Preloader

Joint-on-chip platforms: entering a new era of in vitro models for arthritis

  • 1.

    McDonough, C. M. & Jette, A. M. The contribution of osteoarthritis to functional limitations and disability. Clin. Geriatr. Med. 26, 387–399 (2010).

    PubMed 
    PubMed Central 

    Google Scholar 

  • 2.

    Guo, Q. et al. Rheumatoid arthritis: pathological mechanisms and modern pharmacologic therapies. Bone Res. 6, 15 (2018).

    PubMed 
    PubMed Central 

    Google Scholar 

  • 3.

    Chen, D. et al. Osteoarthritis: toward a comprehensive understanding of pathological mechanism. Bone Res. 5, 16044 (2017).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • 4.

    Onishi, K. et al. Osteoarthritis: a critical review. Crit. Rev. Phys. Rehabil. Med. 24, 251–264 (2012).

    PubMed 
    PubMed Central 

    Google Scholar 

  • 5.

    Aletaha, D. & Smolen, J. S. Diagnosis and management of rheumatoid arthritis: a review. JAMA 320, 1360–1372 (2018).

    PubMed 
    PubMed Central 

    Google Scholar 

  • 6.

    Ghouri, A. & Conaghan, P. G. Update on novel pharmacological therapies for osteoarthritis. Ther. Adv. Musculoskelet. Dis. 11, 1759720–19864492 (2019).

    Google Scholar 

  • 7.

    Low, L. A., Mummery, C., Berridge, B. R., Austin, C. P. & Tagle, D. A. Organs-on-chips: into the next decade. Nat. Rev. Drug Discov. 20, 345–361 (2021).

    CAS 
    PubMed 

    Google Scholar 

  • 8.

    Jensen, C. & Teng, Y. Is it time to start transitioning from 2D to 3D cell culture? Front. Mol. Biosci. 7, 33 (2020).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • 9.

    Kapalczynska, M. et al. 2D and 3D cell cultures — a comparison of different types of cancer cell cultures. Arch. Med. Sci. 14, 910–919 (2018).

    PubMed 

    Google Scholar 

  • 10.

    Duval, K. et al. Modeling physiological events in 2D vs. 3D cell culture. Physiology 32, 266–277 (2017).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • 11.

    Huh, D., Hamilton, G. A. & Ingber, D. E. From 3D cell culture to organs-on-chips. Trends Cell Biol. 21, 745–754 (2011).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • 12.

    Charlier, E. et al. Chondrocyte dedifferentiation and osteoarthritis (OA). Biochem. Pharmacol. 165, 49–65 (2019).

    PubMed 

    Google Scholar 

  • 13.

    Bessis, N., Decker, P., Assier, E., Semerano, L. & Boissier, M. C. Arthritis models: usefulness and interpretation. Semin. Immunopathol. 39, 469–486 (2017).

    CAS 
    PubMed 

    Google Scholar 

  • 14.

    Malfait, A. M. & Little, C. B. On the predictive utility of animal models of osteoarthritis. Arthritis Res. Ther. 17, 225 (2015).

    PubMed 
    PubMed Central 

    Google Scholar 

  • 15.

    Kuyinu, E. L., Narayanan, G., Nair, L. S. & Laurencin, C. T. Animal models of osteoarthritis: classification, update, and measurement of outcomes. J. Orthop. Surg. Res. 11, 19 (2016).

    PubMed 
    PubMed Central 

    Google Scholar 

  • 16.

    Dolzani, P. et al. Ex vivo physiological compression of human osteoarthritis cartilage modulates cellular and matrix components. PLoS ONE 14, e0222947 (2019).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • 17.

    Kleuskens, M. W. A., van Donkelaar, C. C., Kock, L. M., Janssen, R. P. A. & Ito, K. An ex vivo human osteochondral culture model. J. Orthop. Res. 39, 871–879 (2021).

    CAS 
    PubMed 

    Google Scholar 

  • 18.

    Cope, P. J., Ourradi, K., Li, Y. & Sharif, M. Models of osteoarthritis: the good, the bad and the promising. Osteoarthritis Cartilage 27, 230–239 (2019).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • 19.

    Sophia Fox, A. J., Bedi, A. & Rodeo, S. A. The basic science of articular cartilage: structure, composition, and function. Sports Health 1, 461–468 (2009).

    PubMed 
    PubMed Central 

    Google Scholar 

  • 20.

    Burr, D. B. Anatomy and physiology of the mineralized tissues: role in the pathogenesis of osteoarthrosis. Osteoarthritis Cartilage 12, S20–30 (2004).

    PubMed 

    Google Scholar 

  • 21.

    Oegema, T. R. Jr, Carpenter, R. J., Hofmeister, F. & Thompson, R. C. Jr. The interaction of the zone of calcified cartilage and subchondral bone in osteoarthritis. Microsc. Res. Tech. 37, 324–332 (1997).

    PubMed 

    Google Scholar 

  • 22.

    Bonewald, L. F. The amazing osteocyte. J. Bone Min. Res. 26, 229–238 (2011).

    CAS 

    Google Scholar 

  • 23.

    Feng, X. & Teitelbaum, S. L. Osteoclasts: new insights. Bone Res. 1, 11–26 (2013).

    PubMed 

    Google Scholar 

  • 24.

