Waktola, G. & Temesgen, T. Application of mushroom as food and medicine. Adv. Biotechnol. Microbiol. 113, 1–4. https://doi.org/10.19080/AIBM.2018.11.555817 (2018).
Google Scholar
Vunduk, J. et al. Polysaccharides of Pleurotus flabellatus strain Mynuk produced by submerged fermentation as a promising novel tool against adhesion and biofilm formation of foodborne pathogens. Lwt 112, 108221. https://doi.org/10.1016/j.lwt.2019.05.119 (2019).
Google Scholar
Sullivan, R., Smith, J. E. & Rowan, N. J. Medicinal mushrooms and cancer therapy: Translating a traditional practice into Western medicine. Perspect. Biol. Med. 49, 159–170. https://doi.org/10.1353/pbm.2006.0034 (2006).
Google Scholar
Smith, J. E., Rowan, N. J. & Sullivan, R. Medicinal mushrooms: A rapidly developing area of biotechnology for cancer therapy and other bioactivities. Biotech. Lett. 24, 1839–1845. https://doi.org/10.1023/A:1020994628109 (2002).
Google Scholar
Sujarit, K., Suwannarach, N., Kumla, J. & Lomthong, T. Mushrooms: Splendid gifts for the cosmetic industry. Chiang Mai J. Sci. 48, 699–725 (2021).
Google Scholar
Cerimi, K., Akkaya, K. C., Pohl, C., Schmidt, B. & Neubauer, P. Fungi as source for new bio-based materials: A patent review. Fungal Biol. Biotechnol. 6, 1–10. https://doi.org/10.1186/s40694-019-0080-y (2019).
Google Scholar
Meyer, V. et al. Current challenges of research on filamentous fungi in relation to human welfare and a sustainable bio-economy: A white paper. Fungal Biol. Biotechnol. 3, 1–17. https://doi.org/10.1186/s40694-016-0024-8 (2016).
Google Scholar
Wan-Mohtar, W. et al. Fruiting-body-base flour from an oyster mushroom-a waste source of antioxidative flour for developing potential functional cookies and steamed-bun. AIMS Agric. Food https://doi.org/10.3934/agrfood.2018.4.481 (2018).
Google Scholar
Wan-Mohtar, W. A. A. I. et al. Fruiting-body-base flour from an Oyster mushroom waste in the development of antioxidative chicken patty. J. Food Sci. 85, 3124–3133. https://doi.org/10.1111/1750-3841.15402 (2020).
Google Scholar
Rowan, N. J. & Galanakis, C. M. Unlocking challenges and opportunities presented by COVID-19 pandemic for cross-cutting disruption in agri-food and green deal innovations: Quo Vadis?. Sci. Total Environ. https://doi.org/10.1016/j.scitotenv.2020.141362 (2020).
Google Scholar
Rowan, N. J. & Casey, O. Empower Eco Multi-Actor HUB: A triple helix “academia-industry-authority” approach to creating and sharing potentially disruptive tools for addressing novel and emerging new Green Deal opportunities under a United Nations’ Sustainable Development Goals framework. Current Opin. Environ. Sci. Health https://doi.org/10.1016/j.coesh.2021.100254 (2021).
Google Scholar
Tran, T. N. T. et al. Modelling drying kinetic of oyster mushroom dehydration–The optimization of drying conditions for dehydratation of Pleurotus species. Mater. Sci. Energy Technol. 3, 840–845. https://doi.org/10.1016/j.mset.2020.10.005 (2020).
Google Scholar
Águila-Almanza, E. et al. Facile and green approach in managing sand crab carapace biowaste for obtention of high deacetylation percentage chitosan. J. Environ. Chem. Eng. 9, 105229. https://doi.org/10.1021/cm501852w (2021).
Google Scholar
Zhou, Y. et al. Characterization of whey protein isolate and pectin composite film catalyzed by small laccase from Streptomyces coelicolor. Environ. Technol. Innov. 19, 100999. https://doi.org/10.1016/j.eti.2020.100999 (2020).
Google Scholar
Guggenheim, A. G., Wright, K. M. & Zwickey, H. L. Immune modulation from five major mushrooms: Application to integrative oncology. Integrat. Med. Clin. J. 13, 32 (2014).
