Preloader

Induction of resistance to Myzus persicae-nicotianae in Cucumber mosaic virus infected tobacco plants using silencing of CMV-2b gene

  • Garcı´a-Arenal, F. and Palukaitis, P. García-arenal: desk encyclopedia of plant and fungal… Google Scholar. Acad. Press 614 (2008).

  • Zhou, B., Wang, F., Zhang, X., Zhang, L. & Lin, H. Sequencing and phylogenetic analysis of tobacco virus 2, a polerovirus from Nicotiana tabacum. Arch. Virol. 162, 2159–2162 (2017).

    CAS 
    PubMed 

    Google Scholar 

  • Hily, J. M. et al. The Relationship between Host Lifespan and Pathogen Reservoir Potential: An Analysis in the System Arabidopsis thaliana-Cucumber mosaic virus. PLOS Pathog. 10, e1004492 (2014).

    PubMed 
    PubMed Central 

    Google Scholar 

  • Gildow, F. et al. Transmission efficiency of Cucumber mosaic virus by aphids associated with virus epidemics in snap bean. Phytopathology 98, 1233–1241 (2008).

    CAS 
    PubMed 

    Google Scholar 

  • Yang, Y., Kim, K. S. & Anderson, E. J. Seed transmission of cucumber mosaic virus in spinach. Phytopathology https://doi.org/10.1094/PHYTO.1997.87.9.92487,924-931 (2007).

    Article 

    Google Scholar 

  • Nalam, V., Louis, J. & Shah, J. Plant defense against aphids, the pest extraordinaire. Plant Sci. 279, 96–107 (2019).

    CAS 
    PubMed 

    Google Scholar 

  • Jacquemond, M. Cucumber mosaic virus. Adv. Virus Res. 84, 439–504 (2012).

    PubMed 

    Google Scholar 

  • Yoon, J.-Y., Palukaitis, P. & Choi, S.-K. CHAPTER 1: host range. Cucumber Mosaic Virus https://doi.org/10.1094/9780890546109.004 (2019).

    Article 

    Google Scholar 

  • Groen, S., Wamonje, F., Murphy, A. & Carr, J. Engineering resistance to virus transmission. Curr. Opin. Virol. 26, 20–27 (2017).

    CAS 
    PubMed 

    Google Scholar 

  • Donnelly, R., Cunniffe, N. J., Carr, J. P. & Gilligan, C. A. Pathogenic modification of plants enhances long-distance dispersal of nonpersistently transmitted viruses to new hosts. Ecology 100(7), e02725 (2019).

    PubMed 

    Google Scholar 

  • Blanc, S. & Michalakis, Y. Manipulation of hosts and vectors by plant viruses and impact of the environment. Curr. Opin. Insect Sci. 16, 36–43 (2016).

    PubMed 

    Google Scholar 

  • Saurav, G. K., Rana, V. S., Popli, S., Daimei, G. & Rajagopal, R. A thioredoxin-like protein of Bemisia tabaci interacts with coat protein of begomoviruses. Virus Genes 55, 356–367 (2019).

    CAS 
    PubMed 

    Google Scholar 

  • Carmo-Sousa, M., Moreno, A., Garzo, E. & Fereres, A. A non-persistently transmitted-virus induces a pull-push strategy in its aphid vector to optimize transmission and spread. Virus Res. 186, 38–46 (2014).

    CAS 
    PubMed 

    Google Scholar 

  • Brunt, A. Plant Viruses Online: Descriptions and Lists from the VIDE Database. http://biology.anu.edu.au/Groups/MES/vide/ (1996).

  • Harris, K. F. An ingestion-egestion hypothesis of noncirculative virus transmission. Aphids Virus Vectors 165–220 (1977).

  • Lax, C. et al. The Evolutionary Significance of RNAi in the Fungal Kingdom. Int. J. Mol. Sci. 21, 1–22 (2020).

    Google Scholar 

  • Rodrigues, T. B. & Figueira, A. Management of Insect Pest by RNAi — A New Tool for Crop Protection. RNA Interf. https://doi.org/10.5772/61807 (2016).

    Article 

    Google Scholar 

  • Mathioudakis, M. M. et al. Molecular characterization of the coat protein gene of greek apple stem pitting virus isolates: Evolution through deletions, insertions, and recombination events. Plants 10, 917 (2021).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Zhang, X. et al. Cucumber mosaic virus-encoded 2b suppressor inhibits Arabidopsis Argonaute1 cleavage activity to counter plant defense. Genes Dev. 20, 3255–3268 (2006).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Ziebell, H. et al. Cucumber mosaic virus and its 2b RNA silencing suppressor modify plant-aphid interactions in tobacco. Sci. Rep. 1, 1–7 (2011).

