Cheah, W. Y. et al. Pretreatment methods for lignocellulosic biofuels production: Current advances, challenges and future prospects. Biofuel Res. J. 7, 1115–1127 (2020).
Google Scholar
Lynd, L. R. et al. Cellulosic ethanol: Status and innovation. Curr. Opin. Biotechnol. 45, 202–211 (2017).
Google Scholar
Sheldon, R. A. The road to biorenewables: Carbohydrates to commodity chemicals. ACS Sustain. Chem. Eng. 6, 4464–4480 (2018).
Google Scholar
Cheng, M., Huang, H., Dien, B. S. & Singh, V. The costs of sugar production from different feedstocks and processing technologies. Biofuels Bioprod. Biorefining 13, 723–739 (2019).
Google Scholar
Mielenz, J. R. Small-scale approaches for evaluating biomass bioconversion for fuels and chemicals. Bioenergy https://doi.org/10.1016/B978-0-12-815497-7.00027-0 (2020).
Google Scholar
Abo, B. O. et al. Lignocellulosic biomass for bioethanol: An overview on pretreatment, hydrolysis and fermentation processes. Rev. Environ. Health 34, 57–68 (2019).
Google Scholar
da Costa Lopes, A. M. et al. Pre-treatment of lignocellulosic biomass using ionic liquids: Wheat straw fractionation. Bioresour. Technol. 142, 198–208 (2013).
Google Scholar
Aditiya, H. B., Mahlia, T. M. I., Chong, W. T., Nur, H. & Sebayang, A. H. Second generation bioethanol production: A critical review. Renew. Sustain. Energy Rev. 66, 631–653 (2016).
Google Scholar
Wang, P. & Lü, X. General introduction to biofuels and bioethanol. Adv. 2nd Gener. Bioethanol Prod. https://doi.org/10.1016/B978-0-12-818862-0.00006-6 (2021).
Google Scholar
Beuchelt, T. D. & Nassl, M. Applying a sustainable development lens to global biomass potentials. Sustain. 11, 5078 (2019).
Google Scholar
Arnoult, S. & Brancourt-Hulmel, M. A review on miscanthus biomass production and composition for bioenergy use: Genotypic and environmental variability and implications for breeding. BioEnergy Res. 8, 502–526 (2015).
Google Scholar
Maleski, J. J. et al. Evaluation of miscanthus productivity and water use efficiency in southeastern United States. Sci. Total Environ. 692, 1125–1134 (2019).
Google Scholar
Lewandowski, I. et al. Progress on optimizing miscanthus biomass production for the european bioeconomy: Results of the EU FP7 Project OPTIMISC. Front. Plant Sci. 7, 1620 (2016).
Google Scholar
Brosse, N., El Hage, R., Sannigrahi, P. & Ragauskas, A. Dilute sulphuric acid and ethanol organosolv pretreatment of Miscanthus × Giganteus. Cell. Chem. Technol. 44, 71–78 (2010).
Google Scholar
Lee, W.-C. & Kuan, W.-C. Miscanthus as cellulosic biomass for bioethanol production. Biotechnol. J. 10, 840–854 (2015).
Google Scholar
Kumar, D. & Murthy, G. S. Impact of pretreatment and downstream processing technologies on economics and energy in cellulosic ethanol production. Biotechnol. Biofuels 4, 27 (2011).
Google Scholar
Ferrari, F. A., Pereira, J. F. B., Witkamp, G.-J. & Forte, M. B. S. Which variables matter for process design and scale-up? A study of sugar cane straw pretreatment using low-cost and easily synthesizable ionic liquids. ACS Sustain. Chem. Eng. 7, 12779–12788 (2019).
Google Scholar
Haldar, D. & Purkait, M. K. A review on the environment-friendly emerging techniques for pretreatment of lignocellulosic biomass: Mechanistic insight and advancements. Chemosphere 264, 128523 (2021).
Google Scholar
Grauso, L., de Falco, B., Lanzotti, V. & Motti, R. Stinging nettle, Urtica dioica L.: Botanical, phytochemical and pharmacological overview. Phytochem. Rev. https://doi.org/10.1007/s11101-020-09680-x (2020).
Google Scholar
Di Virgilio, N. et al. The potential of stinging nettle (Urtica dioica L.) as a crop with multiple uses. Ind. Crops Prod. 68, 42–49 (2015).
Google Scholar
Sabir, E. C. & Zervent Ünal, B. The using of nettle fiber in towel production and investigation of the performance properties. J. Nat. Fibers 14, 781–787 (2017).
