Murr, L. E. Metallurgy principles applied to powder bed fusion 3D printing/additive manufacturing of personalized and optimized metal and alloy biomedical implants: An overview. J. Mater. Res. Technol. 9, 1087–1103 (2020).
Google Scholar
Priyadarshini, B. et al. Structural, morphological and biological evaluations of cerium incorporated hydroxyapatite sol–gel coatings on Ti–6Al–4V for orthopaedic applications. J. Mater. Res. Technol. 12, 1319–1338 (2021).
Google Scholar
Nazir, F., Iqbal, M., Khan, A. N., Mazhar, M. & Hussain, Z. Fabrication of robust poly l-lactic acid/cyclic olefinic copolymer (PLLA/COC) blends: Study of physical properties, structure, and cytocompatibility for bone tissue engineering. J. Mater. Res. Technol. 13, 1732–1751 (2021).
Google Scholar
Ansari, M., Naghib, S., Moztarzadeh, F. & Salati, A. Synthesis and characterization of hydroxyapatitecalcium hydroxide for dental composites. Ceram. Silikaty 55, 123–126 (2011).
Google Scholar
Duyck, J., Slaets, E., Sasaguri, K., Vandamme, K. & Naert, I. Effect of intermittent loading and surface roughness on peri-implant bone formation in a bone chamber model. J. Clin. Periodontol. 34, 998–1006 (2007).
Google Scholar
Samavedi, S., Whittington, A. R. & Goldstein, A. S. Calcium phosphate ceramics in bone tissue engineering: A review of properties and their influence on cell behavior. Acta Biomater. 9, 8037–8045 (2013).
Google Scholar
Balshe, A. A., Eckert, S. E., Koka, S., Assad, D. A. & Weaver, A. L. The effects of smoking on the survival of smooth-and rough-surface dental implants. Int. J. Oral Maxillofac. Implants 23, 1117–1122 (2008).
Google Scholar
Balshe, A. A., Assad, D. A., Eckert, S. E., Koka, S. & Weaver, A. L. A retrospective study of the survival of smoothand rough-surface dental implants. Int. J. Oral Maxillofac. Implants 24, 1113–1118 (2009).
Google Scholar
Boyle, W. J., Simonet, W. S. & Lacey, D. L. Osteoclast differentiation and activation. Nature 423, 337–342 (2003).
Google Scholar
Gittens, R. A. et al. The effects of combined micron-/submicron-scale surface roughness and nanoscale features on cell proliferation and differentiation. Biomaterials 32, 3395–3403 (2011).
Google Scholar
Azzola, F. et al. Biofilm formation on dental implant surface treated by implantoplasty: An in situ study. Dent. J. 8, 40 (2020).
Google Scholar
Buser, D. et al. Influence of surface characteristics on bone integration of titanium implants. A histomorphometric study in miniature pigs. J. Biomed. Mater. Res. 25, 889–902 (1991).
Google Scholar
Szmukler-Moncler, S., Reingewirtz, Y. & Weber, H. P. Bone response to early loading: The effect of surface state. Biol. Mech. Tooth Mov. Craniofacial Adapt. Bost. Harvard Soc. Adv. Orthod. 611, 616 (1996).
Szmukler-Moncler, S., Perrin, D., Ahossi, V. & Pointaire, P. Evaluation of BONIT®, a fully resorbable CaP coating obtained by electrochemical deposition, after 6 weeks of healing: a pilot study in the pig maxilla. Key Eng. Mater. 192, 395–398 (2001).
Zabala, A. et al. Quantification of dental implant surface wear and topographical modification generated during insertion. Surf. Topogr. Metrol. Prop. 8, 15002 (2020).
Google Scholar
da Silva Brum, I. et al. Ultrastructural characterization of the titanium surface degree IV in dental implant aluminum free (acid attack). J. Biomater. Nanobiotechnol. 11, 151 (2020).
