Preloader

Intratumoral DNA-based delivery of checkpoint-inhibiting antibodies and interleukin 12 triggers T cell infiltration and anti-tumor response

  • 1.

    Ribas A, Wolchok JD. Cancer immunotherapy using checkpoint blockade. Science. 2018;359:1350–5.

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • 2.

    Larkin J, Chiarion-Sileni V, Gonzalez R, Grob JJ, Rutkowski P, Lao CD, et al. Five-year survival with combined nivolumab and ipilimumab in advanced melanoma. N. Engl J Med. 2019;381:1535–46.

    CAS 
    PubMed 

    Google Scholar 

  • 3.

    Kooshkaki O, Derakhshani A, Hosseinkhani N, Torabi M, Safaei S, Brunetti O, et al. Combination of ipilimumab and nivolumab in cancers: from clinical practice to ongoing clinical trials. Int J Mol Sci. 2020;21:4427.

    CAS 
    PubMed Central 

    Google Scholar 

  • 4.

    Upadhaya S, Neftelino ST, Hodge JP, Oliva C, Campbell JR, Yu JX. Combinations take centre stage in PD1/PDL1 inhibitor clinical trials. Nat Rev Drug Disco. 2021;20:168–9.

    CAS 

    Google Scholar 

  • 5.

    Middleton MR, Hoeller C, Michielin O, Robert C, Caramella C, Öhrling K, et al. Intratumoural immunotherapies for unresectable and metastatic melanoma: current status and future perspectives. Br J Cancer. 2020;123:885–97.

    PubMed 
    PubMed Central 

    Google Scholar 

  • 6.

    Algazi AP, Twitty CG, Tsai KK, Le M, Pierce R, Browning E, et al. Phase II trial of IL-12 plasmid transfection and PD-1 blockade in immunologically quiescent melanoma. Clin Cancer Res. 2020;26:2827–37.

    CAS 
    PubMed 

    Google Scholar 

  • 7.

    Leonard JP, Sherman ML, Fisher GL, Buchanan LJ, Larsen G, Atkins MB, et al. Effects of single-dose interleukin-12 exposure on interleukin-12-associated toxicity and interferon-gamma production. Blood. 1997;90:2541–8.

    CAS 
    PubMed 

    Google Scholar 

  • 8.

    Algazi A, Bhatia S, Agarwala S, Molina M, Lewis K, Faries M, et al. Intratumoral delivery of tavokinogene telseplasmid yields systemic immune responses in metastatic melanoma patients. Ann Oncol. 2020;31:532–40.

    CAS 
    PubMed 

    Google Scholar 

  • 9.

    Bhatia S, Longino NV, Miller NJ, Kulikauskas R, Iyer JG, Ibrani D, et al. Intratumoral delivery of plasmid IL12 via electroporation leads to regression of injected and noninjected tumors in Merkel cell carcinoma. Clin Cancer Res. 2020;26:596–607.

    Google Scholar 

  • 10.

    Heller R, Heller LC. Gene electrotransfer clinical trials. Adv Genet. 2015;89:235–62.

    CAS 
    PubMed 

    Google Scholar 

  • 11.

    Jacobs L, De Smidt E, Geukens N, Declerck P, Hollevoet K. Electroporation outperforms in vivo-jetPEI for intratumoral DNA-based reporter gene transfer. Sci Rep. 2020;10:19532.

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • 12.

    Hollevoet K, Declerck PJ. State of play and clinical prospects of antibody gene transfer. J Transl Med. 2017;15:131.

    PubMed 
    PubMed Central 

    Google Scholar 

  • 13.

    Vermeire G, De Smidt E, Casteels P, Geukens N, Declerck P, Hollevoet K. DNA-based delivery of anti-DR5 nanobodies improves exposure and anti-tumor efficacy over protein-based administration. Cancer Gene Ther. 2021;28:828–38.

    CAS 
    PubMed 

    Google Scholar 

  • 14.

    Jacobs L, De Smidt E, Geukens N, Declerck P, Hollevoet K. DNA-based delivery of checkpoint inhibitors in muscle and tumor enables long-term responses with distinct exposure. Mol Ther. 2020;28:1068–77.

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • 15.

    Hollevoet K, De Smidt E, Geukens N, Declerck P. Prolonged in vivo expression and anti-tumor response of DNA-based anti-HER2 antibodies. Oncotarget. 2018;9:13623–36.

    PubMed 
    PubMed Central 

    Google Scholar 

  • 16.

    Hollevoet K, De Vleeschauwer S, De Smidt E, Vermeire G, Geukens N, Declerck P. Bridging the clinical gap for DNA-based antibody therapy through translational studies in sheep. Hum Gene Ther. 2019;30:1431–43.