    Firestein, G. S. Evolving concepts of rheumatoid arthritis. Nature 423, 356–361 (2003).

    CAS 
    PubMed 

    Google Scholar 

  • 25.

    Simkin, P. A. Physiology of normal and abnormal synovium. Semin. Arthritis Rheum. 21, 179–183 (1991).

    CAS 
    PubMed 

    Google Scholar 

  • 26.

    Kurowska-Stolarska, M. & Alivernini, S. Synovial tissue macrophages: friend or foe? RMD Open 3, e000527 (2017).

    PubMed 
    PubMed Central 

    Google Scholar 

  • 27.

    Brindle, T., Nyland, J. & Johnson, D. L. The meniscus: review of basic principles with application to surgery and rehabilitation. J. Athl. Train. 36, 160–169 (2001).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • 28.

    Lieben, L. Characterization of the infrapatellar fat pad. Nat. Rev. Rheumatol. 13, 571–571 (2017).

    PubMed 

    Google Scholar 

  • 29.

    Labusca, L. & Zugun-Eloae, F. The unexplored role of intra-articular adipose tissue in the homeostasis and pathology of articular joints. Front. Vet. Sci. 5, 35 (2018).

    PubMed 
    PubMed Central 

    Google Scholar 

  • 30.

    Bhatia, S. N. & Ingber, D. E. Microfluidic organs-on-chips. Nat. Biotechnol. 32, 760–772 (2014).

    CAS 
    PubMed 

    Google Scholar 

  • 31.

    Zheng, F. et al. Organ-on-a-chip systems: microengineering to biomimic living systems. Small 12, 2253–2282 (2016).

    CAS 
    PubMed 

    Google Scholar 

  • 32.

    Bhise, N. S. et al. Organ-on-a-chip platforms for studying drug delivery systems. J. Control. Rel. 190, 82–93 (2014).

    CAS 

    Google Scholar 

  • 33.

    Kimura, H., Sakai, Y. & Fujii, T. Organ/body-on-a-chip based on microfluidic technology for drug discovery. Drug Metab. Pharmacokinet. 33, 43–48 (2018).

    CAS 
    PubMed 

    Google Scholar 

  • 34.

    Wilmer, M. J. et al. Kidney-on-a-chip technology for drug-induced nephrotoxicity screening. Trends Biotechnol. 34, 156–170 (2016).

    CAS 
    PubMed 

    Google Scholar 

  • 35.

    Kaarj, K. & Yoon, J. Y. Methods of delivering mechanical stimuli to organ-on-a-chip. Micromachines 10, 700 (2019).

    PubMed Central 

    Google Scholar 

  • 36.

    Thompson, C. L., Fu, S., Knight, M. M. & Thorpe, S. D. Mechanical stimulation: a crucial element of organ-on-chip models. Front. Bioeng. Biotechnol. 8, 602646 (2020).

    PubMed 
    PubMed Central 

    Google Scholar 

  • 37.

    Wu, Q. et al. Organ-on-a-chip: recent breakthroughs and future prospects. Biomed. Eng. Online 19, 9 (2020).

    PubMed 
    PubMed Central 

    Google Scholar 

  • 38.

    Doryab, A., Amoabediny, G. & Salehi-Najafabadi, A. Advances in pulmonary therapy and drug development: lung tissue engineering to lung-on-a-chip. Biotechnol. Adv. 34, 588–596 (2016).

    CAS 
    PubMed 

    Google Scholar 

  • 39.

    Shrestha, J. et al. Lung-on-a-chip: the future of respiratory disease models and pharmacological studies. Crit. Rev. Biotechnol. 40, 213–230 (2020).

    CAS 
    PubMed 

    Google Scholar 

  • 40.

    Moradi, E., Jalili-Firoozinezhad, S. & Solati-Hashjin, M. Microfluidic organ-on-a-chip models of human liver tissue. Acta Biomater. 116, 67–83 (2020).

    CAS 
    PubMed 

    Google Scholar 

  • 41.

    Kim, J. et al. Three-dimensional human liver-chip emulating premetastatic niche formation by breast cancer-derived extracellular vesicles. ACS Nano 14, 14971–14988 (2020).

    PubMed 

    Google Scholar 

  • 42.

    Jellali, R. et al. Long-term human primary hepatocyte cultures in a microfluidic liver biochip show maintenance of mRNA levels and higher drug metabolism compared with Petri cultures. Biopharm. Drug Dispos. 37, 264–275 (2016).

    CAS 
    PubMed 

    Google Scholar 

  • 43.

    Lee, J. & Kim, S. Kidney-on-a-chip: a new technology for predicting drug efficacy, interactions, and drug-induced nephrotoxicity. Curr. Drug Metab. 19, 577–583 (2018).

    CAS 
    PubMed 

    Google Scholar 

  • 44.

    Ashammakhi, N., Wesseling-Perry, K., Hasan, A., Elkhammas, E. & Zhang, Y. S. Kidney-on-a-chip: untapped opportunities. Kidney Int. 94, 1073–1086 (2018).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • 45.

    Bein, A. et al. Microfluidic organ-on-a-chip models of human intestine. Cell Mol. Gastroenterol. Hepatol. 5, 659–668 (2018).

    PubMed 
    PubMed Central 

    Google Scholar 

  • 46.

