Przedborski, S., Vila, M. & Jackson-Lewis, V. Series introduction: Neurodegeneration: what is it and where are we?. J. Clin. Investig. 111, 3–10 (2003).
Google Scholar
Nussbaum, R. L. & Ellis, C. E. Alzheimer’s disease and Parkinson’s disease. N. Engl. J. Med. 348, 1356–1364 (2003).
Google Scholar
Cheong, S. L., Federico, S., Spalluto, G., Klotz, K.-N. & Pastorin, G. The current status of pharmacotherapy for the treatment of Parkinson’s disease: Transition from single-target to multitarget therapy. Drug Discov. Today 24, 1769–1783 (2019).
Google Scholar
Abyad, A. Parkinson’s disease: An update on pathophysiology, epidemiology, diagnosis and management. Part 2: etiology and pathophysiology. Middle East J. Fam. Med. 18, 71–80 (2020).
Lbolognesi, M. Polypharmacology in a single drug: Multitarget drugs. Curr. Med. Chem. 20, 1639–1645 (2013).
Li, G., Nikolic, D. & Van Breemen, R. B. Identification and chemical standardization of licorice raw materials and dietary supplements using UHPLC-MS/MS. J. Agric. Food Chem. 64, 8062–8070 (2016).
Google Scholar
Han, Y. J., Kang, B., Yang, E.-J., Choi, M.-K. & Song, I.-S. Simultaneous determination and pharmacokinetic characterization of glycyrrhizin, isoliquiritigenin, liquiritigenin, and liquiritin in rat plasma following oral administration of Glycyrrhizae radix extract. Molecules 24, 1816 (2019).
Google Scholar
Peng, F. et al. A review: The pharmacology of isoliquiritigenin. Phytother. Res. 29, 969–977 (2015).
Google Scholar
Ramalingam, M., Kim, H., Lee, Y. & Lee, Y.-I. Phytochemical and pharmacological role of liquiritigenin and isoliquiritigenin from radix Glycyrrhizae in human health and disease models. Front. Aging Neurosci. 10, 348 (2018).
Google Scholar
Gu, X. et al. Isoliquiritigenin attenuates diabetic cardiomyopathy via inhibition of hyperglycemia-induced inflammatory response and oxidative stress. Phytomedicine 78, 153319 (2020).
Google Scholar
Shi, D. et al. The antioxidant activity and neuroprotective mechanism of isoliquiritigenin. Free Radic. Biol. Med. 152, 207–215 (2020).
Google Scholar
Zhu, X. et al. Neuroprotective effects of isoliquiritigenin against cognitive impairment via suppression of synaptic dysfunction, neuronal injury, and neuroinflammation in rats with kainic acid-induced seizures. Int. Immunopharmacol. 72, 358–366 (2019).
Google Scholar
Zhu, X. et al. Neuroprotective and anti-inflammatory effects of isoliquiritigenin in kainic acid-induced epileptic rats via the TLR4/MYD88 signaling pathway. Inflammopharmacology 27, 1143–1153 (2019).
Google Scholar
Zhu, X. et al. Isoliquiritigenin attenuates lipopolysaccharide-induced cognitive impairment through antioxidant and anti-inflammatory activity. BMC Neurosci. 20, 1–13 (2019).
Naoi, M. & Maruyama, W. Monoamine oxidase inhibitors as neuroprotective agents in age-dependent neurodegenerative disorders. Curr. Pharm. Des. 16, 2799–2817 (2010).
Google Scholar
Youdim, M. B., Edmondson, D. & Tipton, K. F. The therapeutic potential of monoamine oxidase inhibitors. Nat. Rev. Neurosci. 7, 295–309 (2006).
Google Scholar
Youdim, M. B. & Bakhle, Y. Monoamine oxidase: Isoforms and inhibitors in Parkinson’s disease and depressive illness. Br. J. Pharmacol. 147, S287–S296. https://doi.org/10.1038/sj.bjp.0706464 (2006).
Google Scholar
Foley, P., Gerlach, M., Youdim, M. B. & Riederer, P. MAO-B inhibitors: Multiple roles in the therapy of neurodegenerative disorders?. Parkinsonism Relat. Disord. 6, 25–47. https://doi.org/10.1016/s1353-8020(99)00043-7 (2000).
