Preloader

KAS-seq: genome-wide sequencing of single-stranded DNA by N3-kethoxal–assisted labeling

  • 1.

    Chen, F. X., Smith, E. R. & Shilatifard, A. Born to run: control of transcription elongation by RNA polymerase II. Nat. Rev. Mol. Cell Biol. 19, 464–478 (2018).

    CAS 
    PubMed 

    Google Scholar 

  • 2.

    Bell, S. P. & Dutta, A. DNA replication in eukaryotic cells. Annu. Rev. Biochem. 71, 333–374 (2002).

    CAS 
    PubMed 

    Google Scholar 

  • 3.

    Hustedt, N. & Durocher, D. The control of DNA repair by the cell cycle. Nat. Cell Biol. 19, 1–9 (2017).

    CAS 

    Google Scholar 

  • 4.

    Li, X. & Heyer, W.-D. Homologous recombination in DNA repair and DNA damage tolerance. Cell Res. 18, 99–113 (2008).

    CAS 
    PubMed 

    Google Scholar 

  • 5.

    Fuchs, G. et al. 4sUDRB-seq: measuring genomewide transcriptional elongation rates and initiation frequencies within cells. Genome Biol. 15, R69 (2014).

    PubMed 
    PubMed Central 

    Google Scholar 

  • 6.

    Kouzine, F. et al. Permanganate/S1 nuclease footprinting reveals non-B DNA structures with regulatory potential across a mammalian genome. Cell Syst. 4, 344–356.e7 (2017).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • 7.

    Huppert, J. L. & Balasubramanian, S. G-quadruplexes in promoters throughout the human genome. Nucleic Acids Res. 35, 406–413 (2007).

    CAS 
    PubMed 

    Google Scholar 

  • 8.

    Zeraati, M. et al. I-motif DNA structures are formed in the nuclei of human cells. Nat. Chem. 10, 631–637 (2018).

    CAS 
    PubMed 

    Google Scholar 

  • 9.

    Cer, R. Z. et al. Non-B DB v2.0: a database of predicted non-B DNA-forming motifs and its associated tools. Nucleic Acids Res. 41, D94–D100 (2012).

    PubMed 
    PubMed Central 

    Google Scholar 

  • 10.

    McIntosh, D. B., Duggan, G., Gouil, Q. & Saleh, O. A. Sequence-dependent elasticity and electrostatics of single-stranded DNA: signatures of base-stacking. Biophys. J. 106, 659–666 (2014).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • 11.

    Murphy, M., Rasnik, I., Cheng, W., Lohman, T. M. & Ha, T. Probing single-stranded DNA conformational flexibility using fluorescence spectroscopy. Biophys. J. 86, 2530–2537 (2004).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • 12.

    Ginno, P. A., Lott, P. L., Christensen, H. C., Korf, I. & Chédin, F. R-loop formation is a distinctive characteristic of unmethylated human CpG island promoters. Mol. Cell 45, 814–825 (2012).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • 13.

    Sollier, J. et al. Transcription-coupled nucleotide excision repair factors promote R-loop-induced genome instability. Mol. Cell 56, 777–785 (2014).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • 14.

    Lei, M., Podell, E. R. & Cech, T. R. Structure of human POT1 bound to telomeric single-stranded DNA provides a model for chromosome end-protection. Nat. Struct. Mol. Biol. 11, 1223–1229 (2004).

    CAS 
    PubMed 

    Google Scholar 

  • 15.

    Zeitlin, S. G. et al. Double-strand DNA breaks recruit the centromeric histone CENP-A. Proc. Natl Acad. Sci. USA 106, 15762–15767 (2009).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • 16.

    Kouzine, F. et al. Global regulation of promoter melting in naive lymphocytes. Cell 153, 988–999 (2013).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • 17.

    Weng, X. et al. Keth-seq for transcriptome-wide RNA structure mapping. Nat. Chem. Biol. 16, 489–492 (2020).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • 18.

    Wu, T., Lyu, R., You, Q. & He, C. Kethoxal-assisted single-stranded DNA sequencing captures global transcription dynamics and enhancer activity in situ. Nat. Methods 17, 515–523 (2020).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • 19.

    Krueger, F. Trim Galore. A wrapper tool around Cutadapt and FastQC to consistently apply quality and adapter trimming to FastQ files https://www.bioinformatics.babraham.ac.uk/projects/trim_galore/ (2015).

  • 20.

    Langmead, B. & Salzberg, S. L. Fast gapped-read alignment with Bowtie 2. Nat. Methods 9, 357–359 (2012).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • 21.

    Li, H. et al. The sequence alignment/map format and SAMtools. Bioinformatics 25, 2078–2079 (2009).

    PubMed 
    PubMed Central 

    Google Scholar 

  • 22.

    Feng, J., Liu, T., Qin, B., Zhang, Y. & Liu, X. S. Identifying ChIP-seq enrichment using MACS. Nat. Protoc. 7, 1728–1740 (2012).

    CAS 
    PubMed 

    Google Scholar 

  • 23.

    Ramirez, F., Dundar, F., Diehl, S., Gruning, B. A. & Manke, T. deepTools: a flexible platform for exploring deep-sequencing data. Nucleic Acids Res. 42, W187–W191 (2014).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • 24.

    Love, M. I., Huber, W. & Anders, S. Moderated estimation of fold change and dispersion for RNA-seq data with DESeq2. Genome Biol. 15, 550 (2014).

    PubMed 
    PubMed Central 

    Google Scholar 

  • 25.

    Quinlan, A. R. & Hall, I. M. BEDTools: a flexible suite of utilities for comparing genomic features. Bioinformatics 26, 841–842 (2010).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • 26.

