Arya, S. S., Rookes, J. E., Cahill, D. M. & Lenka, S. K. Vanillin: A review on the therapeutic prospects of a popular flavouring molecule. Adv. Tradit. Med. https://doi.org/10.1007/s13596-020-00531-w (2021).
Google Scholar
Castro-Bobadilla, G., Martínez, A. J., Martínez, M. L. & y García-Franco, J. G. Aplicación de riego localizado para aumentar la retención de frutos de Vanilla planifolia en el Totonacapan, Veracruz, México. Agrociencia 45(3), 281–291 (2011).
Li, J., Demesyeux, L., Brym, M. & Chambers, A. H. Development of species-specific molecular markers in Vanilla for seedling selection of hybrids. Mol. Biol. Rep. 47(3), 1905–1920. https://doi.org/10.1007/s11033-020-05287-9 (2020).
Google Scholar
Monterroso-Rivas, A. I. & y Gómez-Díaz, J. D. Impacto del cambio climático en la evapotranspiración potencial y periodo de crecimiento en México. Terra LatAm. 39, 1–19. https://doi.org/10.28940/terra.v39i0.774 (2021).
Google Scholar
Vinocur, B. & Altman, A. Recent advances in engineering plant tolerance to abiotic stress: Achievements and limitations. Curr. Opin. Biotechnol. 16(2), 123–132. https://doi.org/10.1016/j.copbio.2005.02.001 (2005).
Google Scholar
Siddiqui, M. H. et al. Response of different genotypes of faba bean plant to drought stress. Int. J. Mol. Sci. 16, 10214–10227. https://doi.org/10.3390/ijms160510214 (2015).
Google Scholar
Siddiqui, M. H., Khan, M. N., Mohammad, F. & Khan, M. M. A. Role of nitrogen and gibberellin (GA3) in the regulation of enzyme activities and in osmoprotectant accumulation in Brassica juncea L. under salt stress. J. Agron. Crop Sci. 194, 214. https://doi.org/10.1111/j.1439-037X.2008.00308.x (2008).
Google Scholar
Hanif, S. et al. Biochemically triggered heat and drought stress tolerance in rice by proline application. J. Plant Growth Regul. 40, 305–312. https://doi.org/10.1007/s00344-020-10095-3 (2021).
Google Scholar
Ahanger, M. A., Gul, F., Ahmad, P. & Akram, N. A. Environmental stresses and metabolomics—Deciphering the role of stress responsive metabolites. In Plant Metabolites and Regulation Under Environmental Stress (eds Ahmad, P. et al.) 53–67 (Academic Press, 2018).
Nikam, A. A. et al. Radiation-induced in vitro mutagenesis system for salt tolerance and other agronomic characters in sugarcane (Saccharum officinarum L.). Crop J. 3, 46–56. https://doi.org/10.1016/j.cj.2014.09.002 (2015).
Google Scholar
Zivcak, M., Brestic, M. & Sytar, O. Osmotic adjustment and plant adaptation to drought stress. In Drought Stress Tolerance in Plants (eds Hossain, M. et al.) 105–143 (Springer, 2016).
Google Scholar
Sen, A. & Alikamanoglu, S. Analysis of drought-tolerant sugar beet (Beta vulgaris L.) mutants induced with gamma radiation using SDS-PAGE and ISSR markers. Mutat. Res. Fund. Mol. Mater. 738, 38–44. https://doi.org/10.1016/j.mrfmmm.2012.08.003 (2012).
Google Scholar
Mengesha, B., Mekbib, F. & Abraha, E. In vitro screening of cactus [Opuntia ficus-indicia (L) Mill] genotypes for drought tolerance. Am. J. Plant Sci. 7(13), 1741. https://doi.org/10.4236/ajps.2016.713163 (2016).
Google Scholar
Kacem, N. S., Delporte, F., Muhovski, Y., Djekoun, A. & Watillon, B. In vitro screening of durum wheat against waterstress mediated through polyethylene glycol. J. Genet. Eng. Biotechnol. 15, 239–247. https://doi.org/10.1016/j.jgeb.2017.04.004 (2017).