    Verhulsel, M. et al. Developing an advanced gut on chip model enabling the study of epithelial cell/fibroblast interactions. Lab. Chip 21, 365–377 (2021).

    CAS 
    PubMed 

    Google Scholar 

  • 47.

    Zhang, Y. S. et al. From cardiac tissue engineering to heart-on-a-chip: beating challenges. Biomed. Mater. 10, 034006 (2015).

    PubMed 
    PubMed Central 

    Google Scholar 

  • 48.

    Ribas, J. et al. Cardiovascular organ-on-a-chip platforms for drug discovery and development. Appl. Vitr. Toxicol. 2, 82–96 (2016).

    Google Scholar 

  • 49.

    Ferraz, M. A. M. M. et al. An oviduct-on-a-chip provides an enhanced in vitro environment for zygote genome reprogramming. Nat. Commun. 9, 4934 (2018).

    PubMed 
    PubMed Central 

    Google Scholar 

  • 50.

    Kim, S., Kim, W., Lim, S. & Jeon, J. S. Vasculature-on-a-chip for in vitro disease models. Bioengineering 4, 8 (2017).

    PubMed Central 

    Google Scholar 

  • 51.

    Moses, S. R., Adorno, J. J., Palmer, A. F. & Song, J. W. Vessel-on-a-chip models for studying microvascular physiology, transport, and function in vitro. Am. J. Physiol. Cell Physiol. 320, C92–C105 (2021).

    PubMed 

    Google Scholar 

  • 52.

    Doherty, E. L., Aw, W. Y., Hickey, A. J. & Polacheck, W. J. Microfluidic and organ-on-a-chip approaches to investigate cellular and microenvironmental contributions to cardiovascular function and pathology. Front. Bioeng. Biotechnol. 9, 624435 (2021).

    PubMed 
    PubMed Central 

    Google Scholar 

  • 53.

    Oddo, A. et al. Advances in microfluidic blood-brain barrier (BBB) models. Trends Biotechnol. 37, 1295–1314 (2019).

    CAS 
    PubMed 

    Google Scholar 

  • 54.

    Virumbrales-Munoz, M. et al. Multiwell capillarity-based microfluidic device for the study of 3D tumour tissue-2D endothelium interactions and drug screening in co-culture models. Sci. Rep. 7, 11998 (2017).

    PubMed 
    PubMed Central 

    Google Scholar 

  • 55.

    Liu, X. et al. Tumor-on-a-chip: from bioinspired design to biomedical application. Microsyst. Nanoeng. 7, 50 (2021).

    PubMed 
    PubMed Central 

    Google Scholar 

  • 56.

    Sontheimer-Phelps, A., Hassell, B. A. & Ingber, D. E. Modelling cancer in microfluidic human organs-on-chips. Nat. Rev. Cancer 19, 65–81 (2019).

    CAS 
    PubMed 

    Google Scholar 

  • 57.

    Picollet-D’hahan, N., Zuchowska, A., Lemeunier, I. & Le Gac, S. Multiorgan-on-a-chip: a systemic approach to model and decipher inter-organ communication. Trends Biotechnol. 39, 788–810 (2021).

    PubMed 

    Google Scholar 

  • 58.

    Sung, J. H. et al. Recent advances in body-on-a-chip systems. Anal. Chem. 91, 330–351 (2019).

    CAS 
    PubMed 

    Google Scholar 

  • 59.

    Piluso, S. et al. Mimicking the articular joint with in vitro models. Trends Biotechnol. 37, 1063–1077 (2019).

    CAS 
    PubMed 

    Google Scholar 

  • 60.

    Longobardi, L. et al. Synovial joints: from development to homeostasis. Curr. Osteoporos. Rep. 13, 41–51 (2015).

    PubMed 
    PubMed Central 

    Google Scholar 

  • 61.

    Ikada, Y. Challenges in tissue engineering. J. R. Soc. Interface 3, 589–601 (2006).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • 62.

    Fu, Y. et al. Engineering cartilage tissue by co-culturing of chondrocytes and mesenchymal stromal cells. Methods Mol. Biol. 2221, 53–70 (2021).

    CAS 
    PubMed 

    Google Scholar 

  • 63.

    Gartland, A., Rumney, R. M., Dillon, J. P. & Gallagher, J. A. Isolation and culture of human osteoblasts. Methods Mol. Biol. 806, 337–355 (2012).

    CAS 
    PubMed 

    Google Scholar 

  • 64.

    Park, D., Lim, J., Park, J. Y. & Lee, S. H. Concise review: stem cell microenvironment on a chip: current technologies for tissue engineering and stem cell biology. Stem Cell Transl. Med. 4, 1352–1368 (2015).

    CAS 

    Google Scholar 

  • 65.

    Pittenger, M. F. et al. Mesenchymal stem cell perspective: cell biology to clinical progress. NPJ Regen. Med. 4, 22 (2019).

    PubMed 
    PubMed Central 

    Google Scholar 

  • 66.

    Augello, A. & De Bari, C. The regulation of differentiation in mesenchymal stem cells. Hum. Gene Ther. 21, 1226–1238 (2010).

    CAS 
    PubMed 

    Google Scholar 

  • 67.

    George, J., Kuboki, Y. & Miyata, T. Differentiation of mesenchymal stem cells into osteoblasts on honeycomb collagen scaffolds. Biotechnol. Bioeng. 95, 404–411 (2006).

