Garcı´a-Arenal, F. and Palukaitis, P. García-arenal: desk encyclopedia of plant and fungal… Google Scholar. Acad. Press 614 (2008).
Zhou, B., Wang, F., Zhang, X., Zhang, L. & Lin, H. Sequencing and phylogenetic analysis of tobacco virus 2, a polerovirus from Nicotiana tabacum. Arch. Virol. 162, 2159–2162 (2017).
Google Scholar
Hily, J. M. et al. The Relationship between Host Lifespan and Pathogen Reservoir Potential: An Analysis in the System Arabidopsis thaliana-Cucumber mosaic virus. PLOS Pathog. 10, e1004492 (2014).
Google Scholar
Gildow, F. et al. Transmission efficiency of Cucumber mosaic virus by aphids associated with virus epidemics in snap bean. Phytopathology 98, 1233–1241 (2008).
Google Scholar
Yang, Y., Kim, K. S. & Anderson, E. J. Seed transmission of cucumber mosaic virus in spinach. Phytopathology https://doi.org/10.1094/PHYTO.1997.87.9.92487,924-931 (2007).
Google Scholar
Nalam, V., Louis, J. & Shah, J. Plant defense against aphids, the pest extraordinaire. Plant Sci. 279, 96–107 (2019).
Google Scholar
Jacquemond, M. Cucumber mosaic virus. Adv. Virus Res. 84, 439–504 (2012).
Google Scholar
Yoon, J.-Y., Palukaitis, P. & Choi, S.-K. CHAPTER 1: host range. Cucumber Mosaic Virus https://doi.org/10.1094/9780890546109.004 (2019).
Google Scholar
Groen, S., Wamonje, F., Murphy, A. & Carr, J. Engineering resistance to virus transmission. Curr. Opin. Virol. 26, 20–27 (2017).
Google Scholar
Donnelly, R., Cunniffe, N. J., Carr, J. P. & Gilligan, C. A. Pathogenic modification of plants enhances long-distance dispersal of nonpersistently transmitted viruses to new hosts. Ecology 100(7), e02725 (2019).
Google Scholar
Blanc, S. & Michalakis, Y. Manipulation of hosts and vectors by plant viruses and impact of the environment. Curr. Opin. Insect Sci. 16, 36–43 (2016).
Google Scholar
Saurav, G. K., Rana, V. S., Popli, S., Daimei, G. & Rajagopal, R. A thioredoxin-like protein of Bemisia tabaci interacts with coat protein of begomoviruses. Virus Genes 55, 356–367 (2019).
Google Scholar
Carmo-Sousa, M., Moreno, A., Garzo, E. & Fereres, A. A non-persistently transmitted-virus induces a pull-push strategy in its aphid vector to optimize transmission and spread. Virus Res. 186, 38–46 (2014).
Google Scholar
Brunt, A. Plant Viruses Online: Descriptions and Lists from the VIDE Database. http://biology.anu.edu.au/Groups/MES/vide/ (1996).
Harris, K. F. An ingestion-egestion hypothesis of noncirculative virus transmission. Aphids Virus Vectors 165–220 (1977).
Lax, C. et al. The Evolutionary Significance of RNAi in the Fungal Kingdom. Int. J. Mol. Sci. 21, 1–22 (2020).
Rodrigues, T. B. & Figueira, A. Management of Insect Pest by RNAi — A New Tool for Crop Protection. RNA Interf. https://doi.org/10.5772/61807 (2016).
Google Scholar
Mathioudakis, M. M. et al. Molecular characterization of the coat protein gene of greek apple stem pitting virus isolates: Evolution through deletions, insertions, and recombination events. Plants 10, 917 (2021).
Google Scholar
Zhang, X. et al. Cucumber mosaic virus-encoded 2b suppressor inhibits Arabidopsis Argonaute1 cleavage activity to counter plant defense. Genes Dev. 20, 3255–3268 (2006).
Google Scholar
Ziebell, H. et al. Cucumber mosaic virus and its 2b RNA silencing suppressor modify plant-aphid interactions in tobacco. Sci. Rep. 1, 1–7 (2011).
