Preloader

Interaction of human CRX and NRL in live HEK293T cells measured using fluorescence resonance energy transfer (FRET)

  • Blackshaw, S. et al. Comprehensive analysis of photoreceptor gene expression and the identification of candidate retinal disease genes. Cell 107(5), 579–589 (2001).

    CAS 
    PubMed 
    Article 

    Google Scholar 

  • Arshavsky, V. Y. & Burns, M. E. Photoreceptor signaling: Supporting vision across a wide range of light intensities. J. Biol. Chem. 287(3), 1620–1626 (2012).

    CAS 
    PubMed 
    Article 

    Google Scholar 

  • Molday, R. S. & Moritz, O. L. Photoreceptors at a glance. J. Cell Sci. 128(22), 4039–4045 (2015).

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 

  • Pearring, J. N. et al. Protein sorting, targeting and trafficking in photoreceptor cells. Prog. Retin. Eye Res. 36, 24–51 (2013).

    CAS 
    PubMed 
    Article 

    Google Scholar 

  • Bujakowska, K. M., Liu, Q. & Pierce, E. A. Photoreceptor cilia and retinal ciliopathies. Cold Spring Harb. Perspect. Biol. 9(10), a028274 (2017).

    PubMed 
    PubMed Central 
    Article 

    Google Scholar 

  • May-Simera, H., Nagel-Wolfrum, K. & Wolfrum, U. Cilia—The sensory antennae in the eye. Prog. Retin. Eye Res. 60, 144–180 (2017).

    CAS 
    PubMed 
    Article 
    ADS 

    Google Scholar 

  • Chen, S. et al. Crx, a novel Otx-like paired-homeodomain protein, binds to and transactivates photoreceptor cell-specific genes. Neuron 19(5), 1017–1030 (1997).

    CAS 
    PubMed 
    Article 

    Google Scholar 

  • Furukawa, T., Morrow, E. M. & Cepko, C. L. Crx, a novel otx-like homeobox gene, shows photoreceptor-specific expression and regulates photoreceptor differentiation. Cell 91(4), 531–541 (1997).

    CAS 
    PubMed 
    Article 

    Google Scholar 

  • Hennig, A. K., Peng, G. H. & Chen, S. Regulation of photoreceptor gene expression by Crx-associated transcription factor network. Brain Res 1192, 114–133 (2008).

    CAS 
    PubMed 
    Article 

    Google Scholar 

  • Swaroop, A., Kim, D. & Forrest, D. Transcriptional regulation of photoreceptor development and homeostasis in the mammalian retina. Nat. Rev. Neurosci. 11(8), 563–576 (2010).

    CAS 
    PubMed 
    Article 

    Google Scholar 

  • Swaroop, A. et al. A conserved retina-specific gene encodes a basic motif/leucine zipper domain. Proc. Natl. Acad. Sci. U.S.A. 89(1), 266–270 (1992).

    MathSciNet 
    CAS 
    PubMed 
    PubMed Central 
    Article 
    ADS 

    Google Scholar 

  • Furukawa, T. et al. Retinopathy and attenuated circadian entrainment in Crx-deficient mice. Nat. Genet. 23(4), 466–470 (1999).

    CAS 
    PubMed 
    Article 

    Google Scholar 

  • Mears, A. J. et al. Nrl is required for rod photoreceptor development. Nat. Genet. 29(4), 447–452 (2001).

    CAS 
    PubMed 
    Article 

    Google Scholar 

  • Chen, H. Y. et al. Three-dimensional retinal organoids from mouse pluripotent stem cells mimic in vivo development with enhanced stratification and rod photoreceptor differentiation. Mol. Vis. 22, 1077–1094 (2016).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Collin, J. et al. CRX expression in pluripotent stem cell-derived photoreceptors marks a transplantable subpopulation of early cones. Stem Cells 37(5), 609–622 (2019).

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 

  • Gonzalez-Cordero, A. et al. Recapitulation of human retinal development from human pluripotent stem cells generates transplantable populations of cone photoreceptors. Stem Cell Rep. 9(3), 820–837 (2017).