    Lyu, R. Ruitulyu/KAS-pipe: first release of KAS-pipe for KAS-seq data analysis (1.0.0). Zenodo https://doi.org/10.5281/zenodo.4941764 (2021).

  • 27.

    Shapiro, R., Cohen, B. I., Shiuey, S.-J. & Maurer, H. Reaction of guanine with glyoxal, pyruvaldehyde, and kethoxal, and the structure of the acylguanines. Synthesis of N2-alkylguanines. Biochemistry 8, 238–245 (1969).

    CAS 
    PubMed 

    Google Scholar 

  • 28.

    Staehelin, M. Inactivation of virus nucleic acid with glyoxal derivatives. Biochim. Biophys. Acta 31, 448–454 (1959).

    CAS 
    PubMed 

    Google Scholar 

  • 29.

    Litt, M. & Hancock, V. Kethoxal—a potentially useful reagent for the determination of nucleotide sequences in single-stranded regions of transfer ribonucleic acid. Biochemistry 6, 1848–1854 (1967).

    CAS 
    PubMed 

    Google Scholar 

  • 30.

    Noller, H. F. & Chaires, J. B. Functional modification of 16S ribosomal RNA by kethoxal. Proc. Natl Acad. Sci. USA 69, 3115–3118 (1972).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • 31.

    LaGrandeur, T. E., Hüttenhofer, A., Noller, H. F. & Pace, N. R. Phylogenetic comparative chemical footprint analysis of the interaction between ribonuclease P RNA and tRNA. EMBO J. 13, 3945–3952 (1994).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • 32.

    Yamane, A. et al. RPA accumulation during class switch recombination represents 5′–3′ DNA-end resection during the S–G2/M phase of the cell cycle. Cell Rep. 3, 138–147 (2013).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • 33.

    Lange, J. et al. The landscape of mouse meiotic double-strand break formation, processing, and repair. Cell 167, 695–708.e16 (2016).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • 34.

    Paiano, J. et al. ATM and PRDM9 regulate SPO11-bound recombination intermediates during meiosis. Nat. Commun. 11, 857 (2020).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • 35.

    Hinch, A. G. et al. The configuration of RPA, RAD51, and DMC1 binding in meiosis reveals the nature of critical recombination intermediates. Mol. Cell 79, 689–701.e10 (2020).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • 36.

    Khil, P. P., Smagulova, F., Brick, K. M., Camerini-Otero, R. D. & Petukhova, G. V. Sensitive mapping of recombination hotspots using sequencing-based detection of ssDNA. Genome Res. 22, 957–965 (2012).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • 37.

    Zhou, Z.-X. et al. Mapping genomic hotspots of DNA damage by a single-strand-DNA-compatible and strand-specific ChIP-seq method. Genome Res. 23, 705–715 (2013).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • 38.

    Core, L. J., Waterfall, J. J. & Lis, J. T. Nascent RNA sequencing reveals widespread pausing and divergent initiation at human promoters. Science 322, 1845–1848 (2008).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • 39.

    Paulsen, M. T. et al. Coordinated regulation of synthesis and stability of RNA during the acute TNF-induced proinflammatory response. Proc. Natl Acad. Sci. USA 110, 2240–2245 (2013).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • 40.

    Fuchs, G. et al. 4sUDRB-seq: measuring genomewide transcriptional elongation rates and initiation frequencies within cells. Genome Biol. 15, R69 (2014).

    PubMed 
    PubMed Central 

    Google Scholar 

  • 41.

    Barski, A. et al. High-resolution profiling of histone methylations in the human genome. Cell 129, 823–837 (2007).

    CAS 
    PubMed 

    Google Scholar 

  • 42.

    Buenrostro, J. D., Giresi, P. G., Zaba, L. C., Chang, H. Y. & Greenleaf, W. J. Transposition of native chromatin for multimodal regulatory analysis and personal epigenomics. Nat. Methods 10, 1213–1218 (2013).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • 43.

    Chédin, F. Nascent connections: R-loops and chromatin patterning. Trends Genet. 32, 828–838 (2016).

    PubMed 
    PubMed Central 

    Google Scholar 

  • 44.

    Herschlag, D. Biophysical, Chemical, and Functional Probes of RNA Structure, Interactions and Folding: Part A (Academic Press, 2009).

  • 45.

    Akinsiku, O. T., Yu, E. T. & Fabris, D. Mass spectrometric investigation of protein alkylation by the RNA footprinting probe kethoxal. J. Mass Spectrom. 40, 1372–1381 (2005).

    CAS 
    PubMed 

    Google Scholar 

  • 46.

    Kaya-Okur, H. S. et al. CUT&Tag for efficient epigenomic profiling of small samples and single cells. Nat. Commun. 10, 1930 (2019).

    PubMed 
    PubMed Central 

    Google Scholar 

  • 47.

    Laos, R., Thomson, J. M. & Benner, S. A. DNA polymerases engineered by directed evolution to incorporate non-standard nucleotides. Front. Microbiol. 5, 565 (2014).

    PubMed 
    PubMed Central 

    Google Scholar 

  • 48.

    Schadt, E. E. et al. Modeling kinetic rate variation in third generation DNA sequencing data to detect putative modifications to DNA bases. Genome Res. 23, 129–141 (2013).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • 49.

    Mahat, D. B. & Lis, J. T. Use of conditioned media is critical for studies of regulation in response to rapid heat shock. Cell Stress Chaperones 22, 155–162 (2017).

    PubMed 

    Google Scholar 

  • 50.

    Cramer, P. Organization and regulation of gene transcription. Nature 573, 45–54 (2019).

    CAS 
    PubMed 

    Google Scholar 

  • Source link