Preloader

Massively parallel enrichment of low-frequency alleles enables duplex sequencing at low depth

  • Luquette, L. J., Bohrson, C. L., Sherman, M. A. & Park, P. J. Identification of somatic mutations in single cell DNA-seq using a spatial model of allelic imbalance. Nat. Commun. 10, 3908 (2019).

    PubMed 
    PubMed Central 

    Google Scholar 

  • Ludwig, L. S. et al. Lineage tracing in humans enabled by mitochondrial mutations and single-cell genomics. Cell 176, e22 (2019).

    Google Scholar 

  • Zahn, L. M. Mapping genotype to phenotype. Science 362, 555.4–556 (2018).

    Google Scholar 

  • D’Gama, A. M. & Walsh, C. A. Somatic mosaicism and neurodevelopmental disease. Nat. Neurosci. 21, 1504–1514 (2018).

    PubMed 

    Google Scholar 

  • Garcia-Murillas, I. et al. Assessment of molecular relapse detection in early-stage breast cancer. JAMA Oncol. https://doi.org/10.1001/jamaoncol.2019.1838 (2019).

  • Canick, J. A., Palomaki, G. E., Kloza, E. M., Lambert-Messerlian, G. M. & Haddow, J. E. The impact of maternal plasma DNA fetal fraction on next generation sequencing tests for common fetal aneuploidies. Prenat. Diagn. 33, 667–674 (2013).

    CAS 
    PubMed 

    Google Scholar 

  • Bejar, R. et al. Somatic mutations predict poor outcome in patients with myelodysplastic syndrome after hematopoietic stem-cell transplantation. J. Clin. Oncol. 32, 2691–2698 (2014).

    PubMed 
    PubMed Central 

    Google Scholar 

  • Snyder, T. M., Khush, K. K., Valantine, H. A. & Quake, S. R. Universal noninvasive detection of solid organ transplant rejection. Proc. Natl Acad. Sci. USA 108, 6229–6234 (2011).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Blauwkamp, T. A. et al. Analytical and clinical validation of a microbial cell-free DNA sequencing test for infectious disease. Nat. Microbiol 4, 663–674 (2019).

    CAS 
    PubMed 

    Google Scholar 

  • Boyd, S. D. et al. Measurement and clinical monitoring of human lymphocyte clonality by massively parallel VDJ pyrosequencing. Sci. Transl. Med. 1, 12ra23 (2009).

    PubMed 
    PubMed Central 

    Google Scholar 

  • Gilbert, J. A. et al. Current understanding of the human microbiome. Nat. Med. 24, 392–400 (2018).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Lowe, A., Murray, C., Whitaker, J., Tully, G. & Gill, P. The propensity of individuals to deposit DNA and secondary transfer of low level DNA from individuals to inert surfaces. Forensic Sci. Int. 129, 25–34 (2002).

    CAS 
    PubMed 

    Google Scholar 

  • Schmitt, M. W. et al. Detection of ultra-rare mutations by next-generation sequencing. Proc. Natl Acad. Sci. USA 109, 14508–14513 (2012).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Song, C. et al. Elimination of unaltered DNA in mixed clinical samples via nuclease-assisted minor-allele enrichment. Nucleic Acids Res. 44, e146 (2016).

    PubMed 
    PubMed Central 

    Google Scholar 

  • Li, J. & Makrigiorgos, G. Mike COLD-PCR: a new platform for highly improved mutation detection in cancer and genetic testing. Biochem. Soc. Trans. 37, 427–432 (2009).