    CAS 
    PubMed 

    Google Scholar 

  • 17.

    Vermeire G, De Smidt E, Geukens N, Williams JA, Declerck P, Hollevoet K. Improved potency and safety of DNA-encoded antibody therapeutics through plasmid backbone and expression cassette engineering. Hum Gene Ther. 2021;32:1200–9.

    CAS 
    PubMed 

    Google Scholar 

  • 18.

    Campbell J, Canton DA, Pierce RH. Plasmid constructs for heterologous protein expression and methods of use. Patent US20190153469A1; 2019.

  • 19.

    Roca CP, Burton OT, Gergelits V, Prezzemolo T, Whyte CE, Halpert R, et al. AutoSpill is a principled framework that simplifies the analysis of multichromatic flow cytometry data. Nat Commun. 2021;12:2890.

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • 20.

    Garris CS, Arlauckas SP, Kohler RH, Trefny MP, Garren S, Piot C, et al. Successful anti-PD-1 cancer immunotherapy requires T cell-dendritic cell crosstalk involving the cytokines IFN-γ and IL-12. Immunity. 2018;49:1148–1161.e7.

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • 21.

    Hewitt SL, Bailey D, Zielinski J, Apte A, Musenge F, Karp R, et al. Intratumoral IL12 mRNA therapy promotes TH1 transformation of the tumor microenvironment. Clin Cancer Res. 2020;26:6284–98.

    CAS 
    PubMed 

    Google Scholar 

  • 22.

    Wei SC, Anang NAS, Sharma R, Andrews MC, Reuben A, Levine JH, et al. Combination anti-CTLA-4 plus anti-PD-1 checkpoint blockade utilizes cellular mechanisms partially distinct from monotherapies. Proc Natl Acad Sci USA. 2019;116:22699–709.

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • 23.

    Ishihara J, Fukunaga K, Ishihara A, Larsson HM, Potin L, Hosseinchi P, et al. Matrix-binding checkpoint immunotherapies enhance antitumor efficacy and reduce adverse events. Sci Transl Med. 2017;9:eaan040.

    Google Scholar 

  • 24.

    Pai CS, Simons DM, Lu X, Evans M, Wei J, Wang YH, et al. Tumor-conditional anti-CTLA4 uncouples antitumor efficacy from immunotherapy-related toxicity. J Clin Invest. 2019;129:349–63.

    PubMed 

    Google Scholar 

  • 25.

    Burkart C, Mukhopadhyay A, Shirley SA, Connolly RJ, Wright JH, Bahrami A, et al. Improving therapeutic efficacy of IL-12 intratumoral gene electrotransfer through novel plasmid design and modified parameters. Gene Ther. 2018;25:93–103.

    CAS 
    PubMed 

    Google Scholar 

  • 26.

    Momin N, Mehta NK, Bennett NR, Ma L, Palmeri JR, Chinn MM, et al. Anchoring of intratumorally administered cytokines to collagen safely potentiates systemic cancer immunotherapy. Sci Transl Med. 2019;11:eaaw2614.

    PubMed 
    PubMed Central 

    Google Scholar 

  • 27.

    Selby MJ, Engelhardt JJ, Johnston RJ, Lu LS, Han M, Thudium K, et al. Preclinical development of ipilimumab and nivolumab combination immunotherapy: mouse tumor models, in vitro functional studies, and cynomolgus macaque toxicology. PLoS One. 2016;11:e0161779.

    PubMed 
    PubMed Central 

    Google Scholar 

  • 28.

    Quetglas JI, Labiano S, Aznar M, Bolaños E, Azpilikueta A, Rodriguez I, et al. Virotherapy with a Semliki Forest virus-based vector encoding IL12 synergizes with PD-1/PD-L1 blockade. Cancer Immunol Res. 2015;3:449–54.

    CAS 
    PubMed 

    Google Scholar 

  • 29.

    De Lucia M, Cotugno G, Bignone V, Garzia I, Nocchi L, Langone F, et al. Retargeted and multi-cytokine-armed herpes virus is a potent cancer endovaccine for local and systemic anti-tumor treatment. Mol Ther Oncolytics. 2020;19:253–64.

    PubMed 
    PubMed Central 

    Google Scholar 

  • 30.

    Ge Y, Wang H, Ren J, Liu W, Chen L, Chen H, et al. Oncolytic vaccinia virus delivering tethered IL-12 enhances antitumor effects with improved safety. J Immunother Cancer. 2020;8:e000710.

    PubMed 
    PubMed Central 

    Google Scholar 

  • 31.

