Preloader

Intrapleural nano-immunotherapy promotes innate and adaptive immune responses to enhance anti-PD-L1 therapy for malignant pleural effusion

  • 1.

    Zamboni, M. M., da Silva, C. T. Jr., Baretta, R., Cunha, E. T. & Cardoso, G. P. Important prognostic factors for survival in patients with malignant pleural effusion. BMC Pulm. Med. 15, 29 (2015).

    Google Scholar 

  • 2.

    Murthy, P. et al. Making cold malignant pleural effusions hot: driving novel immunotherapies. Oncoimmunology 8, e1554969 (2019).

    Google Scholar 

  • 3.

    Morgensztern, D., Waqar, S., Subramanian, J., Trinkaus, K. & Govindan, R. Prognostic impact of malignant pleural effusion at presentation in patients with metastatic non-small-cell lung cancer. J. Thorac. Oncol. 7, 1485–1489 (2012).

    Google Scholar 

  • 4.

    American Thoracic Society. Management of malignant pleural effusions. Am. J. Respir. Crit. Care Med. 162, 1987–2001 (2000).

  • 5.

    Stathopoulos, G. T. & Kalomenidis, I. Malignant pleural effusion: tumor-host interactions unleashed. Am. J. Respir. Crit. Care Med. 186, 487–492 (2012).

    Google Scholar 

  • 6.

    Lievense, L. A. et al. Pleural effusion of patients with malignant mesothelioma induces macrophage-mediated T cell suppression. J. Thorac. Oncol. 11, 1755–1764 (2016).

    Google Scholar 

  • 7.

    Donnenberg, A. D., Luketich, J. D. & Donnenberg, V. S. Secretome of pleural effusions associated with non-small cell lung cancer (NSCLC) and malignant mesothelioma: therapeutic implications. Oncotarget 10, 6456–6465 (2019).

    Google Scholar 

  • 8.

    Cornelissen, R. et al. Extended tumor control after dendritic cell vaccination with low-dose cyclophosphamide as adjuvant treatment in patients with malignant pleural mesothelioma. Am. J. Respir. Crit. Care Med. 193, 1023–1031 (2016).

    CAS 

    Google Scholar 

  • 9.

    Murthy, V., Katzman, D. & Sterman, D. H. Intrapleural immunotherapy: an update on emerging treatment strategies for pleural malignancy. Clin. Respir. J. 13, 272–279 (2019).

    Google Scholar 

  • 10.

    Khanna, S. et al. Malignant mesothelioma effusions are infiltrated by CD3(+) T cells highly expressing PD-L1 and the PD-L1(+) tumor cells within these effusions are susceptible to ADCC by the anti-PD-L1 antibody avelumab. J. Thorac. Oncol. 11, 1993–2005 (2016).

    Google Scholar 

  • 11.

    Tseng, Y. H. et al. PD-L1 expression of tumor cells, macrophages, and immune cells in non-small cell lung cancer patients with malignant pleural effusion. J. Thorac. Oncol. 13, 447–453 (2018).

    CAS 

    Google Scholar 

  • 12.

    Ghanim, B. et al. Tumour cell PD-L1 expression is prognostic in patients with malignant pleural effusion: the impact of C-reactive protein and immune-checkpoint inhibition. Sci. Rep. 10, 5784 (2020).

    CAS 

    Google Scholar 

  • 13.

    Hassan, R. et al. Efficacy and safety of avelumab treatment in patients with advanced unresectable mesothelioma: phase 1b results from the JAVELIN Solid Tumor Trial. JAMA Oncol. 5, 351–357 (2019).

    Google Scholar 

  • 14.

    Alley, E. W., Katz, S. I., Cengel, K. A. & Simone, C. B. II Immunotherapy and radiation therapy for malignant pleural mesothelioma. Transl. Lung Cancer Res. 6, 212–219 (2017).

    CAS 

    Google Scholar 

  • 15.

    Bakker, W., Nijhuis-Heddes, J. M. & van der Velde, E. A. Post-operative intrapleural BCG in lung cancer: a 5-year follow-up report. Cancer Immunol. Immunother. 22, 155–159 (1986).

    CAS 

    Google Scholar 

  • 16.

    Yanagawa, H. et al. Intrapleural instillation of interferon gamma in patients with malignant pleurisy due to lung cancer. Cancer Immunol. Immunother. 45, 93–99 (1997).

    CAS 

    Google Scholar 

  • 17.

