Preloader

Ionic liquid pretreatment of stinging nettle stems and giant miscanthus for bioethanol production

  • 1.

    Cheah, W. Y. et al. Pretreatment methods for lignocellulosic biofuels production: Current advances, challenges and future prospects. Biofuel Res. J. 7, 1115–1127 (2020).

    Article 

    Google Scholar 

  • 2.

    Lynd, L. R. et al. Cellulosic ethanol: Status and innovation. Curr. Opin. Biotechnol. 45, 202–211 (2017).

    PubMed 
    Article 
    CAS 

    Google Scholar 

  • 3.

    Sheldon, R. A. The road to biorenewables: Carbohydrates to commodity chemicals. ACS Sustain. Chem. Eng. 6, 4464–4480 (2018).

    Article 
    CAS 

    Google Scholar 

  • 4.

    Cheng, M., Huang, H., Dien, B. S. & Singh, V. The costs of sugar production from different feedstocks and processing technologies. Biofuels Bioprod. Biorefining 13, 723–739 (2019).

    Article 
    CAS 

    Google Scholar 

  • 5.

    Mielenz, J. R. Small-scale approaches for evaluating biomass bioconversion for fuels and chemicals. Bioenergy https://doi.org/10.1016/B978-0-12-815497-7.00027-0 (2020).

    Article 

    Google Scholar 

  • 6.

    Abo, B. O. et al. Lignocellulosic biomass for bioethanol: An overview on pretreatment, hydrolysis and fermentation processes. Rev. Environ. Health 34, 57–68 (2019).

    PubMed 
    Article 
    CAS 
    PubMed Central 

    Google Scholar 

  • 7.

    da Costa Lopes, A. M. et al. Pre-treatment of lignocellulosic biomass using ionic liquids: Wheat straw fractionation. Bioresour. Technol. 142, 198–208 (2013).

    PubMed 
    Article 
    CAS 
    PubMed Central 

    Google Scholar 

  • 8.

    Aditiya, H. B., Mahlia, T. M. I., Chong, W. T., Nur, H. & Sebayang, A. H. Second generation bioethanol production: A critical review. Renew. Sustain. Energy Rev. 66, 631–653 (2016).

    Article 
    CAS 

    Google Scholar 

  • 9.

    Wang, P. & Lü, X. General introduction to biofuels and bioethanol. Adv. 2nd Gener. Bioethanol Prod. https://doi.org/10.1016/B978-0-12-818862-0.00006-6 (2021).

    Article 

    Google Scholar 

  • 10.

    Beuchelt, T. D. & Nassl, M. Applying a sustainable development lens to global biomass potentials. Sustain. 11, 5078 (2019).

    Article 

    Google Scholar 

  • 11.

    Arnoult, S. & Brancourt-Hulmel, M. A review on miscanthus biomass production and composition for bioenergy use: Genotypic and environmental variability and implications for breeding. BioEnergy Res. 8, 502–526 (2015).

    Article 
    CAS 

    Google Scholar 

  • 12.

    Maleski, J. J. et al. Evaluation of miscanthus productivity and water use efficiency in southeastern United States. Sci. Total Environ. 692, 1125–1134 (2019).

    ADS 
    PubMed 
    Article 
    CAS 
    PubMed Central 

    Google Scholar 

  • 13.

    Lewandowski, I. et al. Progress on optimizing miscanthus biomass production for the european bioeconomy: Results of the EU FP7 Project OPTIMISC. Front. Plant Sci. 7, 1620 (2016).

    PubMed 
    PubMed Central 
    Article 

    Google Scholar 

  • 14.

    Brosse, N., El Hage, R., Sannigrahi, P. & Ragauskas, A. Dilute sulphuric acid and ethanol organosolv pretreatment of Miscanthus × Giganteus. Cell. Chem. Technol. 44, 71–78 (2010).

    CAS 

    Google Scholar 

  • 15.

    Lee, W.-C. & Kuan, W.-C. Miscanthus as cellulosic biomass for bioethanol production. Biotechnol. J. 10, 840–854 (2015).

    PubMed 
    Article 
    CAS 
    PubMed Central 

    Google Scholar 

  • 16.

    Kumar, D. & Murthy, G. S. Impact of pretreatment and downstream processing technologies on economics and energy in cellulosic ethanol production. Biotechnol. Biofuels 4, 27 (2011).

    PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar 

  • 17.

    Ferrari, F. A., Pereira, J. F. B., Witkamp, G.-J. & Forte, M. B. S. Which variables matter for process design and scale-up? A study of sugar cane straw pretreatment using low-cost and easily synthesizable ionic liquids. ACS Sustain. Chem. Eng. 7, 12779–12788 (2019).

    Article 
    CAS 

    Google Scholar 

  • 18.

    Haldar, D. & Purkait, M. K. A review on the environment-friendly emerging techniques for pretreatment of lignocellulosic biomass: Mechanistic insight and advancements. Chemosphere 264, 128523 (2021).

    ADS 
    PubMed 
    Article 
    CAS 
    PubMed Central 

    Google Scholar 

  • 19.

    Grauso, L., de Falco, B., Lanzotti, V. & Motti, R. Stinging nettle, Urtica dioica L.: Botanical, phytochemical and pharmacological overview. Phytochem. Rev. https://doi.org/10.1007/s11101-020-09680-x (2020).

    Article 

    Google Scholar 

  • 20.

    Di Virgilio, N. et al. The potential of stinging nettle (Urtica dioica L.) as a crop with multiple uses. Ind. Crops Prod. 68, 42–49 (2015).

    Article 

    Google Scholar 

  • 21.

    Sabir, E. C. & Zervent Ünal, B. The using of nettle fiber in towel production and investigation of the performance properties. J. Nat. Fibers 14, 781–787 (2017).

    Article 
    CAS 

    Google Scholar 

  • 22.

    Agus Suryawan, I. G. P., Suardana, N. P. G., Suprapta Winaya, I. N., Budiarsa Suyasa, I. W. & Tirta Nindhia, T. G. Study of stinging nettle (Urtica dioica L.) fibers reinforced green composite materials: A review. IOP Conf. Ser. Mater. Sci. Eng. 201, 012001 (2017).

    Article 

    Google Scholar 

  • 23.

    Raud, M., Kikas, T., Sippula, O. & Shurpali, N. J. Potentials and challenges in lignocellulosic biofuel production technology. Renew. Sustain. Energy Rev. 111, 44–56 (2019).

    Article 
    CAS 

    Google Scholar 

  • 24.

    Alayoubi, R. et al. Low temperature ionic liquid pretreatment of lignocellulosic biomass to enhance bioethanol yield. Renew. Energy 145, 1808–1816 (2020).

    Article 
    CAS 

    Google Scholar 

  • 25.

    Ruiz, H. A. et al. Engineering aspects of hydrothermal pretreatment: From batch to continuous operation, scale-up and pilot reactor under biorefinery concept. Bioresour. Technol. 299, 122685 (2020).

    PubMed 
    Article 
    CAS 

    Google Scholar 

  • 26.

    Agbor, V. B., Cicek, N., Sparling, R., Berlin, A. & Levin, D. B. Biomass pretreatment: Fundamentals toward application. Biotechnol. Adv. 29, 675–685 (2011).

    PubMed 
    Article 
    CAS 

    Google Scholar 

  • 27.

    Liu, Y. et al. Cascade utilization of lignocellulosic biomass to high-value products. Green Chem. 21, 3499–3535 (2019).

    Article 
    CAS 

    Google Scholar 

  • 28.

    Yamada, R. et al. Direct ethanol production from ionic liquid-pretreated lignocellulosic biomass by cellulase-displaying yeasts. Appl. Biochem. Biotechnol. 182, 229–237 (2017).

    PubMed 
    Article 
    CAS 

    Google Scholar 

  • 29.

    Malolan, R. et al. Green ionic liquids and deep eutectic solvents for desulphurization, denitrification, biomass, biodiesel, bioethanol and hydrogen fuels: A review. Environ. Chem. Lett. 19, 1001–1023 (2020).

    Article 
    CAS 

    Google Scholar 

  • 30.

    Dash, M. & Mohanty, K. Effect of different ionic liquids and anti-solvents on dissolution and regeneration of Miscanthus towards bioethanol. Biomass Bioenergy. 124, 33–42 (2019).

    Article 
    CAS 

    Google Scholar 

  • 31.

    Zhai, R., Hu, J. & Saddler, J. N. What are the major components in steam pretreated lignocellulosic biomass that inhibit the efficacy of cellulase enzyme mixtures?. ACS Sustain. Chem. Eng. 4, 3429–3436 (2016).