Google Scholar
Isler, S. C. et al. The effects of decontamination methods of dental implant surface on cytokine expression analysis in the reconstructive surgical treatment of peri-implantitis. Odontology 109, 1–11 (2020).
Nicolas-Silvente, A. I. et al. Influence of the titanium implant surface treatment on the surface roughness and chemical composition. Materials (Basel). 13, 314 (2020).
Google Scholar
Pintão, C. A. F., Correa, D. R. N. & Grandini, C. R. Torsion modulus as a tool to evaluate the role of thermo-mechanical treatment and composition of dental Ti–Zr alloys. J. Mater. Res. Technol. 8, 4631–4641 (2019).
Google Scholar
Elias, C. N., Fernandes, D. J., de Souza, F. M., dos Monteiro, E. S. & de Biasi, R. S. Mechanical and clinical properties of titanium and titanium-based alloys (Ti G2, Ti G4 cold worked nanostructured and Ti G5) for biomedical applications. J. Mater. Res. Technol. 8, 1060–1069 (2019).
Google Scholar
Ehrenfest, D. M. D. et al. Identification card and codification of the chemical and morphological characteristics of 62 dental implant surfaces. Part 1: Description of the Implant Surface Identification Standard (ISIS) codification system. POSEIDO 2, 7–22 (2014).
Chrcanovic, B. R., Albrektsson, T. & Wennerberg, A. Bone quality and quantity and dental implant failure: A systematic review and meta-analysis. Int. J. Prosthodont. 30, 219–237 (2017).
Google Scholar
Chrcanovic, B. R., Kisch, J., Albrektsson, T. & Wennerberg, A. Factors influencing early dental implant failures. J. Dent. Res. 95, 995–1002 (2016).
Google Scholar
Elias, C. N. Titanium dental implant surfaces. Matéria (Rio Janeiro) 15, 138–142 (2010).
Google Scholar
Grizon, F., Aguado, E., Huré, G., Baslé, M. F. & Chappard, D. Enhanced bone integration of implants with increased surface roughness: A long term study in the sheep. J. Dent. 30, 195–203 (2002).
Google Scholar
Fouziya, B. et al. Surface modifications of titanium implants—The new, the old, and the never heard of options. J. Adv. Clin. Res. Insights 3, 215–219 (2016).
Google Scholar
Jemat, A., Ghazali, M. J., Razali, M. & Otsuka, Y. Surface modifications and their effects on titanium dental implants. Biomed. Res. Int. 2015, 1–11 (2015).
Google Scholar
Braceras, I., De Maeztu, M. A., Alava, J. I. & Gay-Escoda, C. In vivo low-density bone apposition on different implant surface materials. Int. J. Oral Maxillofac. Surg. 38, 274–278 (2009).
Google Scholar
Patil, P. S. & Bhongade, M. L. Dental implant surface modifications: A review. IOSR-JDMS 15, 132–141 (2016).
Wennerberg, A. & Albrektsson, T. On implant surfaces: A review of current knowledge and opinions. Int. J. Oral Maxillofac. Implants 25, 63–74 (2010).
Google Scholar
Marin, C. et al. Removal torque and histomorphometric evaluation of bioceramic grit-blasted/acid-etched and dual acid-etched implant surfaces: An experimental study in dogs. J. Periodontol. 79, 1942–1949 (2008).
Google Scholar
Klokkevold, P. R., Nishimura, R. D., Adachi, M. & Caputo, A. Osseointegration enhanced by chemical etching of the titanium surface. A torque removal study in the rabbit. Clin. Oral Implants Res. 8, 442–447 (1997).
Google Scholar
Cho, S.-A. & Park, K.-T. The removal torque of titanium screw inserted in rabbit tibia treated by dual acid etching. Biomaterials 24, 3611–3617 (2003).
Google Scholar
Baker, D., London, R. M. & O’Neal, R. Rate of pull-out strength gain of dual-etched titanium implants: A comparative study in rabbits. Int. J. Oral Maxillofac. Implants 14, 722–728 (1999).
