Preloader

Integrated analysis of expression profiles with meat quality traits in cattle

  • Gagaoua, M., Bonnet, M. & Picard, B. Protein array-based approach to evaluate biomarkers of beef tenderness and marbling in cows: understanding of the underlying mechanisms and prediction. Foods 9(9), 1180 (2020).

    CAS 
    PubMed Central 
    Article 
    PubMed 

    Google Scholar 

  • Pewan, S. B. et al. Genetics of omega-3 long-chain polyunsaturated fatty acid metabolism and meat eating quality in tattykeel australian white lambs. Genes (Basel) 11(5), 587 (2020).

    CAS 
    Article 

    Google Scholar 

  • Ekine-Dzivenu, C. et al. Phenotypic and genetic correlations of fatty acid composition in subcutaneous adipose tissue with carcass merit and meat tenderness traits in Canadian beef cattle. J. Anim. Sci. 95, 5184–5196 (2017).

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 

  • Feitosa, F. L. et al. Genetic correlation estimates between beef fatty acid profile with meat and carcass traits in Nellore cattle finished in feedlot. J. Appl. Genet. 58, 123–132 (2017).

    CAS 
    PubMed 
    Article 

    Google Scholar 

  • Ros-Freixedes, R., Reixach, J., Bosch, L., Tor, M. & Estany, J. Genetic correlations of intramuscular fat content and fatty acid composition among muscles and with subcutaneous fat in Duroc pigs. J. Anim. Sci. 92, 5417–5425 (2014).

    CAS 
    PubMed 
    Article 

    Google Scholar 

  • Ibanez-Escriche, N., Magallon, E., Gonzalez, E., Tejeda, J. F. & Noguera, J. L. Genetic parameters and crossbreeding effects of fat deposition and fatty acid profiles in Iberian pig lines. J. Anim. Sci. 94, 28–37 (2016).

    CAS 
    PubMed 
    Article 

    Google Scholar 

  • Liu, H. C., Hicks, J. A., Trakooljul, N. & Zhao, S. H. Current knowledge of microRNA characterization in agricultural animals. Anim. Genet. 41, 225–231 (2010).

    CAS 
    PubMed 
    Article 

    Google Scholar 

  • Kawamata, T. & Tomari, Y. Making RISC. Trends Biochem Sci. 35, 368–376 (2010).

    CAS 
    PubMed 
    Article 

    Google Scholar 

  • Bartel, D. P. MicroRNAs: genomics, biogenesis, mechanism, and function. Cell 116, 281–297 (2004).

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 

  • Ambros, V. The functions of animal microRNAs. Nature 431, 350–355 (2004).

    ADS 
    CAS 
    Article 

    Google Scholar 

  • Kedde, M. & Agami, R. Interplay between microRNAs and RNA-binding proteins determines developmental processes. Cell Cycle 7, 899–903 (2008).

    CAS 
    PubMed 
    Article 

    Google Scholar 

  • McDaneld, T. G. MicroRNA: mechanism of gene regulation and application to livestock. J. Anim. Sci. 87, E21-28 (2009).

    CAS 
    PubMed 
    Article 

    Google Scholar 

  • Ibanez-Ventoso, C., Vora, M. & Driscoll, M. Sequence relationships among C. elegans, D. melanogaster and human microRNAs highlight the extensive conservation of microRNAs in biology. PLoS ONE 3, e2818 (2008).

    ADS 
    PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar 

  • Friedman, R. C., Farh, K. K., Burge, C. B. & Bartel, D. P. Most mammalian mRNAs are conserved targets of microRNAs. Genome Res. 19, 92–105 (2009).

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 

  • Takane, K. et al. Computational prediction and experimental validation of evolutionarily conserved microRNA target genes in bilaterian animals. BMC Genom. 11, 101 (2010).

    Article 
    CAS 

    Google Scholar 

  • Lewis, B. P., Shih, I. H., Jones-Rhoades, M. W., Bartel, D. P. & Burge, C. B. Prediction of mammalian microRNA targets. Cell 115, 787–798 (2003).

    CAS 
    PubMed 
    Article 

    Google Scholar 

  • Bartel, D. P. MicroRNAs: target recognition and regulatory functions. Cell 136, 215–233 (2009).