    Article 
    CAS 

    Google Scholar 

  • 32.

    Robak, K. & Balcerek, M. Review of second generation bioethanol production from residual biomass. Food Technol. Biotechnol. 56, 174–187 (2018).

    PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar 

  • 33.

    Liu, Z.-H. et al. Transforming biorefinery designs with ‘Plug-In Processes of Lignin’ to enable economic waste valorization. Nat. Commun. 12, 1–13 (2021).

    ADS 
    Article 
    CAS 

    Google Scholar 

  • 34.

    An, Y.-X., Zong, M.-H., Wu, H. & Li, N. Pretreatment of lignocellulosic biomass with renewable cholinium ionic liquids: Biomass fractionation, enzymatic digestion and ionic liquid reuse. Bioresour. Technol. 192, 165–171 (2015).

    PubMed 
    Article 
    CAS 
    PubMed Central 

    Google Scholar 

  • 35.

    Gschwend, F. J. V. et al. Quantitative glucose release from softwood after pretreatment with low-cost ionic liquids. Green Chem. 21, 692–703 (2019).

    Article 
    CAS 

    Google Scholar 

  • 36.

    Brandt, A., Gräsvik, J., Hallett, J. P. & Welton, T. Deconstruction of lignocellulosic biomass with ionic liquids. Green Chem. 15, 550 (2013).

    Article 
    CAS 

    Google Scholar 

  • 37.

    Satari, B., Karimi, K. & Kumar, R. Cellulose solvent-based pretreatment for enhanced second-generation biofuel production: A review. Sustain. Energy Fuels 3, 11–62 (2019).

    Article 
    CAS 

    Google Scholar 

  • 38.

    Bernardo, J., Gírio, F. & Łukasik, R. The effect of the chemical character of ionic liquids on biomass pre-treatment and posterior enzymatic hydrolysis. Molecules 24, 808 (2019).

    PubMed Central 
    Article 
    CAS 
    PubMed 

    Google Scholar 

  • 39.

    Den, W., Sharma, V. K., Lee, M., Nadadur, G. & Varma, R. S. Lignocellulosic biomass transformations via greener oxidative pretreatment processes: Access to energy and value-added chemicals. Front. Chem. 6, 141 (2018).

    ADS 
    PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar 

  • 40.

    Hart, W. E. S., Harper, J. B. & Aldous, L. The effect of changing the components of an ionic liquid upon the solubility of lignin. Green Chem. 17, 214–218 (2014).

    Article 
    CAS 

    Google Scholar 

  • 41.

    Pernak, J. et al. Synthesis and properties of ammonium ionic liquids with cyclohexyl substituent and dissolution of cellulose. RSC Adv. 2, 8429–8438 (2012).

    ADS 
    Article 
    CAS 

    Google Scholar 

  • 42.

    Swatloski, R. P., Spear, S. K., Holbrey, J. D. & Rogers, R. D. Dissolution of cellose with ionic liquids. J. Am. Chem. Soc. 124, 4974–4975 (2002).

    PubMed 
    Article 
    CAS 

    Google Scholar 

  • 43.

    Zhang, J. et al. Application of ionic liquids for dissolving cellulose and fabricating cellulose-based materials: State of the art and future trends. Mater. Chem. Front. 1, 1273–1290 (2017).

    Article 
    CAS 

    Google Scholar 

  • 44.

    Kumar, P., Barrett, D. M., Delwiche, M. J. & Stroeve, P. Methods for pretreatment of lignocellulosic biomass for efficient hydrolysis and biofuel production. Ind. Eng. Chem. Res. 48, 3713–3729 (2009).

    Article 
    CAS 

    Google Scholar 

  • 45.

    Dadi, A. P., Varanasi, S. & Schall, C. A. Enhancement of cellulose saccharification kinetics using an ionic liquid pretreatment step. Biotechnol. Bioeng. 95, 904–910 (2006).

    PubMed 
    Article 
    CAS 

    Google Scholar 

  • 46.

    Li, C. et al. Scale-up and evaluation of high solid ionic liquid pretreatment and enzymatic hydrolysis of switchgrass. Biotechnol. Biofuels 6, 154 (2013).

    PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar 

  • 47.

    Pérez de los Ríos, A. et al. Keys for bioethanol production processes by fermentation and ionic liquid extraction. ACS Sustain. Chem. Eng. 5, 6986–6993 (2017).

