Preloader

Isoliquiritigenin, a potent human monoamine oxidase inhibitor, modulates dopamine D1, D3, and vasopressin V1A receptors

  • 1.

    Przedborski, S., Vila, M. & Jackson-Lewis, V. Series introduction: Neurodegeneration: what is it and where are we?. J. Clin. Investig. 111, 3–10 (2003).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • 2.

    Nussbaum, R. L. & Ellis, C. E. Alzheimer’s disease and Parkinson’s disease. N. Engl. J. Med. 348, 1356–1364 (2003).

    CAS 
    PubMed 

    Google Scholar 

  • 3.

    Cheong, S. L., Federico, S., Spalluto, G., Klotz, K.-N. & Pastorin, G. The current status of pharmacotherapy for the treatment of Parkinson’s disease: Transition from single-target to multitarget therapy. Drug Discov. Today 24, 1769–1783 (2019).

    CAS 
    PubMed 

    Google Scholar 

  • 4.

    Abyad, A. Parkinson’s disease: An update on pathophysiology, epidemiology, diagnosis and management. Part 2: etiology and pathophysiology. Middle East J. Fam. Med. 18, 71–80 (2020).

    Google Scholar 

  • 5.

    Lbolognesi, M. Polypharmacology in a single drug: Multitarget drugs. Curr. Med. Chem. 20, 1639–1645 (2013).

    Google Scholar 

  • 6.

    Li, G., Nikolic, D. & Van Breemen, R. B. Identification and chemical standardization of licorice raw materials and dietary supplements using UHPLC-MS/MS. J. Agric. Food Chem. 64, 8062–8070 (2016).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • 7.

    Han, Y. J., Kang, B., Yang, E.-J., Choi, M.-K. & Song, I.-S. Simultaneous determination and pharmacokinetic characterization of glycyrrhizin, isoliquiritigenin, liquiritigenin, and liquiritin in rat plasma following oral administration of Glycyrrhizae radix extract. Molecules 24, 1816 (2019).

    CAS 
    PubMed Central 

    Google Scholar 

  • 8.

    Peng, F. et al. A review: The pharmacology of isoliquiritigenin. Phytother. Res. 29, 969–977 (2015).

    CAS 
    PubMed 

    Google Scholar 

  • 9.

    Ramalingam, M., Kim, H., Lee, Y. & Lee, Y.-I. Phytochemical and pharmacological role of liquiritigenin and isoliquiritigenin from radix Glycyrrhizae in human health and disease models. Front. Aging Neurosci. 10, 348 (2018).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • 10.

    Gu, X. et al. Isoliquiritigenin attenuates diabetic cardiomyopathy via inhibition of hyperglycemia-induced inflammatory response and oxidative stress. Phytomedicine 78, 153319 (2020).

    CAS 
    PubMed 

    Google Scholar 

  • 11.

    Shi, D. et al. The antioxidant activity and neuroprotective mechanism of isoliquiritigenin. Free Radic. Biol. Med. 152, 207–215 (2020).

    CAS 
    PubMed 

    Google Scholar 

  • 12.

    Zhu, X. et al. Neuroprotective effects of isoliquiritigenin against cognitive impairment via suppression of synaptic dysfunction, neuronal injury, and neuroinflammation in rats with kainic acid-induced seizures. Int. Immunopharmacol. 72, 358–366 (2019).

    CAS 
    PubMed 

    Google Scholar 

  • 13.

    Zhu, X. et al. Neuroprotective and anti-inflammatory effects of isoliquiritigenin in kainic acid-induced epileptic rats via the TLR4/MYD88 signaling pathway. Inflammopharmacology 27, 1143–1153 (2019).

    CAS 
    PubMed 

    Google Scholar 

  • 14.

    Zhu, X. et al. Isoliquiritigenin attenuates lipopolysaccharide-induced cognitive impairment through antioxidant and anti-inflammatory activity. BMC Neurosci. 20, 1–13 (2019).

    Google Scholar 

  • 15.