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 

  • Mathew, R., Mattei, V., Al-Hashmi, M. & Tomei, S. Updates on the current technologies for microRNA profiling. Microrna 9, 17–24 (2020).

    PubMed 
    Article 

    Google Scholar 

  • Gao, L. & Jiang, F. MicroRNA (miRNA) profiling. Methods Mol. Biol. 1381, 151–161 (2016).

    CAS 
    PubMed 
    Article 

    Google Scholar 

  • Saliminejad, K., Khorshid, H. R. K., Fard, S. S. & Ghaffari, S. H. An overview of microRNAs: biology, functions, therapeutics, and analysis methods. J. Cell Physiol. 234, 5451–5465 (2019).

    CAS 
    PubMed 
    Article 

    Google Scholar 

  • Wang, J. et al. MiR-208b regulates cell cycle and promotes skeletal muscle cell proliferation by targeting CDKN1A. J. Cell Physiol. 234, 3720–3729 (2019).

    CAS 
    PubMed 
    Article 

    Google Scholar 

  • Song, C. et al. miR-483 inhibits bovine myoblast cell proliferation and differentiation via IGF1/PI3K/AKT signal pathway. J. Cell Physiol. 234, 9839–9848 (2019).

    CAS 
    PubMed 
    Article 

    Google Scholar 

  • Zhang, L. et al. Bta-miR-34b inhibits proliferation and promotes apoptosis via the MEK/ERK pathway by targeting MAP2K1 in bovine primary Sertoli cells. J Anim Sci. 98(10), skaa313 (2020).

    PubMed 
    PubMed Central 
    Article 

    Google Scholar 

  • Fridrichova, I. & Zmetakova, I. MicroRNAs contribute to breast cancer invasiveness. Cells 8(11), 1361 (2019).

    CAS 
    PubMed Central 
    Article 
    PubMed 

    Google Scholar 

  • Melnik, B. C. & Schmitz, G. MicroRNAs: Milk’s epigenetic regulators. Best Pract. Res. Clin. Endocrinol. Metab. 31, 427–442 (2017).

    CAS 
    PubMed 
    Article 

    Google Scholar 

  • Scheel, T. K. H. et al. Global mapping of miRNA-target interactions in cattle (Bos taurus). Sci. Rep. 7, 8190 (2017).

    ADS 
    PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar 

  • Wang, L., Hand, J. M., Fu, L., Smith, G. W. & Yao, J. DNA methylation and miRNA-1296 act in concert to mediate spatiotemporal expression of KPNA7 during bovine oocyte and early embryonic development. BMC Dev. Biol. 19, 23 (2019).

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 

  • Wu, C., Blondin, P., Vigneault, C., Labrecque, R. & Sirard, M. A. Sperm miRNAs- potential mediators of bull age and early embryo development. BMC Genom. 21, 798 (2020).

    CAS 
    Article 

    Google Scholar 

  • Ji, H. et al. Differential expression profile of microRNA in yak skeletal muscle and adipose tissue during development. Genes Genom.. 42, 1347–1359 (2020).

    CAS 
    Article 

    Google Scholar 

  • Carvalho, E. B. et al. Differentially expressed mRNAs, proteins and miRNAs associated to energy metabolism in skeletal muscle of beef cattle identified for low and high residual feed intake. BMC Genom. 20, 501 (2019).

    Article 
    CAS 

    Google Scholar 

  • Kappeler, B. I. G. et al. MiRNAs differentially expressed in skeletal muscle of animals with divergent estimated breeding values for beef tenderness. BMC Mol. Biol. 20, 1 (2019).

    PubMed 
    PubMed Central 
    Article 

    Google Scholar 

  • Pratt, S. L., Burns, T. A., Owens, M. D. & Duckett, S. K. Isolation of total RNA and detection procedures for miRNA present in bovine-cultured adipocytes and adipose tissues. Methods Mol. Biol. 936, 181–194 (2013).

    CAS 
    PubMed 
    Article 

    Google Scholar 

  • Muroya, S. et al. Coordinated alteration of mRNA-microRNA transcriptomes associated with exosomes and fatty acid metabolism in adipose tissue and skeletal muscle in grazing cattle. Asian-Austr. J. Anim. Sci. 33, 1824–1836 (2020).