    Article 
    CAS 

    Google Scholar 

  • 48.

    Asim, A. M. et al. Acidic ionic liquids: Promising and cost-effective solvents for processing of lignocellulosic biomass. J. Mol. Liq. 287, 110943 (2019).

    Article 
    CAS 

    Google Scholar 

  • 49.

    Socha, A. M. et al. Efficient biomass pretreatment using ionic liquids derived from lignin and hemicellulose. Proc. Natl. Acad. Sci. U. S. A. 111, E3587–E3595 (2014).

    PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar 

  • 50.

    Halder, P. et al. Progress on the pre-treatment of lignocellulosic biomass employing ionic liquids. Renew. Sustain. Energy Rev. 105, 268–292 (2019).

    Article 
    CAS 

    Google Scholar 

  • 51.

    Magalhães da Silva, S. P., da Costa Lopes, A. M., Roseiro, L. B. & Bogel-Łukasik, R. Novel pre-treatment and fractionation method for lignocellulosic biomass using ionic liquids. RSC Adv. 3, 16040 (2013).

    ADS 
    Article 
    CAS 

    Google Scholar 

  • 52.

    Brandt, A., Hallett, J. P., Leak, D. J., Murphy, R. J. & Welton, T. The effect of the ionic liquid anion in the pretreatment of pine wood chips. Green Chem. 12, 672 (2010).

    Article 
    CAS 

    Google Scholar 

  • 53.

    Welton, T. Ionic liquids: A brief history. Biophys. Rev. 10, 691–706 (2018).

    PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar 

  • 54.

    Verma, C. et al. Dissolution of cellulose in ionic liquids and their mixed cosolvents: A review. Sustain. Chem. Pharm. 13, 100162 (2019).

    Article 

    Google Scholar 

  • 55.

    Sayyed, A. J., Deshmukh, N. A. & Pinjari, D. V. A critical review of manufacturing processes used in regenerated cellulosic fibres: Viscose, cellulose acetate, cuprammonium, LiCl/DMAc, ionic liquids, and NMMO based lyocell. Cellulose 26, 2913–2940 (2019).

    Article 
    CAS 

    Google Scholar 

  • 56.

    Hu, J., Arantes, V. & Saddler, J. N. The enhancement of enzymatic hydrolysis of lignocellulosic substrates by the addition of accessory enzymes such as xylanase: Is it an additive or synergistic effect?. Biotechnol. Biofuels 4, 36 (2011).

    PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar 

  • 57.

    Long, L., Tian, D., Hu, J., Wang, F. & Saddler, J. A xylanase-aided enzymatic pretreatment facilitates cellulose nanofibrillation. Bioresour. Technol. 243, 898–904 (2017).

    PubMed 
    Article 
    CAS 
    PubMed Central 

    Google Scholar 

  • 58.

    Long, L. et al. Thermostable xylanase-aided two-stage hydrolysis approach enhances sugar release of pretreated lignocellulosic biomass. Bioresour. Technol. 257, 334–338 (2018).

    PubMed 
    Article 
    CAS 
    PubMed Central 

    Google Scholar 

  • 59.

    Smuga-Kogut, M., Kogut, T., Markiewicz, R. & Słowik, A. Use of machine learning methods for predicting amount of bioethanol obtained from lignocellulosic biomass with the use of ionic liquids for pretreatment. Energies 14, 243 (2021).

    Article 
    CAS 

    Google Scholar 

  • 60.

    Smuga-Kogut, M. et al. Comparison of bioethanol preparation from triticale straw using the ionic liquid and sulfate methods. Energies 12, 1155 (2019).

    Article 
    CAS 

    Google Scholar 

  • 61.

    Smuga-Kogut, M. et al. Evaluation of the potential of fireweed (Epilobium angustifolium L.), European goldenrod (Solidago virgaurea L.), and common broom (Cytisus scoparius L.) stems in bioethanol production. Energy Sci. Eng. 8, 3244–3254 (2020).

    Article 
    CAS 

    Google Scholar 

  • 62.

    Breiman, L. Random forests. Mach. Learn. 45, 5–32 (2001).

    MATH 
    Article 

    Google Scholar 

  • 63.

    Liaw, A. & Wiener, M. Classification and regression by randomForest. R News 2(3), 18–22 (2002).

    Google Scholar 

  • Source link