Murphy, E. J., Rezoagli, E., Major, I., Rowan, N. J. & Laffey, J. G. β-glucan metabolic and immunomodulatory properties and potential for clinical application. J. Fungi 6, 356. https://doi.org/10.3390/jof6040356 (2020).
Google Scholar
Mahari, W. A. W. et al. A review on valorization of oyster mushroom and waste generated in the mushroom cultivation industry. J. Hazard. Mater. 400, 123156. https://doi.org/10.1016/j.jhazmat.2020.123156 (2020).
Google Scholar
Murphy, E. J. et al. β-Glucan extracts from the same edible shiitake mushroom Lentinus edodes produce differential in-vitro immunomodulatory and pulmonary cytoprotective effects—Implications for coronavirus disease (COVID-19) immunotherapies. Sci. Total Environ. 732, 139330. https://doi.org/10.1016/j.scitotenv.2020.139330 (2020).
Google Scholar
Pogue, R., Murphy, E. J., Fehrenbach, G. W., Rezoagli, E. & Rowan, N. J. Exploiting immunomodulatory properties of beta-glucans derived from natural products for improving health and sustainability in aquaculture-farmed organisms: concise review of existing knowledge, innovation and future opportunities. Current Opin. Environ. Sci. Health https://doi.org/10.1016/j.coesh.2021.100248 (2021).
Google Scholar
Pushparajah, V. et al. Characterisation of a new fungal immunomodulatory protein from tiger milk mushroom Lignosus rhinocerotis. Sci. Rep. 6, 30010. https://doi.org/10.1038/srep30010 (2016).
Google Scholar
Usuldin, S. R. A. et al. In-depth spectral characterization of antioxidative (1, 3)-β-D-glucan from the mycelium of an identified tiger milk mushroom Lignosus rhinocerus strain ABI in a stirred-tank bioreactor. Biocatal. Agric. Biotechnol. 23, 101455. https://doi.org/10.1016/j.bcab.2019.101455 (2020).
Google Scholar
Abdullah, N., Haimi, M. Z. D., Lau, B. F. & Annuar, M. S. M. Domestication of a wild medicinal sclerotial mushroom, Lignosus rhinocerotis (Cooke) Ryvarden. Ind. Crops Prod. 47, 256–261. https://doi.org/10.1016/j.indcrop.2013.03.012 (2013).
Google Scholar
Johnathan, M., Gan, S. H., Ezumi, M. F. W., Faezahtul, A. H. & Nurul, A. A. Phytochemical profiles and inhibitory effects of Tiger Milk mushroom (Lignosus rhinocerus) extract on ovalbumin-induced airway inflammation in a rodent model of asthma. BMC Complement. Altern. Med. 16, 167. https://doi.org/10.1186/s12906-016-1141-x (2016).
Google Scholar
Supramani, S.A.R.I.Z.A.M.S.M.K.A.W.-M.W.A.A.Q.I. Optimisation of biomass, exopolysaccharide and intracellular polysaccharide production from the mycelium of an identified Ganoderma lucidum strain QRS 5120 using response surface methodology. AIMS Microbiol. 5, 19–38. https://doi.org/10.3934/microbiol.2019.1.19 (2019).
Google Scholar
Phan, C.-W., David, P. & Sabaratnam, V. Edible and medicinal mushrooms: Emerging brain food for the mitigation of neurodegenerative diseases. J. Med. Food 20, 1–10. https://doi.org/10.1089/jmf.2016.3740 (2017).
Google Scholar
Chen, T.-I., Zhuang, H.-W., Chiao, Y.-C. & Chen, C.-C. Mutagenicity and genotoxicity effects of Lignosus rhinocerotis mushroom mycelium. J. Ethnopharmacol. 149, 70–74. https://doi.org/10.1016/j.jep.2013.06.001 (2013).
Google Scholar
Masterson, C. H. et al. Purified β-glucans from the Shiitake mushroom ameliorates antibiotic-resistant Klebsiella pneumoniae-induced pulmonary sepsis. Lett. Appl. Microbiol. 71, 405–412. https://doi.org/10.1111/lam.13358 (2020).
Google Scholar
Johnathan, M. et al. Lignosus rhinocerotis Cooke Ryvarden ameliorates airway inflammation, mucus hypersecretion and airway hyperresponsiveness in a murine model of asthma. PLoS ONE 16, e0249091. https://doi.org/10.1371/journal.pone.0247639 (2021).