    Naoi, M. & Maruyama, W. Monoamine oxidase inhibitors as neuroprotective agents in age-dependent neurodegenerative disorders. Curr. Pharm. Des. 16, 2799–2817 (2010).

    CAS 
    PubMed 

    Google Scholar 

  • 16.

    Youdim, M. B., Edmondson, D. & Tipton, K. F. The therapeutic potential of monoamine oxidase inhibitors. Nat. Rev. Neurosci. 7, 295–309 (2006).

    CAS 
    PubMed 

    Google Scholar 

  • 17.

    Youdim, M. B. & Bakhle, Y. Monoamine oxidase: Isoforms and inhibitors in Parkinson’s disease and depressive illness. Br. J. Pharmacol. 147, S287–S296. https://doi.org/10.1038/sj.bjp.0706464 (2006).

    CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • 18.

    Foley, P., Gerlach, M., Youdim, M. B. & Riederer, P. MAO-B inhibitors: Multiple roles in the therapy of neurodegenerative disorders?. Parkinsonism Relat. Disord. 6, 25–47. https://doi.org/10.1016/s1353-8020(99)00043-7 (2000).

    CAS 
    Article 
    PubMed 

    Google Scholar 

  • 19.

    Mangoni, A. et al. Effects of a MAO-B inhibitor in the treatment of Alzheimer disease. Eur. Neurol. 31, 100–107 (1991).

    CAS 
    PubMed 

    Google Scholar 

  • 20.

    Hatano, T., Fukuda, T., Miyase, T., Noro, T. & Okuda, T. Phenolic constituents of licorice. III. Structures of glicoricone and licofuranone, and inhibitory effects of licorice constituents of monoamine oxidase. Chem. Pharm. Bull. 39, 1238–1243 (1991).

    CAS 

    Google Scholar 

  • 21.

    Pan, X., Kong, L.-D., Zhang, Y., Cheng, C. & Tan, R.-X. In vitro inhibition of rat monoamine oxidase by liquiritigenin and isoliquiritigenin isolated from Sinofranchetia chinensis. Acta Pharmacol. Sin. 21, 949–953 (2000).

    CAS 
    PubMed 

    Google Scholar 

  • 22.

    Kong, Z., Sun, D.-M., Chen, A.-Q. & Hu, Y. Synthesis and monoamine oxidase B inhibitory activities of isoquiritigenin derivatives. Zhongguo Zhong Yao Za Zhi 44, 4653–4660 (2019).

    PubMed 

    Google Scholar 

  • 23.

    Binda, C., Newton-Vinson, P., Hubálek, F., Edmondson, D. E. & Mattevi, A. Structure of human monoamine oxidase B, a drug target for the treatment of neurological disorders. Nat. Struct. Biol. 9, 22–26 (2002).

    CAS 
    PubMed 

    Google Scholar 

  • 24.

    De Colibus, L. et al. Three-dimensional structure of human monoamine oxidase A (MAO A): Relation to the structures of rat MAO A and human MAO B. Proc. Natl. Acad. Sci. 102, 12684–12689 (2005).

    ADS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • 25.

    Jang, E. Y. et al. Isoliquiritigenin suppresses cocaine-induced extracellular dopamine release in rat brain through GABAB receptor. Eur. J. Pharmacol. 587, 124–128 (2008).

    CAS 
    PubMed 

    Google Scholar 

  • 26.

    Kawakami, Z., Ikarashi, Y. & Kase, Y. Isoliquiritigenin is a novel NMDA receptor antagonist in kampo medicine yokukansan. Cell. Mol. Neurobiol. 31, 1203–1212 (2011).

    CAS 
    PubMed 

    Google Scholar 

  • 27.

    Kitanaka, J. et al. Isoliquiritigenin suppresses methamphetamine-induced hyperlocomotion in mice. Neurosci. Res. 71, e396–e397 (2011).

    Google Scholar 

  • 28.

    Sambo, D. O. et al. The sigma-1 receptor modulates methamphetamine dysregulation of dopamine neurotransmission. Nat. Commun. 8, 1–18 (2017).

    ADS 
    CAS 

    Google Scholar 

  • 29.