    CAS 
    PubMed 

    Google Scholar 

  • 68.

    Chen, Q. et al. Fate decision of mesenchymal stem cells: adipocytes or osteoblasts? Cell Death Differ. 23, 1128–1139 (2016).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • 69.

    Somoza, R. A., Welter, J. F., Correa, D. & Caplan, A. I. Chondrogenic differentiation of mesenchymal stem cells: challenges and unfulfilled expectations. Tissue Eng. Part B Rev. 20, 596–608 (2014).

    PubMed 
    PubMed Central 

    Google Scholar 

  • 70.

    Karagiannis, P. et al. Induced pluripotent stem cells and their use in human models of disease and development. Physiol. Rev. 99, 79–114 (2019).

    CAS 
    PubMed 

    Google Scholar 

  • 71.

    Guzzo, R. M. & Drissi, H. Differentiation of human induced pluripotent stem cells to chondrocytes. Methods Mol. Biol. 1340, 79–95 (2015).

    CAS 
    PubMed 

    Google Scholar 

  • 72.

    Jeon, O. H. et al. Human iPSC-derived osteoblasts and osteoclasts together promote bone regeneration in 3D biomaterials. Sci. Rep. 6, 26761 (2016).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • 73.

    Williams, I. M. & Wu, J. C. Generation of endothelial cells from human pluripotent stem cells. Arterioscler. Thromb. Vasc. Biol. 39, 1317–1329 (2019).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • 74.

    Gunhanlar, N. et al. A simplified protocol for differentiation of electrophysiologically mature neuronal networks from human induced pluripotent stem cells. Mol. Psychiatry 23, 1336–1344 (2018).

    CAS 
    PubMed 

    Google Scholar 

  • 75.

    Nakajima, T. et al. Grafting of iPS cell-derived tenocytes promotes motor function recovery after Achilles tendon rupture. Nat. Commun. 12, 5012 (2021).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • 76.

    Mukherjee, C., Hale, C. & Mukhopadhyay, S. A simple multistep protocol for differentiating human induced pluripotent stem cells into functional macrophages. Methods Mol. Biol. 1784, 13–28 (2018).

    CAS 
    PubMed 

    Google Scholar 

  • 77.

    Doss, M. X. & Sachinidis, A. Current challenges of iPSC-based disease modeling and therapeutic implications. Cells 8, 403 (2019).

    CAS 
    PubMed Central 

    Google Scholar 

  • 78.

    Ben Jehuda, R., Shemer, Y. & Binah, O. Genome editing in induced pluripotent stem cells using CRISPR/Cas9. Stem Cell Rev. Rep. 14, 323–336 (2018).

    PubMed 

    Google Scholar 

  • 79.

    Adkar, S. S. et al. Step-wise chondrogenesis of human induced pluripotent stem cells and purification via a reporter allele generated by CRISPR-Cas9 genome editing. Stem Cell 37, 65–76 (2019)

    CAS 

    Google Scholar 

  • 80.

    Roeder, E., Matthews, B. G. & Kalajzic, I. Visual reporters for study of the osteoblast lineage. Bone 92, 189–195 (2016).

    PubMed 
    PubMed Central 

    Google Scholar 

  • 81.

    Bader, D. L., Salter, D. M. & Chowdhury, T. T. Biomechanical influence of cartilage homeostasis in health and disease. Arthritis 2011, 979032 (2011).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • 82.

    Almqvist, K. F. et al. Treatment of cartilage defects in the knee using alginate beads containing human mature allogenic chondrocytes. Am. J. Sport. Med. 37, 1920–1929 (2009).

    Google Scholar 

  • 83.

    Salati, M. A. et al. Agarose-based biomaterials: opportunities and challenges in cartilage tissue engineering. Polymers 12, 1150. (2020).

    CAS 
    PubMed Central 

    Google Scholar 

  • 84.

    Jin, R. et al. Enzymatically crosslinked dextran-tyramine hydrogels as injectable scaffolds for cartilage tissue engineering. Tissue Eng. Part A 16, 2429–2440 (2010).

    CAS 
    PubMed 

    Google Scholar 

  • 85.

    Deshpande, M. C. et al. The effect of poly(ethylene glycol) molecular architecture on cellular interaction and uptake of DNA complexes. J. Control. Rel. 97, 143–156 (2004).

    CAS 

    Google Scholar 

  • 86.

    Bougault, C., Paumier, A., Aubert-Foucher, E. & Mallein-Gerin, F. Molecular analysis of chondrocytes cultured in agarose in response to dynamic compression. BMC Biotechnol. 8, 71 (2008).

    PubMed 
    PubMed Central 

    Google Scholar 

  • 87.

    Benya, P. D. & Shaffer, J. D. Dedifferentiated chondrocytes reexpress the differentiated collagen phenotype when cultured in agarose gels. Cell 30, 215–224 (1982).

    CAS 
    PubMed 

    Google Scholar 

  • 88.

    Buschmann, M. D., Gluzband, Y. A., Grodzinsky, A. J., Kimura, J. H. & Hunziker, E. B. Chondrocytes in agarose culture synthesize a mechanically functional extracellular matrix. J. Orthop. Res. 10, 745–758 (1992).

    CAS 
    PubMed 

    Google Scholar 

  • 89.