    CAS 
    PubMed 

    Google Scholar 

  • Wu, L. R., Chen, S. X., Wu, Y., Patel, A. A. & Zhang, D. Y. Multiplexed enrichment of rare DNA variants via sequence-selective and temperature-robust amplification. Nat. Biomed. Eng. 1, 714–723 (2017).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Jeffreys, A. J. & May, C. A. DNA enrichment by allele-specific hybridization (DEASH): a novel method for haplotyping and for detecting low-frequency base substitutional variants and recombinant DNA molecules. Genome Res. 13, 2316–2324 (2003).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Gaudet, M., Fara, A.-G., Beritognolo, I. & Sabatti, M. Allele-specific PCR in SNP genotyping. Methods Mol. Biol. 578, 415–424 (2009).

    CAS 
    PubMed 

    Google Scholar 

  • Vargas, D. Y., Marras, S. A. E., Tyagi, S. & Kramer, F. R. Suppression of wild-type amplification by selectivity enhancing agents in PCR assays that utilize superselective primers for the detection of rare somatic mutations. J. Mol. Diagn. 20, 415–427 (2018).

    CAS 
    PubMed 

    Google Scholar 

  • Li, J. et al. Replacing PCR with COLD-PCR enriches variant DNA sequences and redefines the sensitivity of genetic testing. Nat. Med. 14, 579–584 (2008).

    CAS 
    PubMed 

    Google Scholar 

  • Li, J., Milbury, C. A., Li, C. & Makrigiorgos, G. M. Two-round coamplification at lower denaturation temperature-PCR (COLD-PCR)-based sanger sequencing identifies a novel spectrum of low-level mutations in lung adenocarcinoma. Hum. Mutat. 30, 1583–1590 (2009).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Schmitt, M. W. et al. Sequencing small genomic targets with high efficiency and extreme accuracy. Nat. Methods 12, 423–425 (2015).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Parsons, H. A. et al. Sensitive detection of minimal residual disease in patients treated for early-stage breast cancer. Clin. Cancer Res. https://doi.org/10.1158/1078-0432.CCR-19-3005 (2020).

  • Newman, A. M. et al. Integrated digital error suppression for improved detection of circulating tumor DNA. Nat. Biotechnol. 34, 547–555 (2016).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Machin, G. Non-identical monozygotic twins, intermediate twin types, zygosity testing, and the non-random nature of monozygotic twinning: a review. Am. J. Med. Genet. C 151C, 110–127 (2009).

    Google Scholar 

  • Shimoni, A. & Nagler, A. Non-myeloablative stem cell transplantation (NST): chimerism testing as guidance for immune-therapeutic manipulations. Leukemia 15, 1967–1975 (2001).

    CAS 
    PubMed 

    Google Scholar 

  • Breuer, S. et al. Early recipient chimerism testing in the T- and NK-cell lineages for risk assessment of graft rejection in pediatric patients undergoing allogeneic stem cell transplantation. Leukemia 26, 509–519 (2012).

    CAS 
    PubMed 

    Google Scholar 

  • Tyler, J., Kumer, L., Fisher, C., Casey, H. & Shike, H. Personalized chimerism test that uses selection of short tandem repeat or quantitative PCR depending on patient’s chimerism status. J. Mol. Diagn. 21, 483–490 (2019).

    CAS 
    PubMed 

    Google Scholar 

  • Newman, A. M. et al. An ultrasensitive method for quantitating circulating tumor DNA with broad patient coverage. Nat. Med. 20, 548–554 (2014).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Lee, H., Park, C., Na, W., Park, K. H. & Shin, S. Precision cell-free DNA extraction for liquid biopsy by integrated microfluidics. npj Precis. Oncol. 4, 3 (2020).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Mauger, F. et al. Comparison of commercially available whole-genome sequencing kits for variant detection in circulating cell-free DNA. Sci. Rep. 10, 6190 (2020).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Liu, D. et al. Multiplex cell-free DNA reference materials for quality control of next-generation sequencing-based in vitro diagnostic tests of colorectal cancer tolerance. J. Cancer 9, 3812–3823 (2018).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Tsao, D. S. et al. A novel high-throughput molecular counting method with single base-pair resolution enables accurate single-gene NIPT. Sci. Rep. 9, 14382 (2019).

