Preloader

In vivo toxicity of bioreactor-grown biomass and exopolysaccharides from Malaysian tiger milk mushroom mycelium for potential future health applications

  • 1.

    Waktola, G. & Temesgen, T. Application of mushroom as food and medicine. Adv. Biotechnol. Microbiol. 113, 1–4. https://doi.org/10.19080/AIBM.2018.11.555817 (2018).

    Article 

    Google Scholar 

  • 2.

    Vunduk, J. et al. Polysaccharides of Pleurotus flabellatus strain Mynuk produced by submerged fermentation as a promising novel tool against adhesion and biofilm formation of foodborne pathogens. Lwt 112, 108221. https://doi.org/10.1016/j.lwt.2019.05.119 (2019).

    CAS 
    Article 

    Google Scholar 

  • 3.

    Sullivan, R., Smith, J. E. & Rowan, N. J. Medicinal mushrooms and cancer therapy: Translating a traditional practice into Western medicine. Perspect. Biol. Med. 49, 159–170. https://doi.org/10.1353/pbm.2006.0034 (2006).

    CAS 
    Article 
    PubMed 

    Google Scholar 

  • 4.

    Smith, J. E., Rowan, N. J. & Sullivan, R. Medicinal mushrooms: A rapidly developing area of biotechnology for cancer therapy and other bioactivities. Biotech. Lett. 24, 1839–1845. https://doi.org/10.1023/A:1020994628109 (2002).

    CAS 
    Article 

    Google Scholar 

  • 5.

    Sujarit, K., Suwannarach, N., Kumla, J. & Lomthong, T. Mushrooms: Splendid gifts for the cosmetic industry. Chiang Mai J. Sci. 48, 699–725 (2021).

    CAS 

    Google Scholar 

  • 6.

    Cerimi, K., Akkaya, K. C., Pohl, C., Schmidt, B. & Neubauer, P. Fungi as source for new bio-based materials: A patent review. Fungal Biol. Biotechnol. 6, 1–10. https://doi.org/10.1186/s40694-019-0080-y (2019).

    Article 

    Google Scholar 

  • 7.

    Meyer, V. et al. Current challenges of research on filamentous fungi in relation to human welfare and a sustainable bio-economy: A white paper. Fungal Biol. Biotechnol. 3, 1–17. https://doi.org/10.1186/s40694-016-0024-8 (2016).

    Article 

    Google Scholar 

  • 8.

    Wan-Mohtar, W. et al. Fruiting-body-base flour from an oyster mushroom-a waste source of antioxidative flour for developing potential functional cookies and steamed-bun. AIMS Agric. Food https://doi.org/10.3934/agrfood.2018.4.481 (2018).

    Article 

    Google Scholar 

  • 9.

    Wan-Mohtar, W. A. A. I. et al. Fruiting-body-base flour from an Oyster mushroom waste in the development of antioxidative chicken patty. J. Food Sci. 85, 3124–3133. https://doi.org/10.1111/1750-3841.15402 (2020).

    CAS 
    Article 
    PubMed 

    Google Scholar 

  • 10.

    Rowan, N. J. & Galanakis, C. M. Unlocking challenges and opportunities presented by COVID-19 pandemic for cross-cutting disruption in agri-food and green deal innovations: Quo Vadis?. Sci. Total Environ. https://doi.org/10.1016/j.scitotenv.2020.141362 (2020).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • 11.

    Rowan, N. J. & Casey, O. Empower Eco Multi-Actor HUB: A triple helix “academia-industry-authority” approach to creating and sharing potentially disruptive tools for addressing novel and emerging new Green Deal opportunities under a United Nations’ Sustainable Development Goals framework. Current Opin. Environ. Sci. Health https://doi.org/10.1016/j.coesh.2021.100254 (2021).

    Article 

    Google Scholar 

  • 12.

    Tran, T. N. T. et al. Modelling drying kinetic of oyster mushroom dehydration–The optimization of drying conditions for dehydratation of Pleurotus species. Mater. Sci. Energy Technol. 3, 840–845. https://doi.org/10.1016/j.mset.2020.10.005 (2020).

    Article 

    Google Scholar 

  • 13.

    Águila-Almanza, E. et al. Facile and green approach in managing sand crab carapace biowaste for obtention of high deacetylation percentage chitosan. J. Environ. Chem. Eng. 9, 105229. https://doi.org/10.1021/cm501852w (2021).

    CAS 
    Article 

    Google Scholar 

  • 14.

    Zhou, Y. et al. Characterization of whey protein isolate and pectin composite film catalyzed by small laccase from Streptomyces coelicolor. Environ. Technol. Innov. 19, 100999. https://doi.org/10.1016/j.eti.2020.100999 (2020).

    Article 

    Google Scholar 

  • 15.