    Bougault, C. et al. Dynamic compression of chondrocyte-agarose constructs reveals new candidate mechanosensitive genes. PLoS ONE 7, e36964 (2012).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • 90.

    Ashraf, S. & Walsh, D. A. Angiogenesis in osteoarthritis. Curr. Opin. Rheumatol. 20, 573–580 (2008).

    PubMed 

    Google Scholar 

  • 91.

    Ahearne, M. Introduction to cell-hydrogel mechanosensing. Interface Focus. 4, 20130038 (2014).

    PubMed 
    PubMed Central 

    Google Scholar 

  • 92.

    Wennink, J. W. H. et al. Injectable hydrogels by enzymatic co-crosslinking of dextran and hyaluronic acid tyramine conjugates. Macromol. Symp. 309–310, 213–221 (2011).

    Google Scholar 

  • 93.

    Jin, R. et al. Enzymatically-crosslinked injectable hydrogels based on biomimetic dextran-hyaluronic acid conjugates for cartilage tissue engineering. Biomaterials 31, 3103–3113 (2010).

    CAS 
    PubMed 

    Google Scholar 

  • 94.

    Occhetta, P. et al. Hyperphysiological compression of articular cartilage induces an osteoarthritic phenotype in a cartilage-on-a-chip model. Nat. Biomed. Eng. 3, 545–557 (2019).

    CAS 
    PubMed 

    Google Scholar 

  • 95.

    Lee, D., Erickson, A., You, T., Dudley, A. T. & Ryu, S. Pneumatic microfluidic cell compression device for high-throughput study of chondrocyte mechanobiology. Lab. Chip 18, 2077–2086 (2018).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • 96.

    Rosser, J. et al. Microfluidic nutrient gradient-based three-dimensional chondrocyte culture-on-a-chip as an in vitro equine arthritis model. Mater. Today Bio 4, 100023 (2019).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • 97.

    Paggi, C. A., Venzac, B., Karperien, M., Leijten, J. C. H. & Le Gac, S. Monolithic microfluidic platform for exerting gradients of compression on cell-laden hydrogels, and application to a model of the articular cartilage. Sens. Actuat. B Chem. 315, 127917 (2020).

    CAS 

    Google Scholar 

  • 98.

    Jusoh, N., Oh, S., Kim, S., Kim, J. & Jeon, N. L. Microfluidic vascularized bone tissue model with hydroxyapatite-incorporated extracellular matrix. Lab. Chip 15, 3984–3988 (2015).

    CAS 
    PubMed 

    Google Scholar 

  • 99.

    Yuan, H. et al. Osteoinductive ceramics as a synthetic alternative to autologous bone grafting. Proc. Natl Acad. Sci. USA 107, 13614–13619 (2010).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • 100.

    Goncalves, A. M., Moreira, A., Weber, A., Williams, G. R. & Costa, P. F. Osteochondral tissue engineering: the potential of electrospinning and additive manufacturing. Pharmaceutics 13, 983 (2021).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • 101.

    Mansoorifar, A., Gordon, R., Bergan, R. C. & Bertassoni, L. E. Bone-on-a-chip: microfluidic technologies and microphysiologic models of bone tissue. Adv. Funct. Mater. 14, e1702787 (2021).

    Google Scholar 

  • 102.

    Torisawa, Y. S. et al. Bone marrow-on-a-chip replicates hematopoietic niche physiology in vitro. Nat. Methods 11, 663–669 (2014).

    CAS 
    PubMed 

    Google Scholar 

  • 103.

    Bersini, S. et al. A microfluidic 3D in vitro model for specificity of breast cancer metastasis to bone. Biomaterials 35, 2454–2461 (2014).

    CAS 
    PubMed 

    Google Scholar 

  • 104.

    Chou, D. B. et al. On-chip recapitulation of clinical bone marrow toxicities and patient-specific pathophysiology. Nat. Biomed. Eng. 4, 394–406 (2020).

    PubMed 
    PubMed Central 

    Google Scholar 

  • 105.

    Yamada, A. et al. Transient microfluidic compartmentalization using actionable microfilaments for biochemical assays, cell culture and organs-on-chip. Lab. Chip 16, 4691–4701 (2016).

    CAS 
    PubMed 

    Google Scholar 

  • 106.

    Hoemann, C. D., Lafantaisie-Favreau, C. H., Lascau-Coman, V., Chen, G. & Guzman-Morales, J. The cartilage-bone interface. J. Knee Surg. 25, 85–97 (2012).

    PubMed 

    Google Scholar 

  • 107.

    Simkin, P. A. Consider the tidemark. J. Rheumatol. 39, 890–892 (2012).

    PubMed 

    Google Scholar 

  • 108.

    Lin, H., Lozito, T. P., Alexander, P. G., Gottardi, R. & Tuan, R. S. Stem cell-based microphysiological osteochondral system to model tissue response to interleukin-1beta. Mol. Pharm. 11, 2203–2212 (2014).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • 109.

    Pirosa, A. et al. An in vitro chondro-osteo-vascular triphasic model of the osteochondral complex. Biomaterials 272, 120773 (2021).

    CAS 
    PubMed 

    Google Scholar 

  • 110.

    Lin, Z. et al. Osteochondral tissue chip derived from iPSCs: modeling OA pathologies and testing drugs. Front. Bioeng. Biotechnol. 7, 411 (2019).

