S. & Keelan, J. A. Planting the seed: Origins, composition, and postnatal health significance of the fetal gastrointestinal microbiota. Crit. Rev. Microbiol. 43, 352–369 (2017).

    CAS 
    PubMed 

    Google Scholar 

  • Neu, J. The microbiome during pregnancy and early postnatal life. Semin. Fetal. Neonatal Med. 21, 373–379 (2016).

    PubMed 

    Google Scholar 

  • Geva-Zatorsky, N. et al. Mining the human gut microbiota for immunomodulatory organisms. Cell 168, 928-943.e11 (2017).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Gritz, E. C. & Bhandari, V. Corrigendum: The human neonatal gut microbiome: A brief review. Front. Pediatr. 3, 3389 (2015).

    Google Scholar 

  • Chong, C. Y. L., Bloomfield, F. H. & O’Sullivan, J. M. Factors affecting gastrointestinal microbiome development in neonates. Nutrients 10, 1 (2018).

    Google Scholar 

  • Shaw, S. Y., Blanchard, J. F. & Bernstein, C. N. Association between the use of antibiotics in the first year of life and pediatric inflammatory bowel disease. Am. J. Gastroenterol. 105, 2687–2692 (2010).

    PubMed 

    Google Scholar 

  • Russell, S. L. et al. Perinatal antibiotic treatment affects murine microbiota, immune responses and allergic asthma. Gut Microbes 4, 158–164 (2013).

    PubMed 
    PubMed Central 

    Google Scholar 

  • Johnson, C. C. & Ownby, D. R. Allergies and Asthma: Do Atopic Disorders Result from Inadequate Immune Homeostasis arising from Infant Gut Dysbiosis?. Expert Rev. Clin. Immunol. 12, 379–388 (2016).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Nash, M. J., Frank, D. N. & Friedman, J. E. Early microbes modify immune system development and metabolic homeostasis-the ‘restaurant’ hypothesis revisited. Front. Endocrinol. 8, 349 (2017).

    Google Scholar 

  • Walker, W. A. The importance of appropriate initial bacterial colonization of the intestine in newborn, child, and adult health. Pediatr. Res. 82, 387–395 (2017).

    ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Ojeda, J., Ávila, A. & Vidal, P. M. Gut Microbiota Interaction with the Central Nervous System throughout Life. J. Clin. Med. 10, 1 (2021).

    Google Scholar 

  • Hu, J. et al. Diversified microbiota of meconium is affected by maternal diabetes status. PLoS ONE 8, 1 (2013).

    Google Scholar 

  • Chu, D. M. et al. The early infant gut microbiome varies in association with a maternal high-fat diet. Genome Med. 8, 77 (2016).

    ADS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Hu, J. et al. Microbiota of newborn meconium is associated with maternal anxiety experienced during pregnancy. Dev. Psychobiol. 61, 640–649 (2019).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Wong, W. S. W. et al. Prenatal and peripartum exposure to antibiotics and cesarean section delivery are associated with differences in diversity and composition of the infant meconium microbiome. Microorganisms 8, 1 (2020).

    Google Scholar 

  • Sanidad, K. Z. & Zeng, M. Y. LOS in the dysbiotic gut. Cell Host Microbe 27, 11–13 (2020).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Wang, M., Monaco, M. H. & Donovan, S. M. Impact of early gut microbiota on immune and metabolic development and function. Semin. Fetal. Neonatal Med. 21, 380–387 (2016).

    PubMed 

    Google Scholar 

  • Dong, T. S. & Gupta, A. Influence of early life, diet, and the environment on the microbiome. Clin. Gastroenterol. Hepatol. Off. Clin. Pract. J. Am. Gastroenterol. Assoc. 17, 231–242 (2019).

    Google Scholar 

  • Rühlemann, M. C. et al. Genome-wide association study in 8,956 German individuals identifies influence of ABO histo-blood groups on gut microbiome. Nat. Genet. 53, 147–155 (2021).

    PubMed 

    Google Scholar 

  • Yang, J. et al. Comparison of meconium microbiome in dizygotic and monozygotic twins born by caesarean section (CS). Front. Microbiol. 11, 1139 (2020).

