Preloader

Influence of native ureolytic microbial community on biocementation potential of Sporosarcina pasteurii

  • 1.

    Dhami, N. K., Reddy, M. S. & Mukherjee, M. S. Biomineralization of calcium carbonates and their engineered applications: A review. Front. Microbiol. 4, 1–14 (2013).

    Article 

    Google Scholar 

  • 2.

    Stocks-Fischer, S., Galinat, J. K. & Bang, S. S. Microbiological precipitation of CaCO3. Soil Biol. Biochem. 31, 1563–1571 (1999).

    CAS 
    Article 

    Google Scholar 

  • 3.

    Dejong, J. T., Mortensen, B. M., Martinez, B. C. & Nelson, D. C. Bio-mediated soil improvement. Ecol. Eng. 36, 197–210 (2010).

    Article 

    Google Scholar 

  • 4.

    Ferris, F. G., Phoenix, V., Fujita, Y. & Smith, R. W. Kinetics of calcite precipitation induced by ureolytic bacteria at 10 to 20°C in artificial groundwater. Geochim. Cosmochim. Acta 68, 1701–1710 (2004).

    ADS 
    CAS 
    Article 

    Google Scholar 

  • 5.

    Fujita, Y., Grant Ferris, F., Daniel Lawson, R., Colwell, F. S. & Smith, R. W. Calcium carbonate precipitation by ureolytic subsurface bacteria. Geomicrobiol. J. 17, 305–318 (2000).

    CAS 
    Article 

    Google Scholar 

  • 6.

    Kumari, D., Qian, X. Y., Pan, X., Achal, V. & Li, Q. Microbially-induced carbonate precipitation for immobilization of toxic metals. Adv. Appl. Microbiol. 94, 79–108 (2016).

    CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 

  • 7.

    Wu, J., Wang, X. B., Wang, H. F. & Zeng, R. J. Microbially induced calcium carbonate precipitation driven by ureolysis to enhance oil recovery. RSC Adv. 7, 37382–37391 (2017).

    ADS 
    CAS 
    Article 

    Google Scholar 

  • 8.

    Ramachandran, S. K., Ramakrishnan, V. & Bang, S. S. Remediation of concrete using micro-organisms. ACI Mater. J. 98, 3–9 (2001).

    CAS 

    Google Scholar 

  • 9.

    Van Tittelboom, K., De Belie, N., De Muynck, W. & Verstraete, W. Use of bacteria to repair cracks in concrete. Cem. Concr. Res. 40, 157–166 (2010).

    Article 
    CAS 

    Google Scholar 

  • 10.

    Mitchell, A. C., Dideriksen, K., Spangler, L. H., Cunningham, A. B. & Gerlach, R. Microbially enhanced carbon capture and storage by mineral-trapping and solubility-trapping. Environ. Sci. Technol. 44, 5270–5276 (2010).

    ADS 
    CAS 
    PubMed 
    Article 

    Google Scholar 

  • 11.

    Phillips, A. J. et al. Engineered applications of ureolytic biomineralization: A review. Biofouling 29, 715–733 (2013).

    CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 

  • 12.

    Van Paassen, L. A., Ghose, R., van der Linden, T. J. M., van der Star, W. R. L. & van Loosdrecht, M. C. M. Quantifying biomediated ground improvement by ureolysis: Large-scale biogrout experiment. J. Geotech. Geoenviron. Eng. 136, 1721–1728 (2010).

    Article 
    CAS 

    Google Scholar 

  • 13.

    Whiffin, V. S., van Paassen, L. A. & Harkes, M. P. Microbial carbonate precipitation as a soil improvement technique. Geomicrobiol. J. 24, 417–423 (2007).

    CAS 
    Article 

    Google Scholar 

  • 14.

    Zhang, J. L. et al. Screening of bacteria for self-healing of concrete cracks and optimization of the microbial calcium precipitation process. Appl. Microbiol. Biotechnol. 100, 6661–6670 (2016).

    CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 

  • 15.

    Mortensen, B. M., Haber, M. J., DeJong, J. T., Caslake, L. F. & Nelson, D. C. Effects of environmental factors on microbial induced calcium carbonate precipitation. J. Appl. Microbiol. 111, 338–349 (2011).

    CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 

  • 16.

    Martinez, B. C. et al. Experimental optimization of microbial-induced carbonate precipitation for soil improvement. J. Geotech. Geoenviron. Eng. 139, 587–598 (2013).

    CAS 
    Article 

    Google Scholar 

  • 17.

    Soon, N. W., Lee, L. M., Khun, T. C. & Ling, H. S. Factors affecting improvement in engineering properties of residual soil through microbial-induced calcite precipitation. Artic. J. Geotech. Geoenviron. Eng. 140, 04014006 (2014).

    Article 

    Google Scholar 

  • 18.

    Zhao, Q. et al. Factors affecting improvement of engineering properties of MICP-treated soil catalyzed by bacteria and urease. J. Mater. Civ. Eng. 26, 04014094 (2014).

    Article 
    CAS 

    Google Scholar 

  • 19.

    Oral, Ç. M. & Ercan, B. Influence of pH on morphology, size and polymorph of room temperature synthesized calcium carbonate particles. Powder Technol. 339, 781–788 (2018).

    CAS 
    Article 

    Google Scholar 

  • 20.

    Li, M., Wen, K., Li, Y. & Zhu, L. Impact of oxygen availability on microbially induced calcite precipitation (MICP) treatment. Geomicrobiol. J. 35, 15–22 (2018).

    CAS 
    Article 

    Google Scholar 

  • 21.

    Peng, J. & Liu, Z. Influence of temperature on microbially induced calcium carbonate precipitation for soil treatment. PLoS ONE 14, e0218396 (2019).

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 

  • 22.

    Wen, K., Li, Y., Amini, F. & Li, L. Impact of bacteria and urease concentration on precipitation kinetics and crystal morphology of calcium carbonate. Acta Geotech. 15, 17–27 (2020).

    Article 

    Google Scholar 

  • 23.

    Okwadha, G. D. O. & Li, J. Optimum conditions for microbial carbonate precipitation. Chemosphere 81, 1143–1148 (2010).

    ADS 
    CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 

  • 24.

    Lauchnor, E. G., Topp, D. M., Parker, A. E. & Gerlach, R. Whole cell kinetics of ureolysis by Sporosarcina pasteurii. J. Appl. Microbiol. 118, 1321–1332 (2015).

    CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 

  • 25.

    Mitchell, A. C. et al. Kinetics of calcite precipitation by ureolytic bacteria under aerobic and anaerobic conditions. Biogeosciences 16, 2147–2161 (2019).

    ADS 
    CAS 
    Article 

    Google Scholar 

  • 26.

    Heveran, C. M. et al. Engineered ureolytic microorganisms can tailor the morphology and nanomechanical properties of microbial-precipitated calcium carbonate. Sci. Rep. 9, 1–13 (2019).

    CAS 
    Article 

    Google Scholar 

  • 27.

    Mitchell, A. C. & GrantFerris, F. The influence of Bacillus pasteurii on the nucleation and growth of calcium carbonate. Geomicrobiol. J. 23, 213–226 (2006).

    CAS 
    Article 

    Google Scholar 

  • 28.

    Hammes, F., Boon, N., De Villiers, J., Verstraete, W. & Siciliano, S. D. Strain-specific ureolytic microbial calcium carbonate precipitation. Appl. Environ. Microbiol. 69, 4901–4909 (2003).

    ADS 
    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 

  • 29.

    Rodriguez-Navarro, C., Jimenez-Lopez, C., Rodriguez-Navarro, A., Gonzalez-Muñoz, M. T. & Rodriguez-Gallego, M. Bacterially mediated mineralization of vaterite. Geochim. Cosmochim. Acta 71, 1197–1213 (2007).