Google Scholar
Cochran, D. L. et al. The use of reduced healing times on ITI® implants with a sandblasted and acid-etched (SLA) surface: Early results from clinical trials on ITI® SLA implants. Clin. Oral Implants Res. 13, 144–153 (2002).
Google Scholar
Roccuzzo, M., Bunino, M., Prioglio, F. & Bianchi, S. D. Early loading of sandblasted and acid-etched (SLA) implants: A prospective split-mouth comparative study: 1-year results. Clin. Oral Implants Res. 12, 572–578 (2001).
Google Scholar
Testori, T. et al. A multicenter prospective evaluation of 2-months loaded Osseotite® implants placed in the posterior jaws: 3-year follow-up results. Clin. Oral Implants Res. 13, 154–161 (2002).
Google Scholar
Lazzara, R. J., Porter, S. S., Testori, T., Galante, J. & Zetterqvist, L. A prospective multicenter study evaluating loading of osseotite implants two months after placement: 1-year results. J. Esthet. Restor. Dent. 10, 280–289 (1998).
Google Scholar
Esfe, M. H. & Tilebon, S. M. S. Statistical and artificial based optimization on thermo-physical properties of an oil based hybrid nanofluid using NSGA-II and RSM. Phys. A Stat. Mech. Appl. 537, 122126 (2020).
Google Scholar
Salehi, M. M., Hakkak, F., Tilebon, S. M., Ataeefard, M. & Rafizadeh, M. Intelligently optimized electrospun polyacrylonitrile/poly (vinylidene fluoride) nanofiber: Using artificial neural networks. Express Polym. Lett. 14, 1003–1017 (2020).
Google Scholar
Ataeefard, M., Tilebon, S. M. S., Etezad, S. M. & Mahdavi, S. Intelligent modeling and optimization of environmentally friendly green enzymatic deinking of printed paper. Environ. Sci. Pollut. Res. 29, 1–14 (2022).
Google Scholar
Ataeefard, M. & Tilebon, S. M. S. Seeking a paper for digital printing with maximum gamut volume: A lesson from artificial intelligence. J. Coat. Technol. Res. 19, 285–293 (2022).
Google Scholar
Kohler, R., Sowards, K. & Medina, H. Numerical model for acid-etching of titanium: Engineering surface roughness for dental implants. J. Manuf. Process. 59, 113–121 (2020).
Google Scholar
Ban, S., Iwaya, Y., Kono, H. & Sato, H. Surface modification of titanium by etching in concentrated sulfuric acid. Dent. Mater. 22, 1115–1120 (2006).
Google Scholar
Ataeefard, M., Sadati Tilebon, S. M. & Saeb, M. R. Intelligent modeling and optimization of emulsion aggregation method for producing green printing ink. Green Process. Synth. 8, 703–718 (2019).
Google Scholar
Hekmatjoo, N. et al. Modeling of glycolysis of flexible polyurethane foam wastes by artificial neural network methodology. Polym. Int. 64, 1111–1120 (2015).
Google Scholar
Xu, Y., Zhu, Y., Xiao, G. & Ma, C. Application of artificial neural networks to predict corrosion behavior of Ni–SiC composite coatings deposited by ultrasonic electrodeposition. Ceram. Int. 40, 5425–5430 (2014).
Google Scholar
Tilebon, S. M. S. & Norouzbeigi, R. Anti-icing nano SnO2 coated metallic surface wettability: Optimization via statistical design. Surf. Interfaces 21, 100720 (2020).
Google Scholar
Yousefi, H. & Fallahnezhad, M. Multi-objective higher order polynomial networks to model insertion force of bevel-tip needles. Int. J. Nat. Comput. Res. 5, 54–70 (2015).
Google Scholar
Fallahnezhad, M. & Yousefi, H. Needle insertion force modeling using genetic programming polynomial higher order neural network. In Artificial Higher Order Neural Networks for Modeling and Simulation (ed. Zhang, M.) 58–76 (IGI Global, 2013).