    Guggenheim, A. G., Wright, K. M. & Zwickey, H. L. Immune modulation from five major mushrooms: Application to integrative oncology. Integrat. Med. Clin. J. 13, 32 (2014).

    Google Scholar 

  • 16.

    Murphy, E. J., Rezoagli, E., Major, I., Rowan, N. J. & Laffey, J. G. β-glucan metabolic and immunomodulatory properties and potential for clinical application. J. Fungi 6, 356. https://doi.org/10.3390/jof6040356 (2020).

    CAS 
    Article 

    Google Scholar 

  • 17.

    Mahari, W. A. W. et al. A review on valorization of oyster mushroom and waste generated in the mushroom cultivation industry. J. Hazard. Mater. 400, 123156. https://doi.org/10.1016/j.jhazmat.2020.123156 (2020).

    CAS 
    Article 

    Google Scholar 

  • 18.

    Murphy, E. J. et al. β-Glucan extracts from the same edible shiitake mushroom Lentinus edodes produce differential in-vitro immunomodulatory and pulmonary cytoprotective effects—Implications for coronavirus disease (COVID-19) immunotherapies. Sci. Total Environ. 732, 139330. https://doi.org/10.1016/j.scitotenv.2020.139330 (2020).

    ADS 
    CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • 19.

    Pogue, R., Murphy, E. J., Fehrenbach, G. W., Rezoagli, E. & Rowan, N. J. Exploiting immunomodulatory properties of beta-glucans derived from natural products for improving health and sustainability in aquaculture-farmed organisms: concise review of existing knowledge, innovation and future opportunities. Current Opin. Environ. Sci. Health https://doi.org/10.1016/j.coesh.2021.100248 (2021).

    Article 

    Google Scholar 

  • 20.

    Pushparajah, V. et al. Characterisation of a new fungal immunomodulatory protein from tiger milk mushroom Lignosus rhinocerotis. Sci. Rep. 6, 30010. https://doi.org/10.1038/srep30010 (2016).

    ADS 
    CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • 21.

    Usuldin, S. R. A. et al. In-depth spectral characterization of antioxidative (1, 3)-β-D-glucan from the mycelium of an identified tiger milk mushroom Lignosus rhinocerus strain ABI in a stirred-tank bioreactor. Biocatal. Agric. Biotechnol. 23, 101455. https://doi.org/10.1016/j.bcab.2019.101455 (2020).

    Article 

    Google Scholar 

  • 22.

    Abdullah, N., Haimi, M. Z. D., Lau, B. F. & Annuar, M. S. M. Domestication of a wild medicinal sclerotial mushroom, Lignosus rhinocerotis (Cooke) Ryvarden. Ind. Crops Prod. 47, 256–261. https://doi.org/10.1016/j.indcrop.2013.03.012 (2013).

    Article 

    Google Scholar 

  • 23.

    Johnathan, M., Gan, S. H., Ezumi, M. F. W., Faezahtul, A. H. & Nurul, A. A. Phytochemical profiles and inhibitory effects of Tiger Milk mushroom (Lignosus rhinocerus) extract on ovalbumin-induced airway inflammation in a rodent model of asthma. BMC Complement. Altern. Med. 16, 167. https://doi.org/10.1186/s12906-016-1141-x (2016).

    CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • 24.

    Supramani, S.A.R.I.Z.A.M.S.M.K.A.W.-M.W.A.A.Q.I. Optimisation of biomass, exopolysaccharide and intracellular polysaccharide production from the mycelium of an identified Ganoderma lucidum strain QRS 5120 using response surface methodology. AIMS Microbiol. 5, 19–38. https://doi.org/10.3934/microbiol.2019.1.19 (2019).

    CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • 25.

    Phan, C.-W., David, P. & Sabaratnam, V. Edible and medicinal mushrooms: Emerging brain food for the mitigation of neurodegenerative diseases. J. Med. Food 20, 1–10. https://doi.org/10.1089/jmf.2016.3740 (2017).

    Article 
    PubMed 

    Google Scholar 

  • 26.

    Chen, T.-I., Zhuang, H.-W., Chiao, Y.-C. & Chen, C.-C. Mutagenicity and genotoxicity effects of Lignosus rhinocerotis mushroom mycelium. J. Ethnopharmacol. 149, 70–74. https://doi.org/10.1016/j.jep.2013.06.001 (2013).

    CAS 
    Article 
    PubMed 

    Google Scholar 

  • 27.

    Masterson, C. H. et al. Purified β-glucans from the Shiitake mushroom ameliorates antibiotic-resistant Klebsiella pneumoniae-induced pulmonary sepsis. Lett. Appl. Microbiol. 71, 405–412. https://doi.org/10.1111/lam.13358 (2020).

    CAS 
    Article 
    PubMed 

    Google Scholar 

  • 28.