Google Scholar
Agus Suryawan, I. G. P., Suardana, N. P. G., Suprapta Winaya, I. N., Budiarsa Suyasa, I. W. & Tirta Nindhia, T. G. Study of stinging nettle (Urtica dioica L.) fibers reinforced green composite materials: A review. IOP Conf. Ser. Mater. Sci. Eng. 201, 012001 (2017).
Google Scholar
Raud, M., Kikas, T., Sippula, O. & Shurpali, N. J. Potentials and challenges in lignocellulosic biofuel production technology. Renew. Sustain. Energy Rev. 111, 44–56 (2019).
Google Scholar
Alayoubi, R. et al. Low temperature ionic liquid pretreatment of lignocellulosic biomass to enhance bioethanol yield. Renew. Energy 145, 1808–1816 (2020).
Google Scholar
Ruiz, H. A. et al. Engineering aspects of hydrothermal pretreatment: From batch to continuous operation, scale-up and pilot reactor under biorefinery concept. Bioresour. Technol. 299, 122685 (2020).
Google Scholar
Agbor, V. B., Cicek, N., Sparling, R., Berlin, A. & Levin, D. B. Biomass pretreatment: Fundamentals toward application. Biotechnol. Adv. 29, 675–685 (2011).
Google Scholar
Liu, Y. et al. Cascade utilization of lignocellulosic biomass to high-value products. Green Chem. 21, 3499–3535 (2019).
Google Scholar
Yamada, R. et al. Direct ethanol production from ionic liquid-pretreated lignocellulosic biomass by cellulase-displaying yeasts. Appl. Biochem. Biotechnol. 182, 229–237 (2017).
Google Scholar
Malolan, R. et al. Green ionic liquids and deep eutectic solvents for desulphurization, denitrification, biomass, biodiesel, bioethanol and hydrogen fuels: A review. Environ. Chem. Lett. 19, 1001–1023 (2020).
Google Scholar
Dash, M. & Mohanty, K. Effect of different ionic liquids and anti-solvents on dissolution and regeneration of Miscanthus towards bioethanol. Biomass Bioenergy. 124, 33–42 (2019).
Google Scholar
Zhai, R., Hu, J. & Saddler, J. N. What are the major components in steam pretreated lignocellulosic biomass that inhibit the efficacy of cellulase enzyme mixtures?. ACS Sustain. Chem. Eng. 4, 3429–3436 (2016).
Google Scholar
Robak, K. & Balcerek, M. Review of second generation bioethanol production from residual biomass. Food Technol. Biotechnol. 56, 174–187 (2018).
Google Scholar
Liu, Z.-H. et al. Transforming biorefinery designs with ‘Plug-In Processes of Lignin’ to enable economic waste valorization. Nat. Commun. 12, 1–13 (2021).
Google Scholar
An, Y.-X., Zong, M.-H., Wu, H. & Li, N. Pretreatment of lignocellulosic biomass with renewable cholinium ionic liquids: Biomass fractionation, enzymatic digestion and ionic liquid reuse. Bioresour. Technol. 192, 165–171 (2015).
Google Scholar
Gschwend, F. J. V. et al. Quantitative glucose release from softwood after pretreatment with low-cost ionic liquids. Green Chem. 21, 692–703 (2019).
Google Scholar
Brandt, A., Gräsvik, J., Hallett, J. P. & Welton, T. Deconstruction of lignocellulosic biomass with ionic liquids. Green Chem. 15, 550 (2013).
Google Scholar
Satari, B., Karimi, K. & Kumar, R. Cellulose solvent-based pretreatment for enhanced second-generation biofuel production: A review. Sustain. Energy Fuels 3, 11–62 (2019).
Google Scholar
Bernardo, J., Gírio, F. & Łukasik, R. The effect of the chemical character of ionic liquids on biomass pre-treatment and posterior enzymatic hydrolysis. Molecules 24, 808 (2019).
Google Scholar
Den, W., Sharma, V. K., Lee, M., Nadadur, G. & Varma, R. S. Lignocellulosic biomass transformations via greener oxidative pretreatment processes: Access to energy and value-added chemicals. Front. Chem. 6, 141 (2018).
Google Scholar
Hart, W. E. S., Harper, J. B. & Aldous, L. The effect of changing the components of an ionic liquid upon the solubility of lignin. Green Chem. 17, 214–218 (2014).
Google Scholar
Pernak, J. et al. Synthesis and properties of ammonium ionic liquids with cyclohexyl substituent and dissolution of cellulose. RSC Adv. 2, 8429–8438 (2012).
Google Scholar
Swatloski, R. P., Spear, S. K., Holbrey, J. D. & Rogers, R. D. Dissolution of cellose with ionic liquids. J. Am. Chem. Soc. 124, 4974–4975 (2002).