    Mai, H. N. et al. Exposure to far infrared ray protects methamphetamine-induced behavioral sensitization in glutathione peroxidase-1 knockout mice via attenuating mitochondrial burdens and dopamine D1 receptor activation. Neurochem. Res. 43, 1118–1135 (2018).

    CAS 
    PubMed 

    Google Scholar 

  • 30.

    Ares-Santos, S., Granado, N. & Moratalla, R. The role of dopamine receptors in the neurotoxicity of methamphetamine. J. Intern. Med. 273, 437–453 (2013).

    CAS 
    PubMed 

    Google Scholar 

  • 31.

    Everett, N. A., McGregor, I. S., Baracz, S. J. & Cornish, J. L. The role of the vasopressin V1A receptor in oxytocin modulation of methamphetamine primed reinstatement. Neuropharmacology 133, 1–11 (2018).

    CAS 
    PubMed 

    Google Scholar 

  • 32.

    Maher, P. The potential of flavonoids for the treatment of neurodegenerative diseases. Int. J. Mol. Sci. 20, 3056 (2019).

    CAS 
    PubMed Central 

    Google Scholar 

  • 33.

    Mohamed, E. I. et al. Monoamine oxidases inhibitors from Colvillea racemosa: Isolation, biological evaluation, and computational study. Fitoterapia 124, 217–223 (2018).

    CAS 
    PubMed 

    Google Scholar 

  • 34.

    Jeong, G. S. et al. Inhibition of butyrylcholinesterase and human monoamine oxidase-B by the coumarin glycyrol and liquiritigenin isolated from Glycyrrhiza uralensis. Molecules 25, 3896 (2020).

    CAS 
    PubMed Central 

    Google Scholar 

  • 35.

    Novaroli, L. et al. Impact of species-dependent differences on screening, design, and development of MAO B inhibitors. J. Med. Chem. 49, 6264–6272 (2006).

    CAS 
    PubMed 

    Google Scholar 

  • 36.

    Oh, J. M. et al. Potent and selective inhibition of human monoamine oxidase-B by 4-dimethylaminochalcone and selected chalcone derivatives. Int. J. Biol. Macromol. 137, 426–432 (2019).

    CAS 
    PubMed 

    Google Scholar 

  • 37.

    Lee, M. J., Yang, C. H., Jeon, J.-P. & Hwang, M. Protective effects of isoliquiritigenin against methamphetamine-induced neurotoxicity in mice. J. Pharmacol. Sci. 111, 216–220 (2009).

    CAS 
    PubMed 

    Google Scholar 

  • 38.

    Hwang, C. K. & Chun, H. S. Isoliquiritigenin isolated from licorice Glycyrrhiza uralensis prevents 6-hydroxydopamine-induced apoptosis in dopaminergic neurons. Biosci. Biotechnol. Biochem. 76, 536–543 (2012).

    CAS 
    PubMed 

    Google Scholar 

  • 39.

    Lee, D. G., Min, J.-S., Lee, H.-S. & Lee, D.-S. Isoliquiritigenin attenuates glutamate-induced mitochondrial fission via calcineurin-mediated Drp1 dephosphorylation in HT22 hippocampal neuron cells. Neurotoxicology 68, 133–141 (2018).

    CAS 
    PubMed 

    Google Scholar 

  • 40.

    Wang, Y. et al. Isoliquiritigenin attenuates anxiety-like behavior and locomotor sensitization in rats after repeated exposure to nicotine. Evid. Based Complementary Altern. Med. 2020, 9692321. https://doi.org/10.1155/2020/9692321(2020).

    Article 

    Google Scholar 

  • 41.

    Zhuang, Y. et al. Mechanism of dopamine binding and allosteric modulation of the human D1 dopamine receptor. Cell Res. 31, 1–4 (2021).

    Google Scholar 

  • 42.

    Chien, E. Y. et al. Structure of the human dopamine D3 receptor in complex with a D2/D3 selective antagonist. Science 330, 1091–1095 (2010).

    ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • 43.