    CAS 
    Article 

    Google Scholar 

  • Huang, J. et al. miRNA transcriptome comparison between muscle and adipose tissues indicates potential miRNAs associated with intramuscular fat in Chinese swamp buffalo. Genome 62, 729–738 (2019).

    CAS 
    PubMed 
    Article 

    Google Scholar 

  • Zhang, J. S. et al. Integrated microRNA-mRNA analysis reveals the roles of microRNAs in the muscle fat metabolism of Yanbian cattle. Anim. Genet. 52, 598–607 (2021).

    CAS 
    PubMed 
    Article 

    Google Scholar 

  • Yu, X. et al. Isolation and identification of bovine preadipocytes and screening of MicroRNAs associated with adipogenesis. Animals (Basel) 10(5), 818 (2020).

    Article 

    Google Scholar 

  • Raza, S. H. A. et al. The role of MicroRNAs in muscle tissue development in beef cattle. Genes (Basel) 11(3), 295 (2020).

    CAS 
    Article 

    Google Scholar 

  • Liu, S. Y. et al. MiR-378 Plays an Important Role in the Differentiation of Bovine Preadipocytes. Cell Physiol. Biochem. 36, 1552–1562 (2015).

    CAS 
    PubMed 
    Article 

    Google Scholar 

  • Wang, H., Zheng, Y., Wang, G. & Li, H. Identification of microRNA and bioinformatics target gene analysis in beef cattle intramuscular fat and subcutaneous fat. Mol. Biosyst. 9, 2154–2162 (2013).

    CAS 
    PubMed 
    Article 

    Google Scholar 

  • Chen, J. F. et al. The role of microRNA-1 and microRNA-133 in skeletal muscle proliferation and differentiation. Nat. Genet. 38, 228–233 (2006).

    CAS 
    PubMed 
    Article 

    Google Scholar 

  • Christoffersen, B. O., Gade, L. P., Golozoubova, V., Svendsen, O. & Raun, K. Influence of castration-induced testosterone and estradiol deficiency on obesity and glucose metabolism in male Gottingen minipigs. Steroids 75, 676–684 (2010).

    CAS 
    PubMed 
    Article 

    Google Scholar 

  • Gui, L. S. et al. Association of hormone-sensitive lipase (HSL) gene polymorphisms with the intramuscular fat content in two Chinese beef cattle breeds. Genomics 112, 3883–3889 (2020).

    CAS 
    PubMed 
    Article 

    Google Scholar 

  • Daix, M. et al. Relationship between leptin content, metabolic hormones and fat deposition in three beef cattle breeds. Vet. J. 177, 273–278 (2008).

    CAS 
    PubMed 
    Article 

    Google Scholar 

  • Choat, W. T. et al. The effects of cattle sex on carcass characteristics and Longissimus muscle palatability. J. Anim. Sci. 84, 1820–1826 (2006).

    CAS 
    PubMed 
    Article 

    Google Scholar 

  • Guo, Y., Zhang, X., Huang, W. & Miao, X. Identification and characterization of differentially expressed miRNAs in subcutaneous adipose between Wagyu and Holstein cattle. Sci. Rep. 7, 44026 (2017).

    ADS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 

  • Fritsche, S. & Steinhart, H. Differences in natural steroid hormone patterns of beef from bulls and steers. J. Anim. Sci. 76, 1621–1625 (1998).

    CAS 
    PubMed 
    Article 

    Google Scholar 

  • Mersmann, H. J. Effect of sex on lipogenic activity in swine adipose tissue. J. Anim. Sci. 58, 600–604 (1984).

    CAS 
    PubMed 
    Article 

    Google Scholar 

  • Mueller, L. F. et al. Gender status effect on carcass and meat quality traits of feedlot Angus x Nellore cattle. Anim. Sci. J. 90, 1078–1089 (2019).

    CAS 
    PubMed 
    Article 

    Google Scholar 

  • Cafferky, J. et al. Effect of Breed and Gender on Meat Quality of M. Longissimus thoracis et Lumborum Muscle from Crossbred Beef Bulls and Steers. Foods. 8(5), 173 (2019).

    CAS 
    PubMed Central 
    Article 
    PubMed 

    Google Scholar 

  • Naqvi, S. et al. Conservation, acquisition, and functional impact of sex-biased gene expression in mammals. Science 365(6450), p.eaaw7317 (2019).