    Google Scholar 

  • Lai, Z., Wang, F., Zheng, Z., Fan, B. & Chen, Z. A critical role of autophagy in plant resistance to necrotrophic fungal pathogens. Plant J. 66, 953–968 (2011).

    CAS 
    PubMed 

    Google Scholar 

  • Westwood, J. H. et al. Interference with jasmonic acid-regulated gene expression is a general property of viral suppressors of RNA silencing but only partly explains virus-induced changes in plant–aphid interactions. J. Gen. Virol. 95, 733–739 (2014).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Tungadi, T. et al. Cucumber mosaic virus 2b proteins inhibit virus-induced aphid resistance in tobacco. Mol. Plant Pathol. 21, 250–257 (2020).

    CAS 
    PubMed 

    Google Scholar 

  • Lewsey, M. G. et al. Disruption of two defensive signaling pathways by a viral RNA silencing suppressor. Mol. Plant-Microbe Interact. 23, 835–845 (2010).

    CAS 
    PubMed 

    Google Scholar 

  • Love, A. J. et al. Cauliflower mosaic virus protein P6 inhibits signaling responses to salicylic acid and regulates innate immunity. PLoS ONE 7, e47535 (2012).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Shi, X. et al. Aphid performance changes with plant defense mediated by Cucumber mosaic virus titer. Virol. J. 13, 1–6 (2016).

    Google Scholar 

  • Blackman, R. L. & Eastop, V. F. Aphids on the World’s Crops: An Identification and Information Guide, 2nd Edition – R. L. Blackman, V. F. Eastop. 476 (2000).

  • Moury, B., Fabre, F. & Senoussi, R. Estimation of the number of virus particles transmitted by an insect vector. Proc. Natl. Acad. Sci. U. S. A. 104, 17891 (2007).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • van-Emden, H. & Harrington, R. Aphids as Crop Pests – CABI.org. CABI https://www.cabi.org/bookshop/book/9781780647098/ (2007).

  • Yu, X. et al. RNAi-mediated plant protection against aphids. Pest Manag. Sci. 72, 1090–1098 (2016).

    CAS 
    PubMed 

    Google Scholar 

  • Ann K. Sakai et al. The population biology of invasive species. 32, 305–332 https://doi.org/10.1146/annurev.ecolsys.32.081501.11403732,305-332 (2001).

  • Kakde, A. M., Patel, K. G. & Tayade, S. Role of life table in insect pest management-a review. IOSR J. Agric. Vet. Sci. 7, 40–43 (2014).

    Google Scholar 

  • Ullah, F. et al. RNAi-Mediated Knockdown of Chitin Synthase 1 (CHS1) Gene Causes Mortality and Decreased Longevity and Fecundity in Aphis gossypii. Insects 11, 22 (2020).

    Google Scholar 

  • Mauck, K. E., De Moraes, C. M. & Mescher, M. C. Deceptive chemical signals induced by a plant virus attract insect vectors to inferior hosts. Proc. Natl. Acad. Sci. 107, 3600–3605 (2010).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Westwood, J. et al. A trio of viral proteins tunes aphid-plant interactions in Arabidopsis thaliana. PLoS One 8, (2013).

  • Mauck, K. E., Smyers, E., De Moraes, C. M. & Mescher, M. C. Virus infection influences host plant interactions with non-vector herbivores and predators. Funct. Ecol. 29, 662–673 (2015).

    Google Scholar 

  • Mauck, K., De Moraes, C. & Mescher, M. Biochemical and physiological mechanisms underlying effects of Cucumber mosaic virus on host-plant traits that mediate transmission by aphid vectors. Plant. Cell Environ. 37, 1427–1439 (2014).

    CAS 
    PubMed 

    Google Scholar 

  • Turner, J. G., Ellis, C. & Devoto, A. The Jasmonate Signal Pathway. Plant Cell 14, S153–S164 (2002).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Zhang, H., Xie, X., Xu, Y. & Wu, N. Isolation and functional assessment of a tomato proteinase inhibitor II gene. Plant Physiol. Biochem. PPB 42, 437–444 (2004).