Google Scholar
Pradhan, N., Singh, P., Dwivedi, P. & Pandey, D. K. Evaluation of sodium nitroprusside and putrescine on polyethylene glycol induced drought stress in Stevia rebaudiana Bertoni under in vitro condition. Ind. Crop. Prod. 154, 112754. https://doi.org/10.1016/j.indcrop.2020.112754 (2020).
Google Scholar
Thakur, K., Sood, A., Kumar, P., Kumar, D. & Warghat, A. R. Steviol glycoside accumulation and expression profiling of biosynthetic pathway genes in elicited in vitro cultures of Stevia rebaudiana. In Vitro Cell. Dev. Biol. Plant. https://doi.org/10.1007/s11627-020-10151-3 (2021).
Google Scholar
El-Mahdy, M. T., Abdel-Wahab, D. A. & Youssef, M. In vitro morpho-physiological performance and DNA stability of banana under cadmium and drought stresses. In Vitro Cell. Dev. Biol. Plant. https://doi.org/10.1007/s11627-020-10142-4 (2021).
Google Scholar
Mohd Amnan, M. A. et al. Osmotic stress in banana is relieved by exogenous nitric oxide. PeerJ 9, e10879. https://doi.org/10.7717/peerj.10879 (2021).
Google Scholar
Barbero, A. P. P., Barros, F. D., Silva, E. A. D. & e Suzuki, R. M. Influência do déficit hídrico na germinação de sementes e no desenvolvimento inicial de três espécies de Pleurothallidinae (Orchidaceae). Braz. J. Bot. 34(4), 593–601. https://doi.org/10.1590/S0100-84042011000400012 (2011).
Google Scholar
Jácome-Blásquez, F., Morales-Ramos, V., Martínez-Hernández, M. D. J., Sanchez-Viveros, G. & Bello-Bello, J. J. Response to peg-induced hydric stress on in vitro germination of Prosthechea vitellina (Lindl.) WE Higgins (Orchidaceae). Propag. Ornam. Plants 16(3), 73–78 (2016).
Gao, H., Xu, D., Zhang, H., Cheng, X. & Yang, Q. Effects of culture medium composition and PEG on hyperhydricity in Dendrobium officinale. In Vitro Cell. Dev. Biol. Plant https://doi.org/10.1007/s11627-020-10075-y (2020).
Google Scholar
Queiros, F., Fidalgo, F., Santos, I. & Salema, R. In vitro selection of salt tolerant cell lines in Solanum tuberosum L.. Biol. Plant 51(4), 728–734. https://doi.org/10.1007/s10535-007-0149-y (2007).
Google Scholar
Darvishani, S. N. H., Chamani, E., Omran, V. O. G., Esmaeilpour, B. & Yaghoubian, Y. In-vitro physiochemical responses of Viola odorata plant to combined salt and drought stress. Acta Sci. Pol. Hortoru. 19(4), 53–62. https://doi.org/10.24326/asphc.2020.4.5 (2020).
Google Scholar
Rao, K., Raghavendra, A. & Reddy, K. Physiology and Molecular Biology of Stress Tolerance in Plants 15–40 (Springer, 2006).
Bello-Bello, J. J., García-García, G. G. & e Iglesias-Andreu, L. Conservación de vainilla (Vanilla planifolia Jacks.) bajo condiciones de lento crecimiento in vitro. Rev. Fitotec. Mex. 38(2), 165–171. https://doi.org/10.35196/rfm.2015.2.165 (2015).
Google Scholar
Ramírez-Mosqueda, M. A., Cruz-Cruz, C. A., Atlahua-Temoxtle, J. & Bello-Bello, J. J. In vitro conservation and regeneration of Laelia anceps Lindl.. S. Afr. J. Bot. 121, 219–223. https://doi.org/10.1016/j.sajb.2018.11.010 (2019).
Google Scholar
Piwowarczyk, B., Kamińska, I. & Rybiński, W. Influence of PEG generated osmotic stress on shoot regeneration and some biochemical parameters in Lathyrus culture. Czech J. Genet. Plant 50(2), 77–83. https://doi.org/10.17221/110/2013-CJGPB (2014).