Lai, Z., Wang, F., Zheng, Z., Fan, B. & Chen, Z. A critical role of autophagy in plant resistance to necrotrophic fungal pathogens. Plant J. 66, 953–968 (2011).
Google Scholar
Westwood, J. H. et al. Interference with jasmonic acid-regulated gene expression is a general property of viral suppressors of RNA silencing but only partly explains virus-induced changes in plant–aphid interactions. J. Gen. Virol. 95, 733–739 (2014).
Google Scholar
Tungadi, T. et al. Cucumber mosaic virus 2b proteins inhibit virus-induced aphid resistance in tobacco. Mol. Plant Pathol. 21, 250–257 (2020).
Google Scholar
Lewsey, M. G. et al. Disruption of two defensive signaling pathways by a viral RNA silencing suppressor. Mol. Plant-Microbe Interact. 23, 835–845 (2010).
Google Scholar
Love, A. J. et al. Cauliflower mosaic virus protein P6 inhibits signaling responses to salicylic acid and regulates innate immunity. PLoS ONE 7, e47535 (2012).
Google Scholar
Shi, X. et al. Aphid performance changes with plant defense mediated by Cucumber mosaic virus titer. Virol. J. 13, 1–6 (2016).
Blackman, R. L. & Eastop, V. F. Aphids on the World’s Crops: An Identification and Information Guide, 2nd Edition – R. L. Blackman, V. F. Eastop. 476 (2000).
Moury, B., Fabre, F. & Senoussi, R. Estimation of the number of virus particles transmitted by an insect vector. Proc. Natl. Acad. Sci. U. S. A. 104, 17891 (2007).
Google Scholar
van-Emden, H. & Harrington, R. Aphids as Crop Pests – CABI.org. CABI https://www.cabi.org/bookshop/book/9781780647098/ (2007).
Yu, X. et al. RNAi-mediated plant protection against aphids. Pest Manag. Sci. 72, 1090–1098 (2016).
Google Scholar
Ann K. Sakai et al. The population biology of invasive species. 32, 305–332 https://doi.org/10.1146/annurev.ecolsys.32.081501.11403732,305-332 (2001).
Kakde, A. M., Patel, K. G. & Tayade, S. Role of life table in insect pest management-a review. IOSR J. Agric. Vet. Sci. 7, 40–43 (2014).
Ullah, F. et al. RNAi-Mediated Knockdown of Chitin Synthase 1 (CHS1) Gene Causes Mortality and Decreased Longevity and Fecundity in Aphis gossypii. Insects 11, 22 (2020).
Mauck, K. E., De Moraes, C. M. & Mescher, M. C. Deceptive chemical signals induced by a plant virus attract insect vectors to inferior hosts. Proc. Natl. Acad. Sci. 107, 3600–3605 (2010).
Google Scholar
Westwood, J. et al. A trio of viral proteins tunes aphid-plant interactions in Arabidopsis thaliana. PLoS One 8, (2013).
Mauck, K. E., Smyers, E., De Moraes, C. M. & Mescher, M. C. Virus infection influences host plant interactions with non-vector herbivores and predators. Funct. Ecol. 29, 662–673 (2015).
Mauck, K., De Moraes, C. & Mescher, M. Biochemical and physiological mechanisms underlying effects of Cucumber mosaic virus on host-plant traits that mediate transmission by aphid vectors. Plant. Cell Environ. 37, 1427–1439 (2014).
Google Scholar
Turner, J. G., Ellis, C. & Devoto, A. The Jasmonate Signal Pathway. Plant Cell 14, S153–S164 (2002).
Google Scholar
Zhang, H., Xie, X., Xu, Y. & Wu, N. Isolation and functional assessment of a tomato proteinase inhibitor II gene. Plant Physiol. Biochem. PPB 42, 437–444 (2004).