    PubMed 
    PubMed Central 

    Google Scholar 

  • 111.

    Moraes, C., Mehta, G., Lesher-Perez, S. C. & Takayama, S. Organs-on-a-chip: a focus on compartmentalized microdevices. Ann. Biomed. Eng. 40, 1211–1227 (2012).

    PubMed 

    Google Scholar 

  • 112.

    Rothbauer, M. et al. Monitoring tissue-level remodelling during inflammatory arthritis using a three-dimensional synovium-on-a-chip with non-invasive light scattering biosensing. Lab. Chip 20, 1461–1471 (2020).

    CAS 
    PubMed 

    Google Scholar 

  • 113.

    Ma, H. P. et al. A microfluidic chip-based co-culture of fibroblast-like synoviocytes with osteoblasts and osteoclasts to test bone erosion and drug evaluation. R. Soc. Open Sci. 5, 180528 (2018).

    PubMed 
    PubMed Central 

    Google Scholar 

  • 114.

    Huh, D. et al. Reconstituting organ-level lung functions on a chip. Science 328, 1662–1668 (2010).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • 115.

    Kim, H. J., Huh, D., Hamilton, G. & Ingber, D. E. Human gut-on-a-chip inhabited by microbial flora that experiences intestinal peristalsis-like motions and flow. Lab. Chip 12, 2165–2174 (2012).

    CAS 
    PubMed 

    Google Scholar 

  • 116.

    Sinha, R. et al. Endothelial cell alignment as a result of anisotropic strain and flow induced shear stress combinations. Sci. Rep. 6, 29510 (2016).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • 117.

    Petersen, W. & Tillmann, B. Structure and vascularization of the cruciate ligaments of the human knee joint. Anat. Embryol. 200, 325–334 (1999).

    CAS 

    Google Scholar 

  • 118.

    Lee, P., Lin, R., Moon, J. & Lee, L. P. Microfluidic alignment of collagen fibers for in vitro cell culture. Biomed. Microdevices 8, 35–41 (2006).

    CAS 
    PubMed 

    Google Scholar 

  • 119.

    Phan, D. T. T. et al. A vascularized and perfused organ-on-a-chip platform for large-scale drug screening applications. Lab. Chip 17, 511–520 (2017).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • 120.

    Hsu, Y. H., Moya, M. L., Hughes, C. C. W., George, S. C. & Lee, A. P. A microfluidic platform for generating large-scale nearly identical human microphysiological vascularized tissue arrays. Lab. Chip 13, 2990–2998 (2013).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • 121.

    Yang, F. et al. A 3D human adipose tissue model within a microfluidic device. Lab. Chip 21, 435–446 (2021).

    CAS 
    PubMed 

    Google Scholar 

  • 122.

    Clockaerts, S. et al. The infrapatellar fat pad should be considered as an active osteoarthritic joint tissue: a narrative review. Osteoarthritis Cartilage 18, 876–882 (2010).

    CAS 
    PubMed 

    Google Scholar 

  • 123.

    Fontanella, C. G. et al. Biomechanical behavior of Hoffa’s fat pad in healthy and osteoarthritic conditions: histological and mechanical investigations. Australas. Phys. Eng. Sci. Med. 41, 657–667 (2018).

    PubMed 

    Google Scholar 

  • 124.

    Kongsuphol, P. et al. In vitro micro-physiological model of the inflamed human adipose tissue for immune-metabolic analysis in type II diabetes. Sci. Rep. 9, 4887 (2019).

    PubMed 
    PubMed Central 

    Google Scholar 

  • 125.

    Liu, Y. et al. Adipose-on-a-chip: a dynamic microphysiological in vitro model of the human adipose for immune-metabolic analysis in type II diabetes. Lab. Chip 19, 241–253 (2019).

    CAS 
    PubMed 

    Google Scholar 

  • 126.

    Loskill, P., Marcus, S. G., Mathur, A., Reese, W. M. & Healy, K. μOrgano: a Lego®-like plug & play system for modular multi-organ-chips. PLoS ONE 10, e0139587 (2015).

    PubMed 
    PubMed Central 

    Google Scholar 

  • 127.

    Zhang, Y. S. et al. Multisensor-integrated organs-on-chips platform for automated and continual in situ monitoring of organoid behaviors. Proc. Natl Acad. Sci. USA 114, E2293–E2302 (2017).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • 128.

    Ong, L. J. Y. et al. Self-aligning Tetris-Like (TILE) modular microfluidic platform for mimicking multi-organ interactions. Lab. Chip 19, 2178–2191 (2019).

    CAS 
    PubMed 

    Google Scholar 

  • 129.

    Esch, M. B., Ueno, H., Applegate, D. R. & Shuler, M. L. Modular, pumpless body-on-a-chip platform for the co-culture of GI tract epithelium and 3D primary liver tissue. Lab. Chip 16, 2719–2729 (2016).

    CAS 
    PubMed 

    Google Scholar 

  • 130.

    Materne, E. M. et al. A multi-organ chip co-culture of neurospheres and liver equivalents for long-term substance testing. J. Biotechnol. 205, 36–46 (2015).

    CAS 
    PubMed 

    Google Scholar 

  • 131.

    Maschmeyer, I. et al. A four-organ-chip for interconnected long-term co-culture of human intestine, liver, skin and kidney equivalents. Lab. Chip 15, 2688–2699 (2015).