Google Scholar
Rai, M. K., Kalia, R. K., Singh, R., Gangola, M. P. & Dhawan, A. K. Developing stress tolerant plants through in vitro selection—An overview of the recent progress. Environ. Exp. Bot. 71(1), 89–98. https://doi.org/10.1016/j.envexpbot.2010.10.021 (2011).
Google Scholar
Agurla, S., Gahir, S., Munemasa, S., Murata, Y. & Raghavendra, A. S. Mechanism of stomatal closure in plants exposed to drought and cold stress. In Survival Strategies in Extreme Cold and Desiccation. Advances in Experimental Medicine and Biology Vol. 1081 (eds Iwaya-Inoue, M. et al.) (Springer, 2018).
Suis, M. A. F., Ping, K. S., Keong, C. C. & Subramaniam, S. Biochemical and physiological responses to polyethylene glycol (PEG) treatment in protocorm-like bodies (PLBs) of Aranda Broga Blue Bell. Emir. J. Food Agric. https://doi.org/10.9755/ejfa.2015-04-080 (2015).
Google Scholar
Chandran, S. & Puthur, J. T. Assorted response of mutated variants of Vanilla planifolia Andr. towards drought. Acta Physiol. Plant 31(5), 1023–1029. https://doi.org/10.1007/s11738-009-0321-4 (2009).
Google Scholar
Hussain, H. A. et al. Chilling and drought stresses in crop plants: Implications, cross talk, and potential management opportunities. Front. Plant Sci. 9, 1–21. https://doi.org/10.3389/fpls.2018.00393 (2018).
Google Scholar
Tokarz, B., Wójtowicz, T., Makowski, W., Jędrzejczyk, R. J. & Tokarz, K. M. What is the Difference between the response of grass pea (Lathyrus sativus L.) to salinity and drought stress?—A physiological study. Agronomy 10(6), 1–24. https://doi.org/10.3390/agronomy10060833 (2020).
Google Scholar
Hu, S., Ding, Y. & Zhu, C. Sensitivity and responses of chloroplasts to heat stress in plants. Front. Plant Sci. 11, 1–11. https://doi.org/10.3389/fpls.2020.00375 (2020).
Google Scholar
Razavizadeh, R., Farahzadianpoor, F., Adabavazeh, F. & Komatsu, S. Physiological and morphological analyses of Thymus vulgaris L. in vitro cultures under polyethylene glycol (PEG)-induced osmotic stress. In Vitro Cell. Dev. Biol. Plant 55(3), 342–357. https://doi.org/10.1007/s11627-019-09979-1 (2019).
Google Scholar
Miglani, G. S., Kaur, R., Sharma, P. & Gupta, N. Leveraging photosynthetic efficiency toward improving crop yields. J. Crop Improv. https://doi.org/10.1080/15427528.2020.1824168 (2020).
Google Scholar
Ilyas, M. et al. Drought tolerance strategies in plants: A mechanistic approach. J. Plant Growth Regul. https://doi.org/10.1007/s00344-020-10174-5 (2020).
Google Scholar
Battaglia, M., Olvera-Carrillo, Y., Garciarrubio, A., Campos, F. & Covarrubias, A. A. The enigmatic LEA proteins and other hydrophilins. Plant Physiol. 148, 6–24. https://doi.org/10.1104/pp.108.120725 (2008).
Google Scholar
Hussain, S. S., Iqbal, M. T., Arif, M. A. & Amjad, M. Beyond osmolytes and transcription factors: Drought tolerance in plants via protective proteins and aquaporins. Biol. Plant 55, 401–413. https://doi.org/10.1007/s10535-011-0104-9 (2011).
Google Scholar
Chiappetta, A. et al. A dehydrin gene isolated from feral olive enhances drought tolerance in Arabidopsis transgenic plants. Front. Plant Sci. 6, 392. https://doi.org/10.3389/fpls.2015.00392 (2015).