    ADS 
    CAS 
    Article 

    Google Scholar 

  • 30.

    Chen, L. et al. Bacteria-mediated synthesis of metal carbonate minerals with unusual morphologies and structures. Cryst. Growth Des. 9, 743–754 (2009).

    CAS 
    Article 

    Google Scholar 

  • 31.

    Dhami, N. K., Mukherjee, A. & Reddy, M. S. Micrographical, mineralogical and nano-mechanical characterisation of microbial carbonates from urease and carbonic anhydrase producing bacteria. Ecol. Eng. 94, 443–454 (2016).

    Article 

    Google Scholar 

  • 32.

    Burbank, M. B., Weaver, T. J., Green, T. L., Williams, B. & Crawford, R. L. Precipitation of calcite by indigenous microorganisms to strengthen liquefiable soils. Geomicrobiol. J. 28, 301–312 (2011).

    Article 

    Google Scholar 

  • 33.

    Gomez, M. G. et al. Field-scale bio-cementation tests to improve sands. Proc. Inst. Civ. Eng. Ground Improve. 168, 206–216 (2015).

    Article 

    Google Scholar 

  • 34.

    Gomez, M. G. et al. Large-scale comparison of bioaugmentation and biostimulation approaches for biocementation of sands. J. Geotech. Geoenviron. Eng. 143, 04016124 (2017).

    Article 

    Google Scholar 

  • 35.

    Tobler, D. J. et al. Comparison of rates of ureolysis between Sporosarcina pasteurii and an indigenous groundwater community under conditions required to precipitate large volumes of calcite. Geochim. Cosmochim. Acta 75, 3290–3301 (2011).

    ADS 
    CAS 
    Article 

    Google Scholar 

  • 36.

    Gomez, M. G., Graddy, C. M. R., Dejong, J. T. & Nelson, D. C. Biogeochemical changes during bio-cementation mediated by stimulated and augmented ureolytic microorganisms. Sci. Rep. 9, 1–15 (2019).

    Google Scholar 

  • 37.

    Dhami, N. K., Alsubhi, W. R., Watkin, E. & Mukherjee, A. Bacterial community dynamics and biocement formation during stimulation and augmentation: Implications for soil consolidation. Front. Microbiol. 8, 1267 (2017).

    PubMed 
    PubMed Central 
    Article 

    Google Scholar 

  • 38.

    Raveh-Amit, H. & Tsesarsky, M. Biostimulation in desert soils for microbial-induced calcite precipitation. Appl. Sci. 10, 2905 (2020).

    CAS 
    Article 

    Google Scholar 

  • 39.

    Cuthbert, M. O. et al. Controls on the rate of ureolysis and the morphology of carbonate precipitated by S. pasteurii biofilms and limits due to bacterial encapsulation. Ecol. Eng. 41, 32–40 (2012).

    Article 

    Google Scholar 

  • 40.

    Gomez, M. G., DeJong, J. T., Anderson, C. M., Nelson, D. C. & Graddy, C. M. Large-scale bio-cementation improvement of sands. in Geotechnical and Structural Engineering Congress 2016—Proceedings of the Joint Geotechnical and Structural Engineering Congress 2016. 941–949. (American Society of Civil Engineers, 2016).

  • 41.

    Hammes, F. & Verstraete, W. Key roles of pH and calcium metabolism in microbial carbonate precipitation. Rev. Environ. Sci. Biotechnol. (2002).

  • 42.

    Gomez, M. G., Graddy, C. M. R., DeJong, J. T., Nelson, D. C. & Tsesarsky, M. Stimulation of native microorganisms for biocementation in samples recovered from field-scale treatment depths. J. Geotech. Geoenviron. Eng. 144, 04017098 (2018).

    Article 

    Google Scholar 

  • 43.

    Bachmeier, K. L., Williams, A. E., Warmington, J. R. & Bang, S. S. Urease activity in microbiologically-induced calcite precipitation. J. Biotechnol. 93, 171–181 (2002).

    CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 

  • 44.

    Okyay, T. O. & Rodrigues, D. F. Optimized carbonate micro-particle production by Sporosarcina pasteurii using response surface methodology. Ecol. Eng. 62, 168–174 (2014).

    Article 

    Google Scholar 

  • 45.

    Chekroun, K. B. et al. Precipitation and growth morphology of calcium carbonate induced by Myxococcus xanthus: Implications for recognition of bacterial carbonates. J. Sediment. Res. 74, 868–876 (2004).

    ADS 
    Article 

    Google Scholar 

  • 46.

    Oxtoby, D. W. Homogeneous nucleation: Theory and experiment. J. Phys. Condens. Matter 4, 7627–7650 (1992).

    ADS 
    Article 

    Google Scholar 

  • 47.

    Al Imran, M., Shinmura, M., Nakashima, K. & Kawasaki, S. Effects of various factors on carbonate particle growth using ureolytic bacteria. Mater. Trans. 59, 1520–1527 (2018).

    CAS 
    Article 

    Google Scholar 

  • 48.

    Lee, Y. S. & Park, W. Current challenges and future directions for bacterial self-healing concrete. Appl. Microbiol. Biotechnol. 102, 3059–3070 (2018).

    CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 

  • 49.

    Sondi, I. & Salopek-Sondi, B. Influence of the primary structure of enzymes on the formation of CaCO3 polymorphs: A comparison of plant (Canavalia ensiformis) and bacterial (Bacillus pasteurii) ureases. Langmuir 21, 8876–8882 (2005).

    CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 

  • 50.

    Rodriguez-Blanco, J. D., Shaw, S. & Benning, L. G. The kinetics and mechanisms of amorphous calcium carbonate (ACC) crystallization to calcite, via vaterite. Nanoscale 3, 265–271 (2011).

    ADS 
    CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 

  • 51.

    Rodriguez-Navarro, C., Jroundi, F., Schiro, M., Ruiz-Agudo, E. & González-Muñoz, M. T. Influence of substrate mineralogy on bacterial mineralization of calcium carbonate: Implications for stone conservation. Appl. Environ. Microbiol. 78, 4017–4029 (2012).

    ADS 
    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 

  • 52.

    Dubey, A. A. et al. Biocementation mediated by native microbes from Brahmaputra riverbank for mitigation of soil erodibility. Sci. Rep. 11, 15250. https://doi.org/10.1038/s41598-021-94614-6 (2021).

    CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • 53.

    APHA/AWWA/WEF. Standard methods for the examination of water and wastewater. Stand. Methods 541 (2012).

  • 54.

    Sun, X., Miao, L., Tong, T. & Wang, C. Study of the effect of temperature on microbially induced carbonate precipitation. Acta Geotech. 14, 627–638 (2019).

    Article 

    Google Scholar 

  • 55.

    Sun, X., Miao, L., Tong, T. & Wang, C. Improvement of microbial-induced calcium carbonate precipitation technology for sand solidification. J. Mater. Civ. Eng. 30, 04018301 (2018).

    Article 

    Google Scholar 

  • 56.

    Martinez, B. C., DeJong, J. T. & Ginn, T. R. Bio-geochemical reactive transport modeling of microbial induced calcite precipitation to predict the treatment of sand in one-dimensional flow. Comput. Geotech. 58, 1–13 (2014).

    Article 

    Google Scholar 

  • 57.

    Murugan, R., Suraishkumar, G. K., Mukherjee, A. & Dhami, N. K. Insights into the influence of cell concentration in design and development of microbially induced calcium carbonate precipitation (MICP) process. PLoS ONE 16, e0254536 (2021).

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 

  • 58.

    Sun, X., Miao, L., Wu, L. & Wang, H. Theoretical quantification for cracks repair based on microbially induced carbonate precipitation (MICP) method. Cem. Concr. Compos. 118, 103950 (2021).

    CAS 
    Article 

    Google Scholar 

  • Source link