Google Scholar
Ataeefard, M., Tilebon, S. M. S. & Saeb, M. R. Intelligent modeling and optimization of emulsion aggregation method for producing green printing ink. Green Process. Synth. 8, 703–718 (2019).
Google Scholar
Klokkevold, P. R. et al. Early endosseous integration enhanced by dual acid etching of titanium: A torque removal study in the rabbit. Clin. Oral Implants Res. 12, 350–357 (2001).
Google Scholar
Matos, G. R. M. Surface roughness of dental implant and osseointegration. J. Maxillofac. Oral Surg. 20, 1–4 (2021).
Google Scholar
Ehrenfest, D. M. D. et al. Identification card and codification of the chemical and morphological characteristics of 62 dental implant surfaces. Part 3: Sand-blasted/acid-etched (SLA type) and related surfaces (group 2A, main subtractive process). POSEIDO 2, 37–55 (2014).
Dohan Ehrenfest, D. M., Vazquez, L., Park, Y.-J., Sammartino, G. & Bernard, J.-P. Identification card and codification of the chemical and morphological characteristics of 14 dental implant surfaces. J. Oral Implantol. 37, 525–542 (2011).
Google Scholar
Kalemaj, Z., Scarano, A., Valbonetti, L., Rapone, B. & Grassi, F. R. Bone response to four dental implants with different surface topographies: A histologic and histometric study in Minipigs. Int. J. Periodont. Restor. Dent. 36, 745–754 (2016).
Google Scholar
Alla, R. K. et al. Surface roughness of implants: A review. Trends Biomater. Artif. Organs 25, 112–118 (2011).
Mendonça, G., Mendonça, D. B. S., Aragao, F. J. L. & Cooper, L. F. Advancing dental implant surface technology—From micron-to nanotopography. Biomaterials 29, 3822–3835 (2008).
Google Scholar
Pelaez-Vargas, A. et al. Isotropic micropatterned silica coatings on zirconia induce guided cell growth for dental implants. Dent. Mater. 27, 581–589 (2011).
Google Scholar
Abbas, A. T. et al. ANN surface roughness optimization of AZ61 magnesium alloy finish turning: Minimum machining times at prime machining costs. Materials (Basel). 11, 808 (2018).
Google Scholar
Meddour, I., Yallese, M. A., Bensouilah, H., Khellaf, A. & Elbah, M. Prediction of surface roughness and cutting forces using RSM, ANN, and NSGA-II in finish turning of AISI 4140 hardened steel with mixed ceramic tool. Int. J. Adv. Manuf. Technol. 97, 1931–1949 (2018).
Google Scholar
Lazzara, R. J., Testori, T., Trisi, P., Porter, S. S. & Weinstein, R. L. A human histologic analysis of osseotite and machined surfaces using implants with 2 opposing surfaces. Int. J. Periodont. Restor. Dent. 19, 117–129 (1999).
Google Scholar
de Carvalho, D. R. et al. Characterization and in vitro cytocompatibility of an acid-etched titanium surface. Braz. Dent. J. 21, 3–11 (2010).
Google Scholar
Ogawa, T. et al. Biomechanical evaluation of osseous implants having different surface topographies in rats. J. Dent. Res. 79, 1857–1863 (2000).
Google Scholar
Conforto, E., Caillard, D., Aronsson, B. O. & Descouts, P. Electron microscopy on titanium implants for bone replacement after “SLA” surface treatment. Eur. Cells Mater. 3, 9–10 (2002).
Google Scholar
Perrin, D., Szmukler-Moncler, S., Echikou, C., Pointaire, P. & Bernard, J.-P. Bone response to alteration of surface topography and surface composition of sandblasted and acid etched (SLA) implants. Clin. Oral Implants Res. 13, 465–469 (2002).
Google Scholar
Ponsonnet, L. et al. Relationship between surface properties (roughness, wettability) of titanium and titanium alloys and cell behaviour. Mater. Sci. Eng. C 23, 551–560 (2003).
Google Scholar