    PubMed 
    PubMed Central 

    Google Scholar 

  • Del Chierico, F. et al. Phylogenetic and metabolic tracking of gut microbiota during perinatal development. PLoS ONE 10, 1–26 (2015).

    Google Scholar 

  • Wampach, L. et al. Colonization and succession within the human gut microbiome by archaea, bacteria, and microeukaryotes during the first year of life. Front. Microbiol. 8, 1–21 (2017).

    Google Scholar 

  • Dominguez-Bello, M. G. et al. Delivery mode shapes the acquisition and structure of the initial microbiota across multiple body habitats in newborns. Proc. Natl. Acad. Sci. USA 107, 11971–11975 (2010).

    ADS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Brugère, J.-F. et al. Archaebiotics. Gut Microbes 5, 5–10 (2014).

    PubMed 

    Google Scholar 

  • Gaci, N., Borrel, G., Tottey, W., O’Toole, P. W. & Brugère, J.-F. Archaea and the human gut: new beginning of an old story. World J. Gastroenterol. 20, 16062–16078 (2014).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Dridi, B., Henry, M., El Khéchine, A., Raoult, D. & Drancourt, M. High prevalence of methanobrevibacter smithii and methanosphaera stadtmanae detected in the human gut using an improved DNA detection protocol. PLoS ONE 4, 7063 (2009).

    ADS 

    Google Scholar 

  • Dong, T. et al. Meconium microbiome associates with the development of neonatal jaundice. Clin. Transl. Gastroenterol. 9, 1 (2018).

    Google Scholar 

  • Huttenhower, C. Structure, function and diversity of the healthy human microbiome. Nature 486, 207–214 (2012).

    ADS 
    CAS 

    Google Scholar 

  • Lloyd-Price, J., Abu-Ali, G. & Huttenhower, C. The healthy human microbiome. Genome Med. 8, 51 (2016).

    PubMed 
    PubMed Central 

    Google Scholar 

  • Cooling, L. Blood groups in infection and host susceptibility. Clin. Microbiol. Rev. 28, 801–870 (2015).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Davenport, E. R. et al. ABO antigen and secretor statuses are not associated with gut microbiota composition in 1,500 twins. BMC Genomics 17, 1–14 (2016).

    MathSciNet 

    Google Scholar 

  • Turpin, W. et al. FUT2 genotype and secretory status are not associated with fecal microbial composition and inferred function in healthy subjects. Gut Microbes 9, 357–368 (2018).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Uchida, H. et al. Lactobacilli binding human A-antigen expressed in intestinal mucosa. Res. Microbiol. 157, 659–665 (2006).

    CAS 
    PubMed 

    Google Scholar 

  • Uchida, H. et al. Lactic acid bacteria (LAB) bind to human B- or H-antigens expressed on intestinal mucosa. Biosci. Biotechnol. Biochem. 70, 3073–3076 (2006).

    CAS 
    PubMed 

    Google Scholar 

  • Goossens, D. et al. Mice expressing RHAG and RHD human blood group genes. PLoS ONE 8, 1–14 (2013).

    Google Scholar 

  • Klemm, P. & Schembri, M. A. Bacterial adhesins: function and structure. Int. J. Med. Microbiol. 290, 27–35 (2000).

    CAS 
    PubMed 

    Google Scholar 

  • Walker, R. W., Clemente, J. C., Peter, I. & Loos, R. J. F. The prenatal gut microbiome: are we colonized with bacteria in utero?. Pediatr. Obes. 12, 3–17 (2017).

    PubMed 
    PubMed Central 

    Google Scholar 

  • Rescigno, M. et al. Dendritic cells express tight junction proteins and penetrate gut epithelial monolayers to sample bacteria. Nat. Immunol. 2, 361–367 (2001).

    CAS 
    PubMed 

    Google Scholar 

  • Goldhar, J. B. T.-M. in E. [4] Erythrocytes as target cells for testing bacterial adhesins. in Adhesion of Microbial Pathogens vol. 253 43–50 (Academic Press, 1995).