Google Scholar
Zhang, J. et al. Application of ionic liquids for dissolving cellulose and fabricating cellulose-based materials: State of the art and future trends. Mater. Chem. Front. 1, 1273–1290 (2017).
Google Scholar
Kumar, P., Barrett, D. M., Delwiche, M. J. & Stroeve, P. Methods for pretreatment of lignocellulosic biomass for efficient hydrolysis and biofuel production. Ind. Eng. Chem. Res. 48, 3713–3729 (2009).
Google Scholar
Dadi, A. P., Varanasi, S. & Schall, C. A. Enhancement of cellulose saccharification kinetics using an ionic liquid pretreatment step. Biotechnol. Bioeng. 95, 904–910 (2006).
Google Scholar
Li, C. et al. Scale-up and evaluation of high solid ionic liquid pretreatment and enzymatic hydrolysis of switchgrass. Biotechnol. Biofuels 6, 154 (2013).
Google Scholar
Pérez de los Ríos, A. et al. Keys for bioethanol production processes by fermentation and ionic liquid extraction. ACS Sustain. Chem. Eng. 5, 6986–6993 (2017).
Google Scholar
Asim, A. M. et al. Acidic ionic liquids: Promising and cost-effective solvents for processing of lignocellulosic biomass. J. Mol. Liq. 287, 110943 (2019).
Google Scholar
Socha, A. M. et al. Efficient biomass pretreatment using ionic liquids derived from lignin and hemicellulose. Proc. Natl. Acad. Sci. U. S. A. 111, E3587–E3595 (2014).
Google Scholar
Halder, P. et al. Progress on the pre-treatment of lignocellulosic biomass employing ionic liquids. Renew. Sustain. Energy Rev. 105, 268–292 (2019).
Google Scholar
Magalhães da Silva, S. P., da Costa Lopes, A. M., Roseiro, L. B. & Bogel-Łukasik, R. Novel pre-treatment and fractionation method for lignocellulosic biomass using ionic liquids. RSC Adv. 3, 16040 (2013).
Google Scholar
Brandt, A., Hallett, J. P., Leak, D. J., Murphy, R. J. & Welton, T. The effect of the ionic liquid anion in the pretreatment of pine wood chips. Green Chem. 12, 672 (2010).
Google Scholar
Welton, T. Ionic liquids: A brief history. Biophys. Rev. 10, 691–706 (2018).
Google Scholar
Verma, C. et al. Dissolution of cellulose in ionic liquids and their mixed cosolvents: A review. Sustain. Chem. Pharm. 13, 100162 (2019).
Google Scholar
Sayyed, A. J., Deshmukh, N. A. & Pinjari, D. V. A critical review of manufacturing processes used in regenerated cellulosic fibres: Viscose, cellulose acetate, cuprammonium, LiCl/DMAc, ionic liquids, and NMMO based lyocell. Cellulose 26, 2913–2940 (2019).
Google Scholar
Hu, J., Arantes, V. & Saddler, J. N. The enhancement of enzymatic hydrolysis of lignocellulosic substrates by the addition of accessory enzymes such as xylanase: Is it an additive or synergistic effect?. Biotechnol. Biofuels 4, 36 (2011).
Google Scholar
Long, L., Tian, D., Hu, J., Wang, F. & Saddler, J. A xylanase-aided enzymatic pretreatment facilitates cellulose nanofibrillation. Bioresour. Technol. 243, 898–904 (2017).
Google Scholar
Long, L. et al. Thermostable xylanase-aided two-stage hydrolysis approach enhances sugar release of pretreated lignocellulosic biomass. Bioresour. Technol. 257, 334–338 (2018).
Google Scholar
Smuga-Kogut, M., Kogut, T., Markiewicz, R. & Słowik, A. Use of machine learning methods for predicting amount of bioethanol obtained from lignocellulosic biomass with the use of ionic liquids for pretreatment. Energies 14, 243 (2021).
Google Scholar
Smuga-Kogut, M. et al. Comparison of bioethanol preparation from triticale straw using the ionic liquid and sulfate methods. Energies 12, 1155 (2019).
Google Scholar
Smuga-Kogut, M. et al. Evaluation of the potential of fireweed (Epilobium angustifolium L.), European goldenrod (Solidago virgaurea L.), and common broom (Cytisus scoparius L.) stems in bioethanol production. Energy Sci. Eng. 8, 3244–3254 (2020).
Google Scholar
Breiman, L. Random forests. Mach. Learn. 45, 5–32 (2001).
Google Scholar
Liaw, A. & Wiener, M. Classification and regression by randomForest. R News 2(3), 18–22 (2002).