Google Scholar
Mangoni, A. et al. Effects of a MAO-B inhibitor in the treatment of Alzheimer disease. Eur. Neurol. 31, 100–107 (1991).
Google Scholar
Hatano, T., Fukuda, T., Miyase, T., Noro, T. & Okuda, T. Phenolic constituents of licorice. III. Structures of glicoricone and licofuranone, and inhibitory effects of licorice constituents of monoamine oxidase. Chem. Pharm. Bull. 39, 1238–1243 (1991).
Google Scholar
Pan, X., Kong, L.-D., Zhang, Y., Cheng, C. & Tan, R.-X. In vitro inhibition of rat monoamine oxidase by liquiritigenin and isoliquiritigenin isolated from Sinofranchetia chinensis. Acta Pharmacol. Sin. 21, 949–953 (2000).
Google Scholar
Kong, Z., Sun, D.-M., Chen, A.-Q. & Hu, Y. Synthesis and monoamine oxidase B inhibitory activities of isoquiritigenin derivatives. Zhongguo Zhong Yao Za Zhi 44, 4653–4660 (2019).
Google Scholar
Binda, C., Newton-Vinson, P., Hubálek, F., Edmondson, D. E. & Mattevi, A. Structure of human monoamine oxidase B, a drug target for the treatment of neurological disorders. Nat. Struct. Biol. 9, 22–26 (2002).
Google Scholar
De Colibus, L. et al. Three-dimensional structure of human monoamine oxidase A (MAO A): Relation to the structures of rat MAO A and human MAO B. Proc. Natl. Acad. Sci. 102, 12684–12689 (2005).
Google Scholar
Jang, E. Y. et al. Isoliquiritigenin suppresses cocaine-induced extracellular dopamine release in rat brain through GABAB receptor. Eur. J. Pharmacol. 587, 124–128 (2008).
Google Scholar
Kawakami, Z., Ikarashi, Y. & Kase, Y. Isoliquiritigenin is a novel NMDA receptor antagonist in kampo medicine yokukansan. Cell. Mol. Neurobiol. 31, 1203–1212 (2011).
Google Scholar
Kitanaka, J. et al. Isoliquiritigenin suppresses methamphetamine-induced hyperlocomotion in mice. Neurosci. Res. 71, e396–e397 (2011).
Sambo, D. O. et al. The sigma-1 receptor modulates methamphetamine dysregulation of dopamine neurotransmission. Nat. Commun. 8, 1–18 (2017).
Google Scholar
Mai, H. N. et al. Exposure to far infrared ray protects methamphetamine-induced behavioral sensitization in glutathione peroxidase-1 knockout mice via attenuating mitochondrial burdens and dopamine D1 receptor activation. Neurochem. Res. 43, 1118–1135 (2018).
Google Scholar
Ares-Santos, S., Granado, N. & Moratalla, R. The role of dopamine receptors in the neurotoxicity of methamphetamine. J. Intern. Med. 273, 437–453 (2013).
Google Scholar
Everett, N. A., McGregor, I. S., Baracz, S. J. & Cornish, J. L. The role of the vasopressin V1A receptor in oxytocin modulation of methamphetamine primed reinstatement. Neuropharmacology 133, 1–11 (2018).
Google Scholar
Maher, P. The potential of flavonoids for the treatment of neurodegenerative diseases. Int. J. Mol. Sci. 20, 3056 (2019).
Google Scholar
Mohamed, E. I. et al. Monoamine oxidases inhibitors from Colvillea racemosa: Isolation, biological evaluation, and computational study. Fitoterapia 124, 217–223 (2018).
Google Scholar
Jeong, G. S. et al. Inhibition of butyrylcholinesterase and human monoamine oxidase-B by the coumarin glycyrol and liquiritigenin isolated from Glycyrrhiza uralensis. Molecules 25, 3896 (2020).
Google Scholar
Novaroli, L. et al. Impact of species-dependent differences on screening, design, and development of MAO B inhibitors. J. Med. Chem. 49, 6264–6272 (2006).
Google Scholar
Oh, J. M. et al. Potent and selective inhibition of human monoamine oxidase-B by 4-dimethylaminochalcone and selected chalcone derivatives. Int. J. Biol. Macromol. 137, 426–432 (2019).