    Article 

    Google Scholar 

  • Lamba, D. A., Gust, J. & Reh, T. A. Transplantation of human embryonic stem cell-derived photoreceptors restores some visual function in Crx-deficient mice. Cell Stem Cell 4(1), 73–79 (2009).

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 

  • Bessant, D. A. et al. A mutation in NRL is associated with autosomal dominant retinitis pigmentosa. Nat. Genet. 21(4), 355–356 (1999).

    CAS 
    PubMed 
    Article 

    Google Scholar 

  • Freund, C. L. et al. Cone-rod dystrophy due to mutations in a novel photoreceptor-specific homeobox gene (CRX) essential for maintenance of the photoreceptor. Cell 91(4), 543–553 (1997).

    CAS 
    PubMed 
    Article 

    Google Scholar 

  • Kanda, A. et al. Retinopathy mutations in the bZIP protein NRL alter phosphorylation and transcriptional activity. Hum. Mutat. 28(6), 589–598 (2007).

    CAS 
    PubMed 
    Article 

    Google Scholar 

  • Nishiguchi, K. M. et al. Recessive NRL mutations in patients with clumped pigmentary retinal degeneration and relative preservation of blue cone function. Proc. Natl. Acad. Sci. U.S.A. 101(51), 17819–17824 (2004).

    CAS 
    PubMed 
    PubMed Central 
    Article 
    ADS 

    Google Scholar 

  • Swain, P. K. et al. Mutations in the cone-rod homeobox gene are associated with the cone-rod dystrophy photoreceptor degeneration. Neuron 19(6), 1329–1336 (1997).

    CAS 
    PubMed 
    Article 

    Google Scholar 

  • Garancher, A. et al. NRL and CRX define photoreceptor identity and reveal subgroup-specific dependencies in medulloblastoma. Cancer Cell 33(3), 435–449 (2018).

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 

  • Verbakel, S. K. et al. Non-syndromic retinitis pigmentosa. Prog. Retin. Eye Res. 66, 157–186 (2018).

    PubMed 
    Article 

    Google Scholar 

  • Kim, J. W. et al. NRL-regulated transcriptome dynamics of developing rod photoreceptors. Cell Rep. 17(9), 2460–2473 (2016).

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 

  • Corbo, J. C. et al. CRX ChIP-seq reveals the cis-regulatory architecture of mouse photoreceptors. Genome Res. 20(11), 1512–1525 (2010).

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 

  • Hao, H. et al. Transcriptional regulation of rod photoreceptor homeostasis revealed by in vivo NRL targetome analysis. PLoS Genet. 8(4), e1002649 (2012).

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 

  • Brooks, M. J. et al. Next-generation sequencing facilitates quantitative analysis of wild-type and Nrl(-/-) retinal transcriptomes. Mol. Vis. 17, 3034–3054 (2011).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Kautzmann, M. A. et al. Combinatorial regulation of photoreceptor differentiation factor, neural retina leucine zipper gene NRL, revealed by in vivo promoter analysis. J. Biol. Chem. 286(32), 28247–28255 (2011).

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 

  • Mo, A. et al. Epigenomic landscapes of retinal rods and cones. Elife 5, e11613 (2016).

    PubMed 
    PubMed Central 
    Article 

    Google Scholar 

  • Peng, G. H. & Chen, S. Active opsin loci adopt intrachromosomal loops that depend on the photoreceptor transcription factor network. Proc. Natl. Acad. Sci. U.S.A. 108(43), 17821–17826 (2011).

    CAS 
    PubMed 
    PubMed Central 
    Article 
    ADS 

    Google Scholar 

  • Ruzycki, P. A., Zhang, X. & Chen, S. CRX directs photoreceptor differentiation by accelerating chromatin remodeling at specific target sites. Epigenet. Chromatin 11(1), 42 (2018).

    Article 
    CAS 

    Google Scholar 

  • Lee, J. et al. Quantitative fine-tuning of photoreceptor cis-regulatory elements through affinity modulation of transcription factor binding sites. Gene Ther. 17(11), 1390–1399 (2010).