  • Kornman, K. S. & Loesche, W. J. The subgingival microbial flora during pregnancy. J. Periodontal Res. 15, 111–122 (1980).

    CAS 
    PubMed 

    Google Scholar 

  • Penders, J. et al. Factors influencing the composition of the intestinal microbiota in early infancy. Pediatrics 118, 511–521 (2006).

    PubMed 

    Google Scholar 

  • Martin, R. et al. Early-Life events, including mode of delivery and type of feeding, siblings and gender, shape the developing gut microbiota. PLoS ONE 11, 1–30 (2016).

    CAS 

    Google Scholar 

  • Ardissone, A. N. et al. Meconium microbiome analysis identifies bacteria correlated with premature birth. PloS One 9, e90784 (2014).

  • Chernikova, D. A. et al. The premature infant gut microbiome during the first 6 weeks of life differs based on gestational maturity at birth. Pediatr Res 84, 71–79 (2018).

    PubMed 
    PubMed Central 

    Google Scholar 

  • Chu, D. M. et al. Maturation of the infant microbiome community structure and function across multiple body sites and in relation to mode of delivery. Nat. Med. 23, 314–326 (2017).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • He, Q. et al. The meconium microbiota shares more features with the amniotic fluid microbiota than the maternal fecal and vaginal microbiota. Gut Microbes 12, 1794266 (2020).

    PubMed 
    PubMed Central 

    Google Scholar 

  • Dierikx, T. H. et al. The influence of prenatal and intrapartum antibiotics on intestinal microbiota colonisation in infants: A systematic review. J. Infect. 81, 190–204 (2020).

    CAS 
    PubMed 

    Google Scholar 

  • Zhou, Y. et al. Intrauterine antibiotic exposure affected neonatal gut bacteria and infant growth speed. Environ. Pollut. Barking Essex 289, 117901 (2021).

    CAS 

    Google Scholar 

  • McMurdie, P. J. & Holmes, S. Waste Not, Want Not: Why Rarefying Microbiome Data Is Inadmissible. PLoS Comput. Biol. 10, 1 (2014).

    Google Scholar 

  • Boers, S. A., Jansen, R. & Hays, J. P. Understanding and overcoming the pitfalls and biases of next-generation sequencing (NGS) methods for use in the routine clinical microbiological diagnostic laboratory. Eur. J. Clin. Microbiol. Infect. Dis. 38, 1059 (2019).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Filges, S., Yamada, E., Ståhlberg, A. & Godfrey, T. E. Impact of polymerase fidelity on background error rates in next-generation sequencing with unique molecular identifiers/barcodes. Sci. Rep. 9, 1 (2019).

    CAS 

    Google Scholar 

  • Wang, J. et al. Core gut bacteria analysis of healthy mice. Front. Microbiol. 10, 887 (2019).

    PubMed 
    PubMed Central 

    Google Scholar 

  • Wemheuer, F. et al. Tax4Fun2: a R-based tool for the rapid prediction of habitat-specific functional profiles and functional redundancy based on 16S rRNA gene marker gene sequences. Environ. Microbiome 12, 1. https://doi.org/10.1101/490037 (2020).

    CAS 
    Article 

    Google Scholar 

  • Pielou, E. C. The measurement of diversity in different types of biological collections. J. Theor. Biol. 13, 131–144 (1966).

    ADS 

    Google Scholar 

  • Kim, B. R. et al. Deciphering diversity indices for a better understanding of microbial communities. J. Microbiol. Biotechnol. 27, 2089–2093 (2017).

    PubMed 

    Google Scholar 

  • Lagkouvardos, I., Fischer, S., Kumar, N. & Clavel, T. Rhea: A transparent and modular R pipeline for microbial profiling based on 16S rRNA gene amplicons. PeerJ 2017, (2017).

  • Faith, D. P., Minchin, P. R. & Belbin, L. Compositional dissimilarity as a robust measure of ecological distance. Vegetatio 69, 57–68 (1987).

    Google Scholar 

  • Source link