    PubMed 
    PubMed Central 

    Google Scholar 

  • Pantel, K. & Alix-Panabières, C. Liquid biopsy and minimal residual disease—latest advances and implications for cure. Nat. Rev. Clin. Oncol. 16, 409–424 (2019).

    CAS 
    PubMed 

    Google Scholar 

  • Tie, J. et al. Circulating tumor DNA analysis detects minimal residual disease and predicts recurrence in patients with stage II colon cancer. Sci. Transl. Med. 8, 346ra92 (2016).

    PubMed 
    PubMed Central 

    Google Scholar 

  • Chaudhuri, A. A. et al. Early detection of molecular residual disease in localized lung cancer by circulating tumor DNA profiling. Cancer Discov. 7, 1394–1403 (2017).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Coombes, R. C. et al. Personalized detection of circulating tumor DNA antedates breast cancer metastatic recurrence. Clin. Cancer Res. 25, 4255–4263 (2019).

    CAS 
    PubMed 

    Google Scholar 

  • Wan, J. C. M. et al. ctDNA monitoring using patient-specific sequencing and integration of variant reads. Sci. Transl. Med. 12, eaaz8084 (2020).

    CAS 
    PubMed 

    Google Scholar 

  • McDonald, B. R. et al. Personalized circulating tumor DNA analysis to detect residual disease after neoadjuvant therapy in breast cancer. Sci. Transl. Med. 11, eaax7392 (2019).

    PubMed 
    PubMed Central 

    Google Scholar 

  • Butler, T. M. et al. Circulating tumor DNA dynamics using patient-customized assays are associated with outcome in neoadjuvantly treated breast cancer. Cold Spring Harb. Mol. Case Stud. 5, a003772 (2019).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Magbanua, M. J. M. et al. Circulating tumor DNA in neoadjuvant treated breast cancer reflects response and survival. Oncology https://doi.org/10.1101/2020.02.03.20019760 (2020).

  • Moding, E. J. et al. Circulating tumor DNA dynamics predict benefit from consolidation immunotherapy in locally advanced non-small-cell lung cancer. Nat. Cancer 1, 176–183 (2020).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Etienne, G. et al. Long-term follow-up of the French Stop Imatinib (STIM1) study in patients with chronic myeloid leukemia. J. Clin. Oncol. 35, 298–305 (2017).

    PubMed 

    Google Scholar 

  • Abbosh, C. et al. Phylogenetic ctDNA analysis depicts early-stage lung cancer evolution. Nature 545, 446–451 (2017).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Zviran, A. et al. Genome-wide cell-free DNA mutational integration enables ultra-sensitive cancer monitoring. Nat. Med. 26, 1114–1124 (2020).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Masuda, N. et al. Adjuvant capecitabine for breast cancer after preoperative chemotherapy. N. Engl. J. Med. 376, 2147–2159 (2017).

    CAS 
    PubMed 

    Google Scholar 

  • von Minckwitz, G. et al. Trastuzumab emtansine for residual invasive HER2-positive breast cancer. N. Engl. J. Med. 380, 617–628 (2019).

    Google Scholar 

  • Zook, J. M. et al. An open resource for accurately benchmarking small variant and reference calls. Nat. Biotechnol. 37, 561–566 (2019).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Genomes Project Consortium et al. A global reference for human genetic variation. Nature 526, 68–74 (2015). 1000.

    Google Scholar 

  • Adalsteinsson, V. A. et al. Scalable whole-exome sequencing of cell-free DNA reveals high concordance with metastatic tumors. Nat. Commun. 8, 1324 (2017).

    PubMed 
    PubMed Central 

    Google Scholar 

  • Köster, J. & Rahmann, S. Snakemake—a scalable bioinformatics workflow engine. Bioinformatics 28, 2520–2522 (2012).

    PubMed 

    Google Scholar 

  • Source link