    CAS 
    PubMed 
    Article 

    Google Scholar 

  • Kerppola, T. K. & Curran, T. A conserved region adjacent to the basic domain is required for recognition of an extended DNA binding site by Maf/Nrl family proteins. Oncogene 9(11), 3149–3158 (1994).

    CAS 
    PubMed 

    Google Scholar 

  • Kerppola, T. K. & Curran, T. Maf and Nrl can bind to AP-1 sites and form heterodimers with Fos and Jun. Oncogene 9(3), 675–684 (1994).

    CAS 
    PubMed 

    Google Scholar 

  • Mitton, K. P. et al. The leucine zipper of NRL interacts with the CRX homeodomain. A possible mechanism of transcriptional synergy in rhodopsin regulation. J. Biol. Chem. 275(38), 29794–29799 (2000).

    CAS 
    PubMed 
    Article 

    Google Scholar 

  • Reks, S. E. et al. Cooperative activation of Xenopus rhodopsin transcription by paired-like transcription factors. BMC Mol. Biol. 15, 4 (2014).

    PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar 

  • White, M. A. et al. A simple grammar defines activating and repressing cis-regulatory elements in photoreceptors. Cell Rep. 17(5), 1247–1254 (2016).

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 

  • von Alpen, D. et al. Differential dimerization of variants linked to enhanced S-cone sensitivity syndrome (ESCS) located in the NR2E3 ligand-binding domain. Hum. Mutat. 36(6), 599–610 (2015).

    Article 
    CAS 

    Google Scholar 

  • Roduit, R., Escher, P. & Schorderet, D. F. Mutations in the DNA-binding domain of NR2E3 affect in vivo dimerization and interaction with CRX. PLoS ONE 4(10), e7379 (2009).

    PubMed 
    PubMed Central 
    Article 
    ADS 
    CAS 

    Google Scholar 

  • Piehler, J. New methodologies for measuring protein interactions in vivo and in vitro. Curr. Opin. Struct. Biol. 15(1), 4–14 (2005).

    CAS 
    PubMed 
    Article 

    Google Scholar 

  • Piston, D. W. & Kremers, G. J. Fluorescent protein FRET: The good, the bad and the ugly. Trends Biochem. Sci. 32(9), 407–414 (2007).

    CAS 
    PubMed 
    Article 

    Google Scholar 

  • Day, R. N. & Davidson, M. W. Fluorescent proteins for FRET microscopy: Monitoring protein interactions in living cells. BioEssays 34(5), 341–350 (2012).

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 

  • Zeug, A. et al. Quantitative intensity-based FRET approaches—a comparative snapshot. Biophys. J. 103(9), 1821–1827 (2012).

    CAS 
    PubMed 
    PubMed Central 
    Article 
    ADS 

    Google Scholar 

  • Banning, C. et al. A flow cytometry-based FRET assay to identify and analyse protein-protein interactions in living cells. PLoS ONE 5(2), e9344 (2010).

    PubMed 
    PubMed Central 
    Article 
    ADS 
    CAS 

    Google Scholar 

  • Chan, F. K. et al. Fluorescence resonance energy transfer analysis of cell surface receptor interactions and signaling using spectral variants of the green fluorescent protein. Cytometry 44(4), 361–368 (2001).

    CAS 
    PubMed 
    Article 

    Google Scholar 

  • He, L. et al. Flow cytometric measurement of fluorescence (Forster) resonance energy transfer from cyan fluorescent protein to yellow fluorescent protein using single-laser excitation at 458 nm. Cytometry A 53(1), 39–54 (2003).

    PubMed 
    Article 
    CAS 

    Google Scholar 

  • He, L. et al. A flow cytometric method to detect protein-protein interaction in living cells by directly visualizing donor fluorophore quenching during CFP–>YFP fluorescence resonance energy transfer (FRET). Cytometry A 55(2), 71–85 (2003).