    Cotte, N. et al. Conserved aromatic residues in the transmembrane region VI of the V1A vasopressin receptor differentiate agonist vs. antagonist ligand binding. Eur. J. Biochem. 267, 4253–4263 (2000).

    CAS 
    PubMed 

    Google Scholar 

  • 44.

    Ślusarz, M. J., Sikorska, E., Ślusarz, R. & Ciarkowski, J. Molecular docking-based study of vasopressin analogues modified at positions 2 and 3 with N-methylphenylalanine: Influence on receptor-bound conformations and interactions with vasopressin and oxytocin receptors. J. Neural Transm. 49, 2463–2469 (2006).

    Google Scholar 

  • 45.

    Hisahara, S. & Shimohama, S. Dopamine receptors and Parkinson’s disease. Int. J. Med. Chem. 2011, 403039. https://doi.org/10.1155/2011/403039 (2011).

    CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • 46.

    Müller, T. & Foley, P. Clinical pharmacokinetics and pharmacodynamics of safinamide. Clin. Pharmacokinet. 56, 251–261 (2017).

    PubMed 

    Google Scholar 

  • 47.

    Carradori, S., Secci, D. & Petzer, J. P. MAO inhibitors and their wider applications: A patent review. Expert Opin. Ther. Pat. 28, 211–226 (2018).

    CAS 
    PubMed 

    Google Scholar 

  • 48.

    Stocchi, F. Dopamine receptor agonists in the treatment of advanced Parkinson’s disease. Parkinsonism Relat. Disord. 15, S54–S57 (2009).

    PubMed 

    Google Scholar 

  • 49.

    Lemke, M. R., Brecht, H. M., Koester, J. & Reichmann, H. Effects of the dopamine agonist pramipexole on depression, anhedonia and motor functioning in Parkinson’s disease. J. Neurol. Sci. 248, 266–270 (2006).

    CAS 
    PubMed 

    Google Scholar 

  • 50.

    Gu, S. M., Cha, H. J., Seo, S. W., Hong, J. T. & Yun, J. Dopamine D1 receptor antagonist reduces stimulant-induced conditioned place preferences and dopamine receptor supersensitivity. Naunyn Schmiedebergs Arch. Pharmacol. 393, 131–138 (2020).

    CAS 
    PubMed 

    Google Scholar 

  • 51.

    Lud Cadet, J., Jayanthi, S., T McCoy, M., Beauvais, G. & Sheng Cai, N. Dopamine D1 receptors, regulation of gene expression in the brain, and neurodegeneration. CNS Neurol. Disord. Drug Targets 9, 526–538 (2010).

    Google Scholar 

  • 52.

    Santini, E. et al. Critical involvement of cAMP/DARPP-32 and extracellular signal-regulated protein kinase signaling in l-DOPA-induced dyskinesia. J. Neurosci. 27, 6995–7005 (2007).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • 53.

    Ares-Santos, S. et al. Dopamine D1 receptor deletion strongly reduces neurotoxic effects of methamphetamine. Neurobiol. Dis. 45, 810–820 (2012).

    CAS 
    PubMed 

    Google Scholar 

  • 54.

    Van Kampen, J. M. & Eckman, C. B. Dopamine D3 receptor agonist delivery to a model of Parkinson’s disease restores the nigrostriatal pathway and improves locomotor behavior. J. Neurosci. 26, 7272–7280 (2006).

    PubMed 
    PubMed Central 

    Google Scholar 

  • 55.

    Wang, W., Liu, L., Chen, C., Jiang, P. & Zhang, T. Protective effects of dopamine D2/D3 receptor agonist piribedil on learning and memory of rats exposed to global cerebral ischemia–reperfusion. Neurosci. Lett. 684, 181–186 (2018).

    CAS 
    PubMed 

    Google Scholar 

  • 56.

    Egashira, N. et al. Impaired social interaction and reduced anxiety-related behavior in vasopressin V1A receptor knockout mice. Behav. Brain Res. 178, 123–127 (2007).

    CAS 
    PubMed 

    Google Scholar 

  • 57.