Google Scholar
Lee, S. S., Tan, N. H., Fung, S. Y., Pailoor, J. & Sim, S. M. Evaluation of the sub-acute toxicity of the sclerotium of Lignosus rhinocerus (Cooke), the Tiger Milk mushroom. J. Ethnopharmacol. 138, 192–200. https://doi.org/10.1016/j.jep.2011.09.004 (2011).
Google Scholar
Zhang, C., Willett, C. & Fremgen, T. Zebrafish: an animal model for toxicological studies. Current Protocols Toxicol. 17, 171–1718. https://doi.org/10.1002/0471140856.tx0107s17 (2003).
Google Scholar
Reed, B. & Jennings, M. Guidance on the housing and care of zebrafish danio rerio. Guidance on the housing and care of zebrafish Danio rerio. (2011).
Su, T. et al. The feasibility of the zebrafish embryo as a promising alternative for acute toxicity test using various fish species: A critical review. Sci. Total Environ. https://doi.org/10.1016/j.scitotenv.2021.147705 (2021).
Google Scholar
Abramenko, N. et al. Acute toxicity of Cu-MOF nanoparticles (nanoHKUST-1) towards embryos and adult Zebrafish. Int. J. Mol. Sci. 22, 5568. https://doi.org/10.3390/ijms22115568 (2021).
Google Scholar
Dubińska-Magiera, M., Migocka-Patrzałek, M., Lewandowski, D., Daczewska, M. & Jagla, K. Zebrafish as a model for the study of lipid-lowering drug-induced myopathies. Int. J. Mol. Sci. 22, 5654. https://doi.org/10.3390/ijms22115654 (2021).
Google Scholar
Taufek, N. M. et al. Performance of mycelial biomass and exopolysaccharide from Malaysian Ganoderma lucidum for the fungivore red hybrid Tilapia (Oreochromis sp.) in Zebrafish embryo. Aquaculture Rep. https://doi.org/10.1016/j.aqrep.2020.100322 (2020).
Google Scholar
Paatero, I. et al. Analyses in zebrafish embryos reveal that nanotoxicity profiles are dependent on surface-functionalization controlled penetrance of biological membranes. Sci. Rep. 7, 8423. https://doi.org/10.1038/s41598-017-09312-z (2017).
Google Scholar
Saleem, S. & Kannan, R. R. Zebrafish: an emerging real-time model system to study Alzheimer’s disease and neurospecific drug discovery. Cell Death Discov. 4, 45. https://doi.org/10.1038/s41420-018-0109-7 (2018).
Google Scholar
Bakkers, J. Zebrafish as a model to study cardiac development and human cardiac disease. Cardiovasc. Res. 91, 279–288. https://doi.org/10.1093/cvr/cvr098 (2011).
Google Scholar
Baker, K., Warren, K. S., Yellen, G. & Fishman, M. C. Defective, “pacemaker” current (Ih) in a zebrafish mutant with a slow heart rate. Proc. Natl. Acad. Sci. 94, 4554–4559. https://doi.org/10.1073/pnas.94.9.4554 (1997).
Google Scholar
Choudhary, S. in New and Future Developments in Microbial Biotechnology and Bioengineering 171–181 (2020).
van Steenwijk, H. P., Bast, A. & de Boer, A. Immunomodulating effects of fungal beta-glucans: From traditional use to medicine. Nutrients 1, 3. https://doi.org/10.3390/nu13041333 (2021).
Google Scholar
Veeraperumal, S. et al. Restitution of epithelial cells during intestinal mucosal wound healing: The effect of a polysaccharide from the sclerotium of Lignosus rhinocerotis (Cooke) Ryvarden. J. Ethnopharmacol. 274, 114024. https://doi.org/10.1016/j.jep.2021.114024 (2021).
Google Scholar
Vetvicka, V., Teplyakova, T. V., Shintyapina, A. B. & Korolenko, T. A. Effects of medicinal fungi-derived β-glucan on tumor progression. J. Fungi 7, 250. https://doi.org/10.3390/jof7040250 (2021).