    Johnathan, M. et al. Lignosus rhinocerotis Cooke Ryvarden ameliorates airway inflammation, mucus hypersecretion and airway hyperresponsiveness in a murine model of asthma. PLoS ONE 16, e0249091. https://doi.org/10.1371/journal.pone.0247639 (2021).

    CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • 29.

    Lee, S. S., Tan, N. H., Fung, S. Y., Pailoor, J. & Sim, S. M. Evaluation of the sub-acute toxicity of the sclerotium of Lignosus rhinocerus (Cooke), the Tiger Milk mushroom. J. Ethnopharmacol. 138, 192–200. https://doi.org/10.1016/j.jep.2011.09.004 (2011).

    Article 
    PubMed 

    Google Scholar 

  • 30.

    Zhang, C., Willett, C. & Fremgen, T. Zebrafish: an animal model for toxicological studies. Current Protocols Toxicol. 17, 171–1718. https://doi.org/10.1002/0471140856.tx0107s17 (2003).

    Article 

    Google Scholar 

  • 31.

    Reed, B. & Jennings, M. Guidance on the housing and care of zebrafish danio rerio. Guidance on the housing and care of zebrafish Danio rerio. (2011).

  • 32.

    Su, T. et al. The feasibility of the zebrafish embryo as a promising alternative for acute toxicity test using various fish species: A critical review. Sci. Total Environ. https://doi.org/10.1016/j.scitotenv.2021.147705 (2021).

    Article 
    PubMed 

    Google Scholar 

  • 33.

    Abramenko, N. et al. Acute toxicity of Cu-MOF nanoparticles (nanoHKUST-1) towards embryos and adult Zebrafish. Int. J. Mol. Sci. 22, 5568. https://doi.org/10.3390/ijms22115568 (2021).

    CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • 34.

    Dubińska-Magiera, M., Migocka-Patrzałek, M., Lewandowski, D., Daczewska, M. & Jagla, K. Zebrafish as a model for the study of lipid-lowering drug-induced myopathies. Int. J. Mol. Sci. 22, 5654. https://doi.org/10.3390/ijms22115654 (2021).

    CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • 35.

    Taufek, N. M. et al. Performance of mycelial biomass and exopolysaccharide from Malaysian Ganoderma lucidum for the fungivore red hybrid Tilapia (Oreochromis sp.) in Zebrafish embryo. Aquaculture Rep. https://doi.org/10.1016/j.aqrep.2020.100322 (2020).

    Article 

    Google Scholar 

  • 36.

    Paatero, I. et al. Analyses in zebrafish embryos reveal that nanotoxicity profiles are dependent on surface-functionalization controlled penetrance of biological membranes. Sci. Rep. 7, 8423. https://doi.org/10.1038/s41598-017-09312-z (2017).

    ADS 
    CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • 37.

    Saleem, S. & Kannan, R. R. Zebrafish: an emerging real-time model system to study Alzheimer’s disease and neurospecific drug discovery. Cell Death Discov. 4, 45. https://doi.org/10.1038/s41420-018-0109-7 (2018).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • 38.

    Bakkers, J. Zebrafish as a model to study cardiac development and human cardiac disease. Cardiovasc. Res. 91, 279–288. https://doi.org/10.1093/cvr/cvr098 (2011).

    CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • 39.

    Baker, K., Warren, K. S., Yellen, G. & Fishman, M. C. Defective, “pacemaker” current (Ih) in a zebrafish mutant with a slow heart rate. Proc. Natl. Acad. Sci. 94, 4554–4559. https://doi.org/10.1073/pnas.94.9.4554 (1997).

    ADS 
    CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • 40.

    Choudhary, S. in New and Future Developments in Microbial Biotechnology and Bioengineering 171–181 (2020).

  • 41.

    van Steenwijk, H. P., Bast, A. & de Boer, A. Immunomodulating effects of fungal beta-glucans: From traditional use to medicine. Nutrients 1, 3. https://doi.org/10.3390/nu13041333 (2021).

    CAS 
    Article 

    Google Scholar 

  • 42.

    Veeraperumal, S. et al. Restitution of epithelial cells during intestinal mucosal wound healing: The effect of a polysaccharide from the sclerotium of Lignosus rhinocerotis (Cooke) Ryvarden. J. Ethnopharmacol. 274, 114024. https://doi.org/10.1016/j.jep.2021.114024 (2021).

    CAS 
    Article 
    PubMed 

    Google Scholar 

  • 43.

    Vetvicka, V., Teplyakova, T. V., Shintyapina, A. B. & Korolenko, T. A. Effects of medicinal fungi-derived β-glucan on tumor progression. J. Fungi 7, 250. https://doi.org/10.3390/jof7040250 (2021).

    CAS 
    Article 

    Google Scholar 

  • 44.