Google Scholar
Lee, M. J., Yang, C. H., Jeon, J.-P. & Hwang, M. Protective effects of isoliquiritigenin against methamphetamine-induced neurotoxicity in mice. J. Pharmacol. Sci. 111, 216–220 (2009).
Google Scholar
Hwang, C. K. & Chun, H. S. Isoliquiritigenin isolated from licorice Glycyrrhiza uralensis prevents 6-hydroxydopamine-induced apoptosis in dopaminergic neurons. Biosci. Biotechnol. Biochem. 76, 536–543 (2012).
Google Scholar
Lee, D. G., Min, J.-S., Lee, H.-S. & Lee, D.-S. Isoliquiritigenin attenuates glutamate-induced mitochondrial fission via calcineurin-mediated Drp1 dephosphorylation in HT22 hippocampal neuron cells. Neurotoxicology 68, 133–141 (2018).
Google Scholar
Wang, Y. et al. Isoliquiritigenin attenuates anxiety-like behavior and locomotor sensitization in rats after repeated exposure to nicotine. Evid. Based Complementary Altern. Med. 2020, 9692321. https://doi.org/10.1155/2020/9692321(2020).
Google Scholar
Zhuang, Y. et al. Mechanism of dopamine binding and allosteric modulation of the human D1 dopamine receptor. Cell Res. 31, 1–4 (2021).
Chien, E. Y. et al. Structure of the human dopamine D3 receptor in complex with a D2/D3 selective antagonist. Science 330, 1091–1095 (2010).
Google Scholar
Cotte, N. et al. Conserved aromatic residues in the transmembrane region VI of the V1A vasopressin receptor differentiate agonist vs. antagonist ligand binding. Eur. J. Biochem. 267, 4253–4263 (2000).
Google Scholar
Ślusarz, M. J., Sikorska, E., Ślusarz, R. & Ciarkowski, J. Molecular docking-based study of vasopressin analogues modified at positions 2 and 3 with N-methylphenylalanine: Influence on receptor-bound conformations and interactions with vasopressin and oxytocin receptors. J. Neural Transm. 49, 2463–2469 (2006).
Hisahara, S. & Shimohama, S. Dopamine receptors and Parkinson’s disease. Int. J. Med. Chem. 2011, 403039. https://doi.org/10.1155/2011/403039 (2011).
Google Scholar
Müller, T. & Foley, P. Clinical pharmacokinetics and pharmacodynamics of safinamide. Clin. Pharmacokinet. 56, 251–261 (2017).
Google Scholar
Carradori, S., Secci, D. & Petzer, J. P. MAO inhibitors and their wider applications: A patent review. Expert Opin. Ther. Pat. 28, 211–226 (2018).
Google Scholar
Stocchi, F. Dopamine receptor agonists in the treatment of advanced Parkinson’s disease. Parkinsonism Relat. Disord. 15, S54–S57 (2009).
Google Scholar
Lemke, M. R., Brecht, H. M., Koester, J. & Reichmann, H. Effects of the dopamine agonist pramipexole on depression, anhedonia and motor functioning in Parkinson’s disease. J. Neurol. Sci. 248, 266–270 (2006).
Google Scholar
Gu, S. M., Cha, H. J., Seo, S. W., Hong, J. T. & Yun, J. Dopamine D1 receptor antagonist reduces stimulant-induced conditioned place preferences and dopamine receptor supersensitivity. Naunyn Schmiedebergs Arch. Pharmacol. 393, 131–138 (2020).
Google Scholar
Lud Cadet, J., Jayanthi, S., T McCoy, M., Beauvais, G. & Sheng Cai, N. Dopamine D1 receptors, regulation of gene expression in the brain, and neurodegeneration. CNS Neurol. Disord. Drug Targets 9, 526–538 (2010).
Santini, E. et al. Critical involvement of cAMP/DARPP-32 and extracellular signal-regulated protein kinase signaling in l-DOPA-induced dyskinesia. J. Neurosci. 27, 6995–7005 (2007).
Google Scholar
Ares-Santos, S. et al. Dopamine D1 receptor deletion strongly reduces neurotoxic effects of methamphetamine. Neurobiol. Dis. 45, 810–820 (2012).