    Article 
    CAS 

    Google Scholar 

  • Rzepiela, A. J. et al. Single-cell mRNA profiling reveals the hierarchical response of miRNA targets to miRNA induction. Mol. Syst. Biol. 14, e8266 (2018).

    PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar 

  • Gaidatzis, D., van Nimwegen, E., Hausser, J. & Zavolan, M. Inference of miRNA targets using evolutionary conservation and pathway analysis. BMC Bioinf. 8, 69 (2007).

    Article 
    CAS 

    Google Scholar 

  • Hausser, J. & Zavolan, M. Identification and consequences of miRNA-target interactions–beyond repression of gene expression. Nat. Rev. Genet. 15, 599–612 (2014).

    CAS 
    PubMed 
    Article 

    Google Scholar 

  • Ruike, Y. et al. Global correlation analysis for micro-RNA and mRNA expression profiles in human cell lines. J. Hum. Genet. 53, 515–523 (2008).

    CAS 
    PubMed 
    Article 

    Google Scholar 

  • Van der Auwera, I. et al. Integrated miRNA and mRNA expression profiling of the inflammatory breast cancer subtype. Br. J. Cancer. 103, 532–541 (2010).

    PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar 

  • Tang, Z. et al. Integrated analysis of miRNA and mRNA paired expression profiling of prenatal skeletal muscle development in three genotype pigs. Sci. Rep. 5, 15544 (2015).

    ADS 
    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 

  • Zhang, Y. Y. et al. Transcriptome analysis of mRNA and microRNAs in intramuscular fat tissues of castrated and intact male Chinese Qinchuan cattle. PLoS ONE 12, e0185961 (2017).

    PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar 

  • Wang, Y. et al. Fatty acid-binding protein 1 increases steer fat deposition by facilitating the synthesis and secretion of triacylglycerol in liver. PLoS ONE 14, e0214144 (2019).

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 

  • Hao, D. et al. MicroRNA bta-miR-365-3p inhibits proliferation but promotes differentiation of primary bovine myoblasts by targeting the activin A receptor type I. J. Anim. Sci. Biotechnol. 12, 16 (2021).

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 

  • Gottmann, P. et al. A computational biology approach of a genome-wide screen connected miRNAs to obesity and type 2 diabetes. Mol. Metab. 11, 145–159 (2018).

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 

  • Baldini, F. et al. Aquaporin-9 is involved in the lipid-lowering activity of the nutraceutical silybin on hepatocytes through modulation of autophagy and lipid droplets composition. Biochim. Biophys. Acta Mol. Cell Biol. Lipids. 1865, 158586 (2020).

    CAS 
    PubMed 
    Article 

    Google Scholar 

  • Jin, J. C. et al. MicroRNA122 regulation of the morphology and cytoarchitecture of hepatoma carcinoma cells. Mol. Med. Rep. 9, 1376–1380 (2014).

    CAS 
    PubMed 
    Article 

    Google Scholar 

  • Sun, J. et al. Discovery of novel and differentially expressed microRNAs between fetal and adult backfat in cattle. PLoS ONE 9, e90244 (2014).

    ADS 
    PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar 

  • Li, N. et al. Differential expression of mRNA-miRNAs related to intramuscular fat content in the Longissimus dorsi in Xinjiang brown cattle. PLoS ONE 13, e0206757 (2018).

    PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar 

  • Oliveira, G. B. et al. Integrative analysis of microRNAs and mRNAs revealed regulation of composition and metabolism in Nelore cattle. BMC Genom. 19, 126 (2018).

    Article 
    CAS 

    Google Scholar 

  • Liao, C. H. et al. MiR-122 marks the differences between subcutaneous and visceral adipose tissues and associates with the outcome of bariatric surgery. Obes. Res. Clin. Pract. 12, 570–577 (2018).

    PubMed 
    Article 

    Google Scholar 

  • Sanchez, M. P. et al. Sequence-based GWAS, network and pathway analyses reveal genes co-associated with milk cheese-making properties and milk composition in Montbeliarde cows. Genet. Sel. Evol. 51, 34 (2019).

    PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar 

  • Chen, X. et al. Identification and characterization of microRNAs in raw milk during different periods of lactation, commercial fluid, and powdered milk products. Cell Res. 20, 1128–1137 (2010).