    Sartori, S. et al. Prospective randomized trial of intrapleural bleomycin versus interferon alfa-2b via ultrasound-guided small-bore chest tube in the palliative treatment of malignant pleural effusions. J. Clin. Oncol. 22, 1228–1233 (2004).

    CAS 

    Google Scholar 

  • 18.

    Goey, S. H. et al. Intrapleural administration of interleukin 2 in pleural mesothelioma: a phase I–II study. Br. J. Cancer 72, 1283–1288 (1995).

    CAS 

    Google Scholar 

  • 19.

    Donnenberg, A. D., Luketich, J. D., Dhupar, R. & Donnenberg, V. S. Treatment of malignant pleural effusions: the case for localized immunotherapy. J. Immunother. Cancer 7, 110 (2019).

    Google Scholar 

  • 20.

    Barber, G. N. STING: infection, inflammation and cancer. Nat. Rev. Immunol. 15, 760–770 (2015).

    CAS 

    Google Scholar 

  • 21.

    Woo, S. R. et al. STING-dependent cytosolic DNA sensing mediates innate immune recognition of immunogenic tumors. Immunity 41, 830–842 (2014).

    CAS 

    Google Scholar 

  • 22.

    Sun, L., Wu, J., Du, F., Chen, X. & Chen, Z. J. Cyclic GMP-AMP synthase is a cytosolic DNA sensor that activates the type I interferon pathway. Science 339, 786–791 (2013).

    CAS 

    Google Scholar 

  • 23.

    Deng, L. et al. STING-dependent cytosolic DNA sensing promotes radiation-induced type I interferon-dependent antitumor. Immun. Immunogenic Tumors Immun. 41, 843–852 (2014).

    CAS 

    Google Scholar 

  • 24.

    Baird, J. R. et al. Radiotherapy combined with novel STING-targeting oligonucleotides results in regression of established tumors. Cancer Res. 76, 50–61 (2016).

    CAS 

    Google Scholar 

  • 25.

    Shae, D. et al. Endosomolytic polymersomes increase the activity of cyclic dinucleotide STING agonists to enhance cancer immunotherapy. Nat. Nanotechnol. 14, 269–278 (2019).

    CAS 

    Google Scholar 

  • 26.

    Park, C. G. et al. Extended release of perioperative immunotherapy prevents tumor recurrence and eliminates metastases. Sci. Transl. Med. 10, eaar1916 (2018).

    Google Scholar 

  • 27.

    Li, L. et al. Hydrolysis of 2’3’-cGAMP by ENPP1 and design of nonhydrolyzable analogs. Nat. Chem. Biol. 10, 1043–1048 (2014).

    CAS 

    Google Scholar 

  • 28.

    Kato, K. et al. Structural insights into cGAMP degradation by Ecto-nucleotide pyrophosphatase phosphodiesterase 1. Nat. Commun. 9, 4424 (2018).

    Google Scholar 

  • 29.

    Onyedibe, K. I., Wang, M. & Sintim, H. O. ENPP1, an old enzyme with new functions, and small molecule inhibitors-A STING in the tale of ENPP1. Molecules 24 (2019).

  • 30.

    Belli, S. I., van Driel, I. R. & Goding, J. W. Identification and characterization of a soluble form of the plasma cell membrane glycoprotein PC-1 (5’-nucleotide phosphodiesterase). Eur. J. Biochem. 217, 421–428 (1993).

    CAS 

    Google Scholar 

  • 31.

    Fuertes, M. B. et al. Host type I IFN signals are required for antitumor CD8+ T cell responses through CD8+ dendritic cells. J. Exp. Med. 208, 2005–2016 (2011).

    CAS 

    Google Scholar 

  • 32.

    Diamond, M. S. et al. Type I interferon is selectively required by dendritic cells for immune rejection of tumors. J. Exp. Med. 208, 1989–2003 (2011).

    CAS 

    Google Scholar 

  • 33.

    Gulen, M. F. et al. Signalling strength determines proapoptotic functions of STING. Nat. Commun. 8, 427 (2017).

    Google Scholar 

  • 34.

    Cerboni, S. et al. Intrinsic antiproliferative activity of the innate sensor STING in T lymphocytes. J. Exp. Med. 214, 1769–1785 (2017).

    CAS 

    Google Scholar 

  • 35.

    Chen, J. et al. Type I IFN protects cancer cells from CD8+ T cell-mediated cytotoxicity after radiation. J. Clin. Invest. 129, 4224–4238 (2019).

    Google Scholar 

  • 36.

    Broz, M. L. et al. Dissecting the tumor myeloid compartment reveals rare activating antigen-presenting cells critical for T cell immunity. Cancer Cell 26, 938 (2014).