    CAS 
    PubMed 

    Google Scholar 

  • 132.

    Bortel, E. L., Charbonnier, B. & Heuberger, R. Development of a synthetic synovial fluid for tribological testing. Lubricants 3, 664–686 (2015).

    Google Scholar 

  • 133.

    Park, D., Lee, J., Chung, J. J., Jung, Y. & Kim, S. H. Integrating organs-on-chips: multiplexing, scaling, vascularization, and innervation. Trends Biotechnol. 38, 99–112 (2020).

    CAS 
    PubMed 

    Google Scholar 

  • 134.

    Moraes, C. et al. On being the right size: scaling effects in designing a human-on-a-chip. Integr. Biol. 5, 1149–1161 (2013).

    CAS 

    Google Scholar 

  • 135.

    Harink, B., Le Gac, S., Barata, D., van Blitterswijk, C. & Habibovic, P. Microtiter plate-sized standalone chip holder for microenvironmental physiological control in gas-impermeable microfluidic devices. Lab. Chip 14, 1816–1820 (2014).

    CAS 
    PubMed 

    Google Scholar 

  • 136.

    Palacio-Castaneda, V., Kooijman, L., Venzac, B., Verdurmen, W. P. R. & Le Gac, S. Metabolic switching of tumor cells under hypoxic conditions in a tumor-on-a-chip model. Micromachines 11, 382 (2020).

    PubMed Central 

    Google Scholar 

  • 137.

    Sleeboom, J. J. F., Den Toonder, J. M. J. & Sahlgren, C. M. MDA-MB-231 breast cancer cells and their CSC population migrate towards low oxygen in a microfluidic gradient device. Int. J. Mol. Sci. 19, 3047 (2018).

    PubMed Central 

    Google Scholar 

  • 138.

    Wilkins, R. J., Browning, J. A. & Ellory, J. C. Surviving in a matrix: membrane transport in articular chondrocytes. J. Membr. Biol. 177, 95–108 (2000).

    CAS 
    PubMed 

    Google Scholar 

  • 139.

    Hall, A. C., Horwitz, E. R. & Wilkins, R. J. The cellular physiology of articular cartilage. Exp. Physiol. 81, 535–545 (1996).

    CAS 
    PubMed 

    Google Scholar 

  • 140.

    Arnett, T. R. Extracellular pH regulates bone cell function. J. Nutr. 138, 415S–418S (2008).

    CAS 
    PubMed 

    Google Scholar 

  • 141.

    Goldie, I. & Nachemson, A. Synovial pH in rheumatoid knee-joints. I. The effect of synovectomy. Acta Orthop. Scand. 40, 634–641 (1969).

    CAS 
    PubMed 

    Google Scholar 

  • 142.

    Konttinen, Y. T. et al. Acidic cysteine endoproteinase cathepsin K in the degeneration of the superficial articular hyaline cartilage in osteoarthritis. Arthritis Rheum. 46, 953–960 (2002).

    CAS 
    PubMed 

    Google Scholar 

  • 143.

    Scherer, H. U. & Burmester, G. R. Adaptive immunity in rheumatic diseases: bystander or pathogenic player? Best Pract. Res. Clin. Rheumatol. 25, 785–800 (2011).

    CAS 
    PubMed 

    Google Scholar 

  • 144.

    Mobasheri, A. et al. Recent advances in understanding the phenotypes of osteoarthritis. F1000Res. 8, 2091 (2019).

    CAS 

    Google Scholar 

  • 145.

    Morsink, M. A. J., Willemen, N. G. A., Leijten, J., Bansal, R. & Shin, S. R. Immune organs and immune cells on a chip: an overview of biomedical applications. Micromachines 11, 849 (2020).

    PubMed Central 

    Google Scholar 

  • 146.

    Torisawa, Y. S. et al. Modeling hematopoiesis and responses to radiation countermeasures in a bone marrow-on-a-chip. Tissue Eng. Part C. Methods 22, 509–515 (2016).

    PubMed 

    Google Scholar 

  • 147.

    Bruce, A. et al. Three-dimensional microfluidic tri-culture model of the bone marrow microenvironment for study of acute lymphoblastic leukemia. PLoS ONE 10, e0140506 (2015).

    PubMed 
    PubMed Central 

    Google Scholar 

  • 148.

    Ramadan, Q. & Ting, F. C. In vitro micro-physiological immune-competent model of the human skin. Lab. Chip 16, 1899–1908 (2016).

    CAS 
    PubMed 

    Google Scholar 

  • 149.

    Ramadan, Q. et al. NutriChip: nutrition analysis meets microfluidics. Lab. Chip 13, 196–203 (2013).

    CAS 
    PubMed 

    Google Scholar 

  • 150.

    Mondadori, C. et al. Recapitulating monocyte extravasation to the synovium in an organotypic microfluidic model of the articular joint. Biofabrication 13, 045001 (2021).

    CAS 

    Google Scholar 

  • 151.

    Hamza, B. & Irimia, D. Whole blood human neutrophil trafficking in a microfluidic model of infection and inflammation. Lab. Chip 15, 2625–2633 (2015).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • 152.

    Han, S. et al. A versatile assay for monitoring in vivo-like transendothelial migration of neutrophils. Lab. Chip 12, 3861–3865 (2012).