    CAS 
    PubMed 

    Google Scholar 

  • Pegadaraju, V., Knepper, C., Reese, J. & Shah, J. Premature leaf senescence modulated by the arabidopsis PHYTOALEXIN DEFICIENT4 gene is associated with defense against the phloem-feeding green peach aphid. Plant Physiol. 139, 1927–1934 (2005).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Tungadi, T. et al. Cucumber mosaic virus and its 2b protein alter emission of host volatile organic compounds but not aphid vector settling in tobacco. Virol. J. 14, 1–9 (2017).

    Google Scholar 

  • Shi, X. et al. Plant virus differentially alters the plant’s defense response to its closely related vectors. PLoS ONE 8, e83520 (2013).

    PubMed 
    PubMed Central 

    Google Scholar 

  • Donovan, M. P., Nabity, P. D. & DeLucia, E. H. Salicylic acid-mediated reductions in yield in Nicotiana attenuata challenged by aphid herbivory. Arthropod-Plant Interact. 7, 45–52 (2013).

    Google Scholar 

  • Koornneef, A. & Pieterse, C. Cross talk in defense signaling. Plant Physiol. 146, 839–844 (2008).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Guo, W. et al. Double-Stranded RNAs High-Efficiently Protect Transgenic Potato from Leptinotarsa decemlineata by Disrupting Juvenile Hormone Biosynthesis. J. Agric. Food Chem. 66, 11990–11999 (2018).

    CAS 
    PubMed 

    Google Scholar 

  • Wuriyanghan, H. & Falk, B. W. RNA Interference towards the Potato Psyllid, Bactericera cockerelli, Is Induced in Plants Infected with Recombinant Tobacco mosaic virus (TMV). PLoS ONE 8, e66050 (2013).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Shen, G.-M. et al. Transgenic cotton expressing CYP392A4 double-stranded RNA decreases the reproductive ability of Tetranychus cinnabarinus. Insect Sci. 24, 559–568 (2017).

    CAS 
    PubMed 

    Google Scholar 

  • Carey, J. R. Applied Demography for Biologists with Special Emphasis on Insects. (Oxford University Press, Oxford, 1993).

  • Yarwood, C. E. The phosphate effect in plant virus inoculations. Phytopathology 42, 137–143 (1952).

    CAS 

    Google Scholar 

  • Azizi, A., Verchot, J., Moieni, A. & Shams-bakhsh, M. Efficient silencing gene construct for resistance to multiple common bean (Phaseolus vulgaris L.) viruses. 3 Biotech 10, 1–10 (2020).

    Google Scholar 

  • Höfgen, R. & Willmitzer, L. Storage of competent cells for Agrobacterium transformation. Nucl. Acids Res. 16, 9877 (1988).

    PubMed 
    PubMed Central 

    Google Scholar 

  • De Blas, C., Borja, M. J., Saiz, M. & Romero, J. Broad spectrum detection of cucumber mosaic virus (CMV) using the polymerase chain reaction. J. Phytopathol. 141, 323–329 (1994).

    Google Scholar 

  • Chi, H. Life-table analysis incorporating both sexes and variable development rates among individuals. Environ. Entomol. 17, 26–34 (1988).

    Google Scholar 

  • Chi, H. & Liu, H. Two new methods for this study of insect population ecology. Bull. Inst. Zool 24, 225–240 (1985).

    Google Scholar 

  • Goodman, D. Optimal life histories, optimal notation, and the value of reproductive value on JSTOR. Am. Nat. 119, 803–823 (1982).

    Google Scholar 

  • Efron, B. & Tibshirani, R. An Introduction to the Bootstrap. 436 (1994).

  • Akca, I., Ayvaz, T., Yazici, E., Smith, C. L. & Chi, H. Demography and population projection of aphis fabae (hemiptera: aphididae): with additional comments on life table research criteria. J. Econ. Entomol. 108, 1466–1478 (2015).

    PubMed 

    Google Scholar 

  • Chi, H. et al. Age-stage, two-sex life table: an introduction to theory, data analysis, and application. Entomol. Gen. 40, 103–124 (2020).

    Google Scholar 

  • Chi, H. Timing of control based on the stage structure of pest populations: a simulation approach. J. Econ. Entomol. 83, 1143–1150 (1990).

    Google Scholar 

  • Huang, H., Chi, H. & Smith, C. Linking demography and consumption of henosepilachna vigintioctopunctata (coleoptera: coccinellidae) fed on solanum photeinocarpum (solanales: solanaceae): with a new method to project the uncertainty of population growth and consumption. J. Econ. Entomol. 111, 1–9 (2018).

    PubMed 

    Google Scholar 

  • Source link