    Tan, E. S. S., Leo, T. K. & Tan, C. K. Effect of tiger milk mushroom (Lignosus rhinocerus) supplementation on respiratory health, immunity and antioxidant status: An open-label prospective study. Sci. Rep. 11, 11781. https://doi.org/10.1038/s41598-021-91256-6 (2021).

    ADS 
    CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • 45.

    Lau, B. F. et al. The potential of mycelium and culture broth of Lignosus rhinocerotis as substitutes for the naturally occurring sclerotium with regard to antioxidant capacity, cytotoxic effect, and low-molecular-weight chemical constituents. PLoS ONE 9, e102509. https://doi.org/10.1371/journal.pone.0102509 (2014).

    ADS 
    CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • 46.

    Lau, B. F., Abdullah, N. & Aminudin, N. Chemical composition of the tiger’s milk mushroom, Lignosus rhinocerotis (Cooke) Ryvarden, from different developmental stages. J. Agric. Food Chem. 61, 4890–4897. https://doi.org/10.1021/jf4002507 (2013).

    CAS 
    Article 
    PubMed 

    Google Scholar 

  • 47.

    Abdullah, N. R. et al. Pellet diameter of Ganoderma lucidum in a repeated-batch fermentation for the trio total production of biomass-exopolysaccharide-endopolysaccharide and its anti-oral cancer beta-glucan response. AIMS Microbiol. 6, 379–400. https://doi.org/10.3934/microbiol.2020023 (2020).

    CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • 48.

    Wan-Mohtar, W. A. A. Q. I. et al. Investigations on the use of exopolysaccharide derived from mycelial extract of Ganoderma lucidum as functional feed ingredient for aquaculture-farmed red hybrid Tilapia (Oreochromis sp.). Future Foods https://doi.org/10.1016/j.fufo.2021.100018 (2021).

    Article 

    Google Scholar 

  • 49.

    Wan-Mohtar, W. A. A. Q. I., Ilham, Z., Jamaludin, A. A. & Rowan, N. Use of zebrafish embryo assay to evaluate toxicity and safety of bioreactor-grown exopolysaccharides and endopolysaccharides from European ganoderma applanatum mycelium for future aquaculture applications. Int. J. Mol. Sci. 22, 1675 (2021).

    CAS 
    Article 

    Google Scholar 

  • 50.

    Lau, B. F., Abdullah, N., Aminudin, N., Lee, H. B. & Tan, P. J. Ethnomedicinal uses, pharmacological activities, and cultivation of Lignosus spp. (tigers milk mushrooms) in Malaysia—A review. J. Ethnopharmacol. 169, 441–458. https://doi.org/10.1016/j.jep.2015.04.042 (2015).

    CAS 
    Article 
    PubMed 

    Google Scholar 

  • 51.

    Phan, C. W., David, P., Naidu, M., Wong, K. H. & Sabaratnam, V. Neurite outgrowth stimulatory effects of culinary-medicinal mushrooms and their toxicity assessment using differentiating Neuro-2a and embryonic fibroblast BALB/3T3. BMC Complement Altern. Med. 13, 261. https://doi.org/10.1186/1472-6882-13-261 (2013).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • 52.

    Jhou, B. Y., Liu, H. H., Yeh, S. H. & Chen, C. C. Oral reproductive and developmental toxicity of Lignosus rhinocerotis mycelium in rat. J. Ethnopharmacol. 208, 66–71. https://doi.org/10.1016/j.jep.2017.06.029 (2017).

    Article 
    PubMed 

    Google Scholar 

  • 53.

    Galanakis, C. M., Aldawoud, T. M. S., Rizou, M., Rowan, N. J. & Ibrahim, S. A. Food ingredients and active compounds against the coronavirus disease (COVID-19) pandemic: A comprehensive review. Foods 9, 1701. https://doi.org/10.3390/foods9111701 (2020).

    CAS 
    Article 

    Google Scholar 

  • 54.

    Wan-Mohtar, W. A. et al. Antimicrobial properties and cytotoxicity of sulfated (1,3)-beta-D-glucan from the mycelium of the mushroom Ganoderma lucidum. J. Microbiol. Biotechnol. 26, 999–1010. https://doi.org/10.4014/jmb.1510.10018 (2016).

    CAS 
    Article 
    PubMed 

    Google Scholar 

  • 55.

    Wan-Mohtar, W. A. A. Q. I., Abd, M. R., Harvey, L. M. & McNeil, B. Exopolysaccharide production by Ganoderma lucidum immobilised on polyurethane foam in a repeated-batch fermentation. Biocatal Agric Biotechnol 8, 24–31. https://doi.org/10.1016/j.bcab.2016.08.002 (2016).

    Article 

    Google Scholar 

  • 56.

    OECD. Test No. 236: Fish Embryo Acute Toxicity (FET) Test. (2013).

  • Source link