Google Scholar
Van Kampen, J. M. & Eckman, C. B. Dopamine D3 receptor agonist delivery to a model of Parkinson’s disease restores the nigrostriatal pathway and improves locomotor behavior. J. Neurosci. 26, 7272–7280 (2006).
Google Scholar
Wang, W., Liu, L., Chen, C., Jiang, P. & Zhang, T. Protective effects of dopamine D2/D3 receptor agonist piribedil on learning and memory of rats exposed to global cerebral ischemia–reperfusion. Neurosci. Lett. 684, 181–186 (2018).
Google Scholar
Egashira, N. et al. Impaired social interaction and reduced anxiety-related behavior in vasopressin V1A receptor knockout mice. Behav. Brain Res. 178, 123–127 (2007).
Google Scholar
Bielsky, I. F., Hu, S.-B., Szegda, K. L., Westphal, H. & Young, L. J. Profound impairment in social recognition and reduction in anxiety-like behavior in vasopressin V1a receptor knockout mice. Neuropsychopharmacology 29, 483–493 (2004).
Google Scholar
Lee, C. K. et al. Isoliquiritigenin inhibits tumor growth and protects the kidney and liver against chemotherapy-induced toxicity in a mouse xenograft model of colon carcinoma. J. Pharmacol. Sci. 106, 444–451 (2008).
Google Scholar
Gong, H. et al. A protective mechanism of licorice (Glycyrrhiza uralensis): Isoliquiritigenin stimulates detoxification system via Nrf2 activation. J. Ethnopharmacol. 162, 134–139 (2015).
Google Scholar
Qiao, X. et al. Identification of key licorice constituents which interact with cytochrome P450: Evaluation by LC/MS/MS cocktail assay and metabolic profiling. AAPS J. 16, 101–113 (2014).
Google Scholar
Mahalingam, S., Gao, L., Eisner, J., Helferich, W. & Flaws, J. A. Effects of isoliquiritigenin on ovarian antral follicle growth and steroidogenesis. Reprod. Toxicol. 66, 107–114 (2016).
Google Scholar
Prajapati, R., Park, S. E., Park, H. J., Jung, H. A. & Choi, J. S. Identification of a potent and selective human monoamine oxidase-A inhibitor, glycitein, an isoflavone isolated from Pueraria lobata flowers. ACS Food Sci. Technol. 1, 538–550 (2021).
Google Scholar
Paudel, P. et al. In vitro and in silico characterization of G-protein coupled receptor (GPCR) targets of phlorofucofuroeckol-A and dieckol. Mar. Drugs 19, 326 (2021).
Google Scholar
Kołaczkowski, M., Bucki, A., Feder, M. & Pawłowski, M. Ligand-optimized homology models of D1 and D2 dopamine receptors: Application for virtual screening. J. Chem. Inf. Model. 53, 638–648 (2013).
Google Scholar
Camacho, C. et al. BLAST+: Architecture and applications. BMC Bioinform. 10, 421 (2009).
Remmert, M., Biegert, A., Hauser, A. & Söding, J. HHblits: Lightning-fast iterative protein sequence searching by HMM-HMM alignment. Nat. Methods 9, 173–175 (2012).
Google Scholar
Guex, N., Peitsch, M. C. & Schwede, T. Automated comparative protein structure modeling with SWISS-MODEL and Swiss-PdbViewer: A historical perspective. Electrophoresis 30, S162–S173 (2009).
Google Scholar
Xu, D. & Zhang, Y. Improving the physical realism and structural accuracy of protein models by a two-step atomic-level energy minimization. Biophys. J. 101, 2525–2534 (2011).
Google Scholar
Goodsell, D. S., Morris, G. M. & Olson, A. J. Automated docking of flexible ligands: Applications of AutoDock. J. Mol. Recognit. 9, 1–5 (1996).
Google Scholar
Pires, D. E., Blundell, T. L. & Ascher, D. B. pkCSM: Predicting small-molecule pharmacokinetic and toxicity properties using graph-based signatures. J. Med. Chem. 58, 4066–4072 (2015).
Google Scholar
Daina, A., Michielin, O. & Zoete, V. SwissADME: A free web tool to evaluate pharmacokinetics, drug-likeness and medicinal chemistry friendliness of small molecules. Sci. Rep. 7, 42717 (2017).
Google Scholar