Google Scholar
Tan, E. S. S., Leo, T. K. & Tan, C. K. Effect of tiger milk mushroom (Lignosus rhinocerus) supplementation on respiratory health, immunity and antioxidant status: An open-label prospective study. Sci. Rep. 11, 11781. https://doi.org/10.1038/s41598-021-91256-6 (2021).
Google Scholar
Lau, B. F. et al. The potential of mycelium and culture broth of Lignosus rhinocerotis as substitutes for the naturally occurring sclerotium with regard to antioxidant capacity, cytotoxic effect, and low-molecular-weight chemical constituents. PLoS ONE 9, e102509. https://doi.org/10.1371/journal.pone.0102509 (2014).
Google Scholar
Lau, B. F., Abdullah, N. & Aminudin, N. Chemical composition of the tiger’s milk mushroom, Lignosus rhinocerotis (Cooke) Ryvarden, from different developmental stages. J. Agric. Food Chem. 61, 4890–4897. https://doi.org/10.1021/jf4002507 (2013).
Google Scholar
Abdullah, N. R. et al. Pellet diameter of Ganoderma lucidum in a repeated-batch fermentation for the trio total production of biomass-exopolysaccharide-endopolysaccharide and its anti-oral cancer beta-glucan response. AIMS Microbiol. 6, 379–400. https://doi.org/10.3934/microbiol.2020023 (2020).
Google Scholar
Wan-Mohtar, W. A. A. Q. I. et al. Investigations on the use of exopolysaccharide derived from mycelial extract of Ganoderma lucidum as functional feed ingredient for aquaculture-farmed red hybrid Tilapia (Oreochromis sp.). Future Foods https://doi.org/10.1016/j.fufo.2021.100018 (2021).
Google Scholar
Wan-Mohtar, W. A. A. Q. I., Ilham, Z., Jamaludin, A. A. & Rowan, N. Use of zebrafish embryo assay to evaluate toxicity and safety of bioreactor-grown exopolysaccharides and endopolysaccharides from European ganoderma applanatum mycelium for future aquaculture applications. Int. J. Mol. Sci. 22, 1675 (2021).
Google Scholar
Lau, B. F., Abdullah, N., Aminudin, N., Lee, H. B. & Tan, P. J. Ethnomedicinal uses, pharmacological activities, and cultivation of Lignosus spp. (tigers milk mushrooms) in Malaysia—A review. J. Ethnopharmacol. 169, 441–458. https://doi.org/10.1016/j.jep.2015.04.042 (2015).
Google Scholar
Phan, C. W., David, P., Naidu, M., Wong, K. H. & Sabaratnam, V. Neurite outgrowth stimulatory effects of culinary-medicinal mushrooms and their toxicity assessment using differentiating Neuro-2a and embryonic fibroblast BALB/3T3. BMC Complement Altern. Med. 13, 261. https://doi.org/10.1186/1472-6882-13-261 (2013).
Google Scholar
Jhou, B. Y., Liu, H. H., Yeh, S. H. & Chen, C. C. Oral reproductive and developmental toxicity of Lignosus rhinocerotis mycelium in rat. J. Ethnopharmacol. 208, 66–71. https://doi.org/10.1016/j.jep.2017.06.029 (2017).
Google Scholar
Galanakis, C. M., Aldawoud, T. M. S., Rizou, M., Rowan, N. J. & Ibrahim, S. A. Food ingredients and active compounds against the coronavirus disease (COVID-19) pandemic: A comprehensive review. Foods 9, 1701. https://doi.org/10.3390/foods9111701 (2020).
Google Scholar
Wan-Mohtar, W. A. et al. Antimicrobial properties and cytotoxicity of sulfated (1,3)-beta-D-glucan from the mycelium of the mushroom Ganoderma lucidum. J. Microbiol. Biotechnol. 26, 999–1010. https://doi.org/10.4014/jmb.1510.10018 (2016).
Google Scholar
Wan-Mohtar, W. A. A. Q. I., Abd, M. R., Harvey, L. M. & McNeil, B. Exopolysaccharide production by Ganoderma lucidum immobilised on polyurethane foam in a repeated-batch fermentation. Biocatal Agric Biotechnol 8, 24–31. https://doi.org/10.1016/j.bcab.2016.08.002 (2016).
Google Scholar
OECD. Test No. 236: Fish Embryo Acute Toxicity (FET) Test. (2013).