    Wei SC, Levine JH, Cogdill AP, Zhao Y, Anang NAS, Andrews MC, et al. Distinct cellular mechanisms underlie anti-CTLA-4 and anti-PD-1 checkpoint blockade. Cell. 2017;170:1120–1133.e17.

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • 32.

    Sin JI, Park JB, Lee IH, Park D, Choi YS, Choe J, et al. Intratumoral electroporation of IL-12 cDNA eradicates established melanomas by Trp2(180–188)-specific CD8+ CTLs in a perforin/granzyme-mediated and IFN-γ-dependent manner: application of Trp2(180–188) peptides. Cancer Immunol Immunother. 2012;61:1671–82.

    CAS 
    PubMed 

    Google Scholar 

  • 33.

    Mukhopadhyay A, Wright J, Shirley S, Canton DA, Burkart C, Connolly RJ, et al. Characterization of abscopal effects of intratumoral electroporation-mediated IL-12 gene therapy. Gene Ther. 2019;26:1–15.

    CAS 
    PubMed 

    Google Scholar 

  • 34.

    Shi G, Edelblute C, Arpag S, Lundberg C, Heller R. IL-12 gene electrotransfer triggers a change in immune response within mouse tumors. Cancers. 2018;10:498.

    CAS 
    PubMed Central 

    Google Scholar 

  • 35.

    Curran MA, Montalvo W, Yagita H, Allison JP. PD-1 and CTLA-4 combination blockade expands infiltrating T cells and reduces regulatory T and myeloid cells within B16 melanoma tumors. Proc Natl Acad Sci USA. 2010;107:4275–80.

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • 36.

    Gao X, Wang X, Yang Q, Zhao X, Wen W, Li G, et al. Tumoral expression of IL-33 inhibits tumor growth and modifies the tumor microenvironment through CD8+ T and NK cells. J Immunol. 2015;194:438–45.

    CAS 
    PubMed 

    Google Scholar 

  • 37.

    Selby MJ, Engelhardt JJ, Quigley M, Henning KA, Chen T, Srinivasan M, et al. Anti-CTLA-4 antibodies of IgG2a isotype enhance antitumor activity through reduction of intratumoral regulatory T cells. Cancer Immunol Res. 2013;1:32–42.

    CAS 
    PubMed 

    Google Scholar 

  • 38.

    Zhang P, Lee JS, Gartlan KH, Schuster IS, Comerford I, Varelias A, et al. Eomesodermin promotes the development of type 1 regulatory T (TR1) cells. Sci Immunol. 2017;2:eaah7152.

    PubMed 
    PubMed Central 

    Google Scholar 

  • 39.

    Mazzoni A, Maggi L, Siracusa F, Ramazzotti M, Rossi MC, Santarlasci V, et al. Eomes controls the development of Th17-derived (non-classic) Th1 cells during chronic inflammation. Eur J Immunol. 2019;49:79–95.

    CAS 
    PubMed 

    Google Scholar 

  • 40.

    Roessner PM, Llaó Cid L, Lupar E, Roider T, Bordas M, Schifflers C, et al. EOMES and IL-10 regulate antitumor activity of T regulatory type 1 CD4+ T cells in chronic lymphocytic leukemia. Leukemia. 2021;35:2311–24.

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • 41.

    Liu J, Blake SJ, Harjunpää H, Fairfax KA, Yong MC, Allen S, et al. Assessing immune-related adverse events of efficacious combination immunotherapies in preclinical models of cancer. Cancer Res. 2016;76:5288–301.

    CAS 
    PubMed 

    Google Scholar 

  • 42.

    Adam K, Iuga A, Tocheva AS, Mor A. A novel mouse model for checkpoint inhibitor-induced adverse events. PLoS One. 2021;16:e0246168.

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • 43.

    Zhong W, Myers JS, Wang F, Wang K, Lucas J, Rosfjord E, et al. Comparison of the molecular and cellular phenotypes of common mouse syngeneic models with human tumors. BMC Genomics. 2020;21:2.

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • 44.

    Bosnjak M, Jesenko T, Kamensek U, Sersa G, Lavrencak J, Heller L, et al. Electrotransfer of different control plasmids elicits different antitumor effectiveness in B16.F10 melanoma. Cancers. 2018;10:37.

    PubMed Central 

    Google Scholar 

  • 45.

    Marrero B, Shirley S, Heller R. Delivery of interleukin-15 to B16 melanoma by electroporation leads to tumor regression and long-term survival. Technol Cancer Res Treat. 2014;13:551–60.

    PubMed 

    Google Scholar 

  • 46.

    Heller LC, Coppola D. Electrically mediated delivery of vector plasmid DNA elicits an antitumor effect. Gene Ther. 2002;9:1321–5.

    CAS 
    PubMed 

    Google Scholar 

  • Source link