    PubMed 
    Article 
    CAS 

    Google Scholar 

  • He, L. et al. TRAF3 forms heterotrimers with TRAF2 and modulates its ability to mediate NF-{kappa}B activation. J. Biol. Chem. 279(53), 55855–55865 (2004).

    CAS 
    PubMed 
    Article 

    Google Scholar 

  • Tron, L. et al. Flow cytometric measurement of fluorescence resonance energy transfer on cell surfaces. Quantitative evaluation of the transfer efficiency on a cell-by-cell basis. Biophys. J. 45(5), 939–946 (1984).

    CAS 
    PubMed 
    PubMed Central 
    Article 
    ADS 

    Google Scholar 

  • Vamosi, G. et al. Conformation of the c-Fos/c-Jun complex in vivo: a combined FRET, FCCS, and MD-modeling study. Biophys. J. 94(7), 2859–2868 (2008).

    CAS 
    PubMed 
    Article 
    ADS 

    Google Scholar 

  • You, X. et al. Intracellular protein interaction mapping with FRET hybrids. Proc. Natl. Acad. Sci. U.S.A. 103(49), 18458–18463 (2006).

    CAS 
    PubMed 
    PubMed Central 
    Article 
    ADS 

    Google Scholar 

  • Wu, X. et al. Prestin-prestin and prestin-GLUT5 interactions in HEK293T cells. Dev. Neurobiol. 67(4), 483–497 (2007).

    CAS 
    PubMed 
    Article 

    Google Scholar 

  • Camuzeaux, B. et al. Imaging Erg and Jun transcription factor interaction in living cells using fluorescence resonance energy transfer analyses. Biochem. Biophys. Res. Commun. 332(4), 1107–1114 (2005).

    CAS 
    PubMed 
    Article 

    Google Scholar 

  • Youvan, D. C. et al. Calibration of fluorescence resonance energy transfer in microscopy using genetically engineered GFP derivatives on nickel chelating beads. Biotechnol. Alia 3, 1–18 (1997).

    Google Scholar 

  • Marqusee, S. & Baldwin, R. L. Helix stabilization by Glu-Lys+ salt bridges in short peptides of de novo design. Proc. Natl. Acad. Sci. U.S.A. 84(24), 8898–8902 (1987).

    CAS 
    PubMed 
    PubMed Central 
    Article 
    ADS 

    Google Scholar 

  • Kitamura, A., Nakayama, Y. & Kinjo, M. Efficient and dynamic nuclear localization of green fluorescent protein via RNA binding. Biochem. Biophys. Res. Commun. 463(3), 401–406 (2015).

    CAS 
    PubMed 
    Article 

    Google Scholar 

  • Berney, C. & Danuser, G. FRET or no FRET: A quantitative comparison. Biophys. J. 84(6), 3992–4010 (2003).

    CAS 
    PubMed 
    PubMed Central 
    Article 
    ADS 

    Google Scholar 

  • Lakowicz, J. R. Principles of Fluorescence Spectroscopy 3rd edn, 954 (Springer, 2006).

    Book 

    Google Scholar 

  • Erickson, M. G., Moon, D. L. & Yue, D. T. DsRed as a potential FRET partner with CFP and GFP. Biophys. J. 85(1), 599–611 (2003).

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 

  • Butz, E. S. et al. Quantifying macromolecular interactions in living cells using FRET two-hybrid assays. Nat. Protoc. 11(12), 2470–2498 (2016).

    CAS 
    PubMed 
    Article 

    Google Scholar 

  • Arai, R. et al. Design of the linkers which effectively separate domains of a bifunctional fusion protein. Protein Eng. 14(8), 529–532 (2001).

    CAS 
    PubMed 
    Article 

    Google Scholar 

  • Arai, R. et al. Conformations of variably linked chimeric proteins evaluated by synchrotron X-ray small-angle scattering. Proteins 57(4), 829–838 (2004).

    CAS 
    PubMed 
    Article 

    Google Scholar 

  • Wriggers, W., Chakravarty, S. & Jennings, P. A. Control of protein functional dynamics by peptide linkers. Biopolymers 80(6), 736–746 (2005).