    CAS 
    PubMed 
    Article 

    Google Scholar 

  • Muroya, S., Shibata, M., Hayashi, M., Oe, M. & Ojima, K. Differences in circulating microRNAs between grazing and grain-fed wagyu cattle are associated with altered expression of intramuscular microRNA, the potential target PTEN, and lipogenic genes. PLoS ONE 11, e0162496 (2016).

    PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar 

  • Li, H. M., Wang, C. M., Li, Q. Z. & Gao, X. J. MiR-15a decreases bovine mammary epithelial cell viability and lactation and regulates growth hormone receptor expression. Molecules 17, 12037–12048 (2012).

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 

  • Chen, Z. et al. Screening candidate microR-15a- IRAK2 regulatory pairs for predicting the response to Staphylococcus aureus-induced mastitis in dairy cows. J. Dairy Res. 86, 425–431 (2019).

    CAS 
    PubMed 
    Article 

    Google Scholar 

  • Ju, Z. et al. Genome-wide methylation and transcriptome of blood neutrophils reveal the roles of DNA methylation in affecting transcription of protein-coding genes and miRNAs in E coli-infected mastitis cows. BMC Genom. 21, 102 (2020).

    CAS 
    Article 

    Google Scholar 

  • Hansen, T. B. et al. Natural RNA circles function as efficient microRNA sponges. Nature 495, 384–388 (2013).

    ADS 
    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 

  • Gebert, L. F. R. & MacRae, I. J. Regulation of microRNA function in animals. Nat. Rev. Mol. Cell Biol. 20, 21–37 (2019).

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 

  • Hou, Q. et al. Identification of splice variants, targeted microRNAs and functional single nucleotide polymorphisms of the BOLA-DQA2 gene in dairy cattle. DNA Cell Biol. 31, 739–744 (2012).

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 

  • De Oliveira, P. S. N. et al. An integrative transcriptome analysis indicates regulatory mRNA-miRNA networks for residual feed intake in Nelore cattle. Sci. Rep. 8, 17072 (2018).

    ADS 
    PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar 

  • Alves, M. B. R. et al. Sperm-borne miR-216b modulates cell proliferation during early embryo development via K-RAS. Sci. Rep. 9, 10358 (2019).

    ADS 
    PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar 

  • Cai, M. et al. MicroRNA-216b inhibits heat stress-induced cell apoptosis by targeting Fas in bovine mammary epithelial cells. Cell Stress Chaperones. 23, 921–931 (2018).

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 

  • Donadeu, F. X., Mohammed, B. T. & Ioannidis, J. A miRNA target network putatively involved in follicular atresia. Domest Anim. Endocrinol. 58, 76–83 (2017).

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 

  • Gebremedhn, S. et al. MicroRNA expression profile in bovine granulosa cells of preovulatory dominant and subordinate follicles during the late follicular phase of the estrous cycle. PLoS ONE 10, e0125912 (2015).

    PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar 

  • Mi, X. et al. GR and Foxa1 promote the transcription of ANGPTL4 in bovine adipocytes. Mol. Cell Prob. 48, 101443 (2019).

    CAS 
    Article 

    Google Scholar 

  • Berton, M. P. et al. Gene expression profile of intramuscular muscle in Nellore cattle with extreme values of fatty acid. BMC Genom. 17, 972 (2016).

    Article 
    CAS 

    Google Scholar 

  • Liu, J., Wang, Z., Li, J., Li, H. & Yang, L. Genome-wide identification of diacylglycerol acyltransferases (DGAT) family genes influencing Milk production in Buffalo. BMC Genet. 21, 26 (2020).

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 

  • Schering, L., Albrecht, E., Komolka, K., Kuhn, C. & Maak, S. Increased expression of thyroid hormone responsive protein (THRSP) is the result but not the cause of higher intramuscular fat content in cattle. Int. J. Biol. Sci. 13, 532–544 (2017).

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 

  • Barton, L., Bures, D., Kott, T. & Rehak, D. Associations of polymorphisms in bovine DGAT1, FABP4, FASN, and PPARGC1A genes with intramuscular fat content and the fatty acid composition of muscle and subcutaneous fat in Fleckvieh bulls. Meat. Sci. 114, 18–23 (2016).