    CAS 

    Google Scholar 

  • 37.

    Laoui, D. et al. The tumour microenvironment harbours ontogenically distinct dendritic cell populations with opposing effects on tumour immunity. Nat. Commun. 7, 13720 (2016).

    CAS 

    Google Scholar 

  • 38.

    Spranger, S., Dai, D., Horton, B. & Gajewski, T. F. Tumor-residing Batf3 dendritic cells are required for effector T cell trafficking and adoptive T cell therapy. Cancer Cell 31, 711–723 e714 (2017).

    CAS 

    Google Scholar 

  • 39.

    Sabatino, M. et al. Generation of clinical-grade CD19-specific CAR-modified CD8+ memory stem cells for the treatment of human B-cell malignancies. Blood 128, 519–528 (2016).

    CAS 

    Google Scholar 

  • 40.

    Gattinoni, L., Speiser, D. E., Lichterfeld, M. & Bonini, C. T memory stem cells in health and disease. Nat. Med. 23, 18–27 (2017).

    CAS 

    Google Scholar 

  • 41.

    Gattinoni, L. Memory T cells officially join the stem cell club. Immunity 41, 7–9 (2014).

    CAS 

    Google Scholar 

  • 42.

    Zhou, T. et al. IL-18BP is a secreted immune checkpoint and barrier to IL-18 immunotherapy. Nature 583, 609–614 (2020).

    CAS 

    Google Scholar 

  • 43.

    Scott, A. C. et al. TOX is a critical regulator of tumour-specific T cell differentiation. Nature 571, 270–274 (2019).

    CAS 

    Google Scholar 

  • 44.

    Bosi, A. et al. Natural killer cells from malignant pleural effusion are endowed with a decidual-like proangiogenic polarization. J. Immunol. Res. 2018, 2438598 (2018).

    Google Scholar 

  • 45.

    Vacca, P. et al. NK cells from malignant pleural effusions are not anergic but produce cytokines and display strong antitumor activity on short-term IL-2 activation. Eur. J. Immunol. 43, 550–561 (2013).

    CAS 

    Google Scholar 

  • 46.

    Dahan, R. et al. FcgammaRs modulate the anti-tumor activity of antibodies targeting the PD-1/PD-L1 axis. Cancer Cell 28, 285–295 (2015).

    CAS 

    Google Scholar 

  • 47.

    Greenwald, R. J., Freeman, G. J. & Sharpe, A. H. The B7 family revisited. Annu Rev. Immunol. 23, 515–548 (2005).

    Google Scholar 

  • 48.

    Kinter, A. L. et al. The common gamma-chain cytokines IL-2, IL-7, IL-15, and IL-21 induce the expression of programmed death-1 and its ligands. J. Immunol. 181, 6738–6746 (2008).

    CAS 

    Google Scholar 

  • 49.

    Bald, T. et al. Immune cell-poor melanomas benefit from PD-1 blockade after targeted type I IFN activation. Cancer Disco. 4, 674–687 (2014).

    CAS 

    Google Scholar 

  • 50.

    Dhupar, R. et al. Characteristics of malignant pleural effusion resident CD8(+) T cells from a heterogeneous collection of tumors. Int. J. Mol. Sci. 21 (2020).

  • 51.

    DeLong, P. et al. Regulatory T cells and cytokines in malignant pleural effusions secondary to mesothelioma and carcinoma. Cancer Biol. Ther. 4, 342–346 (2005).

    CAS 

    Google Scholar 

  • 52.

    Wu, M. F. et al. The M1/M2 spectrum and plasticity of malignant pleural effusion-macrophage in advanced lung cancer. Cancer Immunol. Immunother. 70, 1435–1450 (2021).

    CAS 

    Google Scholar 

  • 53.

    Guo, M. et al. Autologous tumor cell-derived microparticle-based targeted chemotherapy in lung cancer patients with malignant pleural effusion. Sci. Transl. Med. 11, eaat5690 (2019).

    CAS 

    Google Scholar 

  • 54.

    Li, J., Yang, Y. & Huang, L. Calcium phosphate nanoparticles with an asymmetric lipid bilayer coating for siRNA delivery to the tumor. J. Control. Release 158, 108–114 (2012).

    CAS 

    Google Scholar 

  • 55.

    Liu, Y. et al. An inhalable nanoparticulate STING agonist synergizes with radiotherapy to confer long-term control of lung metastases. Nat. Commun. 10, 5108 (2019).

    CAS 

    Google Scholar 

  • Source link