    CAS 
    PubMed 

    Google Scholar 

  • 153.

    Grässel, S. The role of peripheral nerve fibers and their neurotransmitters in cartilage and bone physiology and pathophysiology. Arthritis Res. Ther. 16, 485 (2014).

    PubMed 
    PubMed Central 

    Google Scholar 

  • 154.

    Eitner, A., Pester, J., Nietzsche, S., Hofmann, G. O. & Schaible, H. G. The innervation of synovium of human osteoarthritic joints in comparison with normal rat and sheep synovium. Osteoarthritis Cartilage 21, 1383–1391 (2013).

    CAS 
    PubMed 

    Google Scholar 

  • 155.

    Gribi, S., du Bois de Dunilac, S., Ghezzi, D. & Lacour, S. P. A microfabricated nerve-on-a-chip platform for rapid assessment of neural conduction in explanted peripheral nerve fibers. Nat. Commun. 9, 4403 (2018).

    PubMed 
    PubMed Central 

    Google Scholar 

  • 156.

    Sharma, A. D. et al. Engineering a 3D functional human peripheral nerve in vitro using the Nerve-on-a-Chip platform. Sci. Rep. 9, 8921 (2019).

    PubMed 
    PubMed Central 

    Google Scholar 

  • 157.

    Park, S. E. et al. A three-dimensional in vitro model of the peripheral nervous system. NPG Asia Mater. 13, 2 (2021).

    Google Scholar 

  • 158.

    Kundu, A. et al. Fabrication and characterization of 3D Printed, 3D microelectrode arrays for interfacing with a peripheral nerve-on-a-chip. ACS Biomater. Sci. Eng. 7, 3018–3029 (2021).

    CAS 
    PubMed 

    Google Scholar 

  • 159.

    Marzioch, J. et al. On-chip photodynamic therapy — monitoring cell metabolism using electrochemical microsensors. Lab. Chip 18, 3353–3360 (2018).

    CAS 
    PubMed 

    Google Scholar 

  • 160.

    Rivera, K. R., Yokus, M. A., Erb, P. D., Pozdin, V. A. & Daniele, M. Measuring and regulating oxygen levels in microphysiological systems: design, material, and sensor considerations. Analyst 144, 3190–3215 (2019).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • 161.

    Bonk, S. M. et al. Design and characterization of a sensorized microfluidic cell-culture system with electro-thermal micro-pumps and sensors for cell adhesion, oxygen, and pH on a glass chip. Biosensors 5, 513–536 (2015).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • 162.

    Kieninger, J., Weltin, A., Flamm, H. & Urban, G. A. Microsensor systems for cell metabolism — from 2D culture to organ-on-chip. Lab. Chip 18, 1274–1291 (2018).

    CAS 
    PubMed 

    Google Scholar 

  • 163.

    Grist, S. M., Chrostowski, L. & Cheung, K. C. Optical oxygen sensors for applications in microfluidic cell culture. Sensors 10, 9286–9316 (2010).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • 164.

    Zhu, J. et al. An integrated adipose-tissue-on-chip nanoplasmonic biosensing platform for investigating obesity-associated inflammation. Lab. Chip 18, 3550–3560 (2018).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • 165.

    Ragab, G., Elshahaly, M. & Bardin, T. Gout: an old disease in new perspective — a review. J. Adv. Res. 8, 495–511 (2017).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • 166.

    Quiros-Solano, W. F. et al. Microfabricated tuneable and transferable porous PDMS membranes for organs-on-chips. Sci. Rep. 8, 13524 (2018).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • 167.

    Becker, H. Mind the gap! Lab. Chip 10, 271–273 (2010).

    CAS 
    PubMed 

    Google Scholar 

  • 168.

    Berthier, E., Young, E. W. & Beebe, D. Engineers are from PDMS-land, biologists are from polystyrenia. Lab. Chip 12, 1224–1237 (2012).

    CAS 
    PubMed 

    Google Scholar 

  • 169.

    van Meer, B. J. et al. Small molecule absorption by PDMS in the context of drug response bioassays. Biochem. Biophys. Res. Commun. 482, 323–328 (2017).

    PubMed 
    PubMed Central 

    Google Scholar 

  • 170.

    Ramadan, Q. & Zourob, M. Organ-on-a-chip engineering: toward bridging the gap between lab and industry. Biomicrofluidics 14, 041501 (2020).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • 171.

    Allwardt, V. et al. Translational roadmap for the organs-on-a-chip industry toward broad adoption. Bioengineering 7, 112 (2020).

    CAS 
    PubMed Central 

    Google Scholar 

  • 172.

    Ma, C., Peng, Y., Li, H. & Chen, W. Organ-on-a-chip: a new paradigm for drug development. Trends Pharmacol. Sci. 42, 119–133 (2021).

    CAS 
    PubMed 

    Google Scholar 

  • 173.

    Zhou, T. et al. Generation of induced pluripotent stem cells from urine. J. Am. Soc. Nephrol. 22, 1221–1228 (2011).

    PubMed 
    PubMed Central 

    Google Scholar 

  • 174.

    Lozito, T. P. et al. Three-dimensional osteochondral microtissue to model pathogenesis of osteoarthritis. Stem Cell Res. Ther. 4, S6 (2013).

    PubMed 
    PubMed Central 

    Google Scholar 

  • Source link