    Bielsky, I. F., Hu, S.-B., Szegda, K. L., Westphal, H. & Young, L. J. Profound impairment in social recognition and reduction in anxiety-like behavior in vasopressin V1a receptor knockout mice. Neuropsychopharmacology 29, 483–493 (2004).

    CAS 
    PubMed 

    Google Scholar 

  • 58.

    Lee, C. K. et al. Isoliquiritigenin inhibits tumor growth and protects the kidney and liver against chemotherapy-induced toxicity in a mouse xenograft model of colon carcinoma. J. Pharmacol. Sci. 106, 444–451 (2008).

    CAS 
    PubMed 

    Google Scholar 

  • 59.

    Gong, H. et al. A protective mechanism of licorice (Glycyrrhiza uralensis): Isoliquiritigenin stimulates detoxification system via Nrf2 activation. J. Ethnopharmacol. 162, 134–139 (2015).

    CAS 
    PubMed 

    Google Scholar 

  • 60.

    Qiao, X. et al. Identification of key licorice constituents which interact with cytochrome P450: Evaluation by LC/MS/MS cocktail assay and metabolic profiling. AAPS J. 16, 101–113 (2014).

    ADS 
    CAS 
    PubMed 

    Google Scholar 

  • 61.

    Mahalingam, S., Gao, L., Eisner, J., Helferich, W. & Flaws, J. A. Effects of isoliquiritigenin on ovarian antral follicle growth and steroidogenesis. Reprod. Toxicol. 66, 107–114 (2016).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • 62.

    Prajapati, R., Park, S. E., Park, H. J., Jung, H. A. & Choi, J. S. Identification of a potent and selective human monoamine oxidase-A inhibitor, glycitein, an isoflavone isolated from Pueraria lobata flowers. ACS Food Sci. Technol. 1, 538–550 (2021).

    CAS 

    Google Scholar 

  • 63.

    Paudel, P. et al. In vitro and in silico characterization of G-protein coupled receptor (GPCR) targets of phlorofucofuroeckol-A and dieckol. Mar. Drugs 19, 326 (2021).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • 64.

    Kołaczkowski, M., Bucki, A., Feder, M. & Pawłowski, M. Ligand-optimized homology models of D1 and D2 dopamine receptors: Application for virtual screening. J. Chem. Inf. Model. 53, 638–648 (2013).

    PubMed 

    Google Scholar 

  • 65.

    Camacho, C. et al. BLAST+: Architecture and applications. BMC Bioinform. 10, 421 (2009).

    Google Scholar 

  • 66.

    Remmert, M., Biegert, A., Hauser, A. & Söding, J. HHblits: Lightning-fast iterative protein sequence searching by HMM-HMM alignment. Nat. Methods 9, 173–175 (2012).

    CAS 

    Google Scholar 

  • 67.

    Guex, N., Peitsch, M. C. & Schwede, T. Automated comparative protein structure modeling with SWISS-MODEL and Swiss-PdbViewer: A historical perspective. Electrophoresis 30, S162–S173 (2009).

    PubMed 

    Google Scholar 

  • 68.

    Xu, D. & Zhang, Y. Improving the physical realism and structural accuracy of protein models by a two-step atomic-level energy minimization. Biophys. J. 101, 2525–2534 (2011).

    ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • 69.

    Goodsell, D. S., Morris, G. M. & Olson, A. J. Automated docking of flexible ligands: Applications of AutoDock. J. Mol. Recognit. 9, 1–5 (1996).

    CAS 
    PubMed 

    Google Scholar 

  • 70.

    Pires, D. E., Blundell, T. L. & Ascher, D. B. pkCSM: Predicting small-molecule pharmacokinetic and toxicity properties using graph-based signatures. J. Med. Chem. 58, 4066–4072 (2015).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • 71.

    Daina, A., Michielin, O. & Zoete, V. SwissADME: A free web tool to evaluate pharmacokinetics, drug-likeness and medicinal chemistry friendliness of small molecules. Sci. Rep. 7, 42717 (2017).

    ADS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Source link