Google Scholar
Pegadaraju, V., Knepper, C., Reese, J. & Shah, J. Premature leaf senescence modulated by the arabidopsis PHYTOALEXIN DEFICIENT4 gene is associated with defense against the phloem-feeding green peach aphid. Plant Physiol. 139, 1927–1934 (2005).
Google Scholar
Tungadi, T. et al. Cucumber mosaic virus and its 2b protein alter emission of host volatile organic compounds but not aphid vector settling in tobacco. Virol. J. 14, 1–9 (2017).
Shi, X. et al. Plant virus differentially alters the plant’s defense response to its closely related vectors. PLoS ONE 8, e83520 (2013).
Google Scholar
Donovan, M. P., Nabity, P. D. & DeLucia, E. H. Salicylic acid-mediated reductions in yield in Nicotiana attenuata challenged by aphid herbivory. Arthropod-Plant Interact. 7, 45–52 (2013).
Koornneef, A. & Pieterse, C. Cross talk in defense signaling. Plant Physiol. 146, 839–844 (2008).
Google Scholar
Guo, W. et al. Double-Stranded RNAs High-Efficiently Protect Transgenic Potato from Leptinotarsa decemlineata by Disrupting Juvenile Hormone Biosynthesis. J. Agric. Food Chem. 66, 11990–11999 (2018).
Google Scholar
Wuriyanghan, H. & Falk, B. W. RNA Interference towards the Potato Psyllid, Bactericera cockerelli, Is Induced in Plants Infected with Recombinant Tobacco mosaic virus (TMV). PLoS ONE 8, e66050 (2013).
Google Scholar
Shen, G.-M. et al. Transgenic cotton expressing CYP392A4 double-stranded RNA decreases the reproductive ability of Tetranychus cinnabarinus. Insect Sci. 24, 559–568 (2017).
Google Scholar
Carey, J. R. Applied Demography for Biologists with Special Emphasis on Insects. (Oxford University Press, Oxford, 1993).
Yarwood, C. E. The phosphate effect in plant virus inoculations. Phytopathology 42, 137–143 (1952).
Google Scholar
Azizi, A., Verchot, J., Moieni, A. & Shams-bakhsh, M. Efficient silencing gene construct for resistance to multiple common bean (Phaseolus vulgaris L.) viruses. 3 Biotech 10, 1–10 (2020).
Höfgen, R. & Willmitzer, L. Storage of competent cells for Agrobacterium transformation. Nucl. Acids Res. 16, 9877 (1988).
Google Scholar
De Blas, C., Borja, M. J., Saiz, M. & Romero, J. Broad spectrum detection of cucumber mosaic virus (CMV) using the polymerase chain reaction. J. Phytopathol. 141, 323–329 (1994).
Chi, H. Life-table analysis incorporating both sexes and variable development rates among individuals. Environ. Entomol. 17, 26–34 (1988).
Chi, H. & Liu, H. Two new methods for this study of insect population ecology. Bull. Inst. Zool 24, 225–240 (1985).
Goodman, D. Optimal life histories, optimal notation, and the value of reproductive value on JSTOR. Am. Nat. 119, 803–823 (1982).
Efron, B. & Tibshirani, R. An Introduction to the Bootstrap. 436 (1994).
Akca, I., Ayvaz, T., Yazici, E., Smith, C. L. & Chi, H. Demography and population projection of aphis fabae (hemiptera: aphididae): with additional comments on life table research criteria. J. Econ. Entomol. 108, 1466–1478 (2015).
Google Scholar
Chi, H. et al. Age-stage, two-sex life table: an introduction to theory, data analysis, and application. Entomol. Gen. 40, 103–124 (2020).
Chi, H. Timing of control based on the stage structure of pest populations: a simulation approach. J. Econ. Entomol. 83, 1143–1150 (1990).
Huang, H., Chi, H. & Smith, C. Linking demography and consumption of henosepilachna vigintioctopunctata (coleoptera: coccinellidae) fed on solanum photeinocarpum (solanales: solanaceae): with a new method to project the uncertainty of population growth and consumption. J. Econ. Entomol. 111, 1–9 (2018).
Google Scholar