    CAS 
    PubMed 
    Article 

    Google Scholar 

  • Tramier, M. et al. Sensitivity of CFP/YFP and GFP/mCherry pairs to donor photobleaching on FRET determination by fluorescence lifetime imaging microscopy in living cells. Microsc. Res. Tech. 69(11), 933–939 (2006).

    CAS 
    PubMed 
    Article 

    Google Scholar 

  • Albertazzi, L. et al. Quantitative FRET analysis with the EGFP-mCherry fluorescent protein pair. Photochem. Photobiol. 85(1), 287–297 (2009).

    CAS 
    PubMed 
    Article 

    Google Scholar 

  • Akrap, N., Seidel, T. & Barisas, B. G. Forster distances for fluorescence resonant energy transfer between mCherry and other visible fluorescent proteins. Anal. Biochem. 402(1), 105–106 (2010).

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 

  • Amiri, H., Schultz, G. & Schaefer, M. FRET-based analysis of TRPC subunit stoichiometry. Cell Calcium 33(5–6), 463–470 (2003).

    CAS 
    PubMed 
    Article 

    Google Scholar 

  • Malm, M. et al. Evolution from adherent to suspension: Systems biology of HEK293 cell line development. Sci. Rep. 10(1), 18996 (2020).

    CAS 
    PubMed 
    PubMed Central 
    Article 
    ADS 

    Google Scholar 

  • Lu, X. et al. A novel DNA binding mechanism for maf basic region-leucine zipper factors inferred from a MafA-DNA complex structure and binding specificities. Biochemistry 51(48), 9706–9717 (2012).

    CAS 
    PubMed 
    Article 

    Google Scholar 

  • Ormo, M. et al. Crystal structure of the Aequorea victoria green fluorescent protein. Science 273(5280), 1392–1395 (1996).

    CAS 
    PubMed 
    Article 
    ADS 

    Google Scholar 

  • Wilson, D. et al. Cooperative dimerization of paired class homeo domains on DNA. Genes Dev. 7(11), 2120–2134 (1993).

    CAS 
    PubMed 
    Article 

    Google Scholar 

  • Wilson, D. S. et al. High resolution crystal structure of a paired (Pax) class cooperative homeodomain dimer on DNA. Cell 82(5), 709–719 (1995).

    CAS 
    PubMed 
    Article 

    Google Scholar 

  • Sheng, G. et al. Modular organization of Pax/homeodomain proteins in transcriptional regulation. Biol. Chem. 378(8), 863–872 (1997).

    CAS 
    PubMed 
    Article 

    Google Scholar 

  • Wilson, D. S. & Desplan, C. Structural basis of Hox specificity. Nat. Struct. Biol. 6(4), 297–300 (1999).

    CAS 
    PubMed 
    Article 

    Google Scholar 

  • Roy, R., Hohng, S. & Ha, T. A practical guide to single-molecule FRET. Nat. Methods 5(6), 507–516 (2008).

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 

  • Lerner, E. et al. FRET-based dynamic structural biology: Challenges, perspectives and an appeal for open-science practices. Elife 10, e60416 (2021).

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 

  • Xia, Z. & Liu, Y. Reliable and global measurement of fluorescence resonance energy transfer using fluorescence microscopes. Biophys. J. 81(4), 2395–2402 (2001).

    CAS 
    PubMed 
    PubMed Central 
    Article 
    ADS 

    Google Scholar 

  • Higuchi, R., Krummel, B. & Saiki, R. K. A general method of in vitro preparation and specific mutagenesis of DNA fragments: Study of protein and DNA interactions. Nucleic Acids Res. 16(15), 7351–7367 (1988).

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 

  • Braman, J., Papworth, C. & Greener, A. Site-directed mutagenesis using double-stranded plasmid DNA templates. Methods Mol. Biol. 57, 31–44 (1996).

    CAS 
    PubMed 

    Google Scholar 

  • Source link