    CAS 
    PubMed 
    Article 

    Google Scholar 

  • Li, H., Hao, X., Liu, Y., Li, Y. & Jin, Z. ZnxCd1-xS nanoparticles dispersed on CoAl-layered double hydroxide in 2D heterostructure for enhanced photocatalytic hydrogen evolution. J. Colloid Interface Sci. 572, 62–73 (2020).

    ADS 
    CAS 
    PubMed 
    Article 

    Google Scholar 

  • Nafikov, R. A. et al. Association of polymorphisms in solute carrier family 27, isoform A6 (SLC27A6) and fatty acid-binding protein-3 and fatty acid-binding protein-4 (FABP3 and FABP4) with fatty acid composition of bovine milk. J. Dairy Sci. 96, 6007–6021 (2013).

    CAS 
    PubMed 
    Article 

    Google Scholar 

  • Ma, X. et al. Bta-miR-130a/b regulates preadipocyte differentiation by targeting PPARG and CYP2U1 in beef cattle. Mol. Cell Probes. 42, 10–17 (2018).

    CAS 
    PubMed 
    Article 

    Google Scholar 

  • Hudson, N. J. et al. Longitudinal muscle gene expression patterns associated with differential intramuscular fat in cattle. Animal 9, 650–659 (2015).

    CAS 
    PubMed 
    Article 

    Google Scholar 

  • Wang, J. et al. Haplotypes in the promoter region of the CIDEC gene associated with growth traits in Nanyang cattle. Sci. Rep. 5, 12075 (2015).

    ADS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 

  • Xia, W., Osorio, J. S., Yang, Y., Liu, D. & Jiang, M. F. Short communication: characterization of gene expression profiles related to yak milk protein synthesis during the lactation cycle. J. Dairy Sci. 101, 11150–11158 (2018).

    CAS 
    PubMed 
    Article 

    Google Scholar 

  • Mass Sanchez, P. B., Krizanac, M., Weiskirchen, R. & Asimakopoulos, A. Understanding the role of perilipin 5 in non-alcoholic fatty liver disease and its role in hepatocellular carcinoma: a review of novel insights. Int. J. Mol. Sci. 22(10), 5284 (2021).

    PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar 

  • Zappaterra, M., Mazzoni, M., Zambonelli, P. & Davoli, R. Investigation of the Perilipin 5 gene expression and association study of its sequence polymorphism with meat and carcass quality traits in different pig breeds. Animal 12, 1135–1143 (2018).

    CAS 
    PubMed 
    Article 

    Google Scholar 

  • Cesar, A. S. et al. Differences in the skeletal muscle transcriptome profile associated with extreme values of fatty acids content. BMC Genom. 17, 961 (2016).

    Article 
    CAS 

    Google Scholar 

  • Bindesboll, C., Berg, O., Arntsen, B., Nebb, H. I. & Dalen, K. T. Fatty acids regulate perilipin5 in muscle by activating PPARdelta. J. Lipid Res. 54, 1949–1963 (2013).

    PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar 

  • Jia, H. et al. Perilipin 5 promotes hepatic steatosis in dairy cows through increasing lipid synthesis and decreasing very low density lipoprotein assembly. J. Dairy Sci. 102, 833–845 (2019).

    CAS 
    PubMed 
    Article 

    Google Scholar 

  • Najt, C. P. et al. Lipid droplet-derived monounsaturated fatty acids traffic via PLIN5 to allosterically activate SIRT1. Mol. Cell. 77, 810–824 (2020).

    CAS 
    PubMed 
    Article 

    Google Scholar 

  • Livak, K. J. & Schmittgen, T. D. Analysis of relative gene expression data using real-time quantitative PCR and the 2(-Delta Delta C(T)) Method. Methods 25, 402–408 (2001).

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 

  • Shannon, P. et al. Cytoscape: a software environment for integrated models of biomolecular interaction networks. Genome Res. 13, 2498–2504 (2003).

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 

  • Assenov, Y., Ramirez, F., Schelhorn, S. E., Lengauer, T. & Albrecht, M. Computing topological parameters of biological networks. Bioinformatics 24, 282–284 (2008).

    CAS 
    PubMed 
    Article 

    Google Scholar 

  • Shimono, Y. et al. Downregulation of miRNA-200c links breast cancer stem cells with normal stem cells. Cell 138, 592–603 (2009).

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 

  • Source link