Google Scholar
Sewelam, N., Kazan, K. & Schenk, P. M. Global plant stress signaling: Reactive oxygen species at the cross-road. Front. Plant Sci. 7, 187. https://doi.org/10.3389/fpls.2016.00187 (2016).
Google Scholar
Zia, R., Nawaz, M. S., Siddique, M. J., Hakim, S. & Imran, A. Plant survival under drought stress: Implications, adaptive responses, and integrated rhizosphere management strategy for stress mitigation. Microbiol. Res. https://doi.org/10.1016/j.micres.2020.126626 (2020).
Google Scholar
Li, X., Tang, Q., Tang, H. & Chen, W. Identifying antioxidant proteins by combining multiple methods. Front. Bioeng. Biotechnol. 8, 858. https://doi.org/10.3389/fbioe.2020.00858 (2020).
Google Scholar
Qayyum, A. et al. Water stress effects on biochemical traits and antioxidant activities of wheat (Triticum aestivum L.) under in vitro conditions. Acta Agric. Scand. B 68, 283–290. https://doi.org/10.1080/09064710.2017.1395064 (2018).
Google Scholar
Forlani, G., Trovato, M., Funck, D. & Signorelli, S. Regulation of proline accumulation and its molecular and physiological functions in stress defence. In Osmoprotectant-Mediated Abiotic Stress Tolerance in Plants 1st edn (eds Hossain, M. A. et al.) 73–97 (Springer, 2019).
Google Scholar
Kaur, G. & Asthir, B. Proline: A key player in plant abiotic stress tolerance. Biol. Plant 59(4), 609–619. https://doi.org/10.1007/s10535-015-0549-3 (2015).
Google Scholar
Seleiman, M. F. et al. Drought stress impacts on plants and different approaches to alleviate its adverse effects. Plants 10(2), 259. https://doi.org/10.3390/plants10020259 (2021).
Google Scholar
Hajihashemi, S. & Ehsanpour, A. A. Influence of exogenously applied paclobutrazol on some physiological traits and growth of Stevia rebaudiana under in vitro drought stress. Biología 68(3), 414–420. https://doi.org/10.2478/s11756-013-0165-7 (2013).
Google Scholar
Datir, S. S. & Inamdar, A. Biochemical responses of wheat cultivars to PEG-induced drought stress. Russ. Agric. Sci. 45(1), 5–12. https://doi.org/10.3103/S1068367419010038 (2019).
Google Scholar
Yang, X., Liang, Z., Wen, X. & Lu, C. Genetic engineering of the biosynthesis of glycinebetaine leads to increased tolerance of photosynthesis to salt stress in transgenic tobacco plants. Plant Mol. Biol. 66(1–2), 73. https://doi.org/10.1007/s11103-007-9253-9 (2008).
Google Scholar
Chen, T. H. & Murata, N. Glycinebetaine protects plants against abiotic stress: Mechanisms and biotechnological applications. Plant Cell Environ. 34(1), 1–20. https://doi.org/10.1111/j.1365-3040.2010.02232.x (2011).
Google Scholar
Zhang, X. et al. Mechanisms of glycine betaine enhancing oxidative stress tolerance and biocontrol efficacy of Pichia caribbica against blue mold on apples. Biol. Control 108, 55–63. https://doi.org/10.1016/j.biocontrol.2017.02.011 (2017).
Google Scholar
Giri, J. Glycinebetaine and abiotic stress tolerance in plants. Plant Signal. Behav. 6(11), 1746–1751. https://doi.org/10.4161/psb.6.11.17801 (2011).
Google Scholar
Kumar, V. et al. Glycinebetaine-mediated abiotic oxidative-stress tolerance in plants: Physiological and biochemical mechanisms. In Stress Signaling in Plants: Genomics and Proteomics Perspective 1st edn (eds Sarwat, M. et al.) 111–133 (Springer, 2017).
Google Scholar
Paletri, T. S., Nurcahyani, E., Yulianty, Y. & Agustrina, R. Stomata index of Cattleya sp. Lindl., planlet in drought-stress conditions. J. BEKH 6(1), 15–19 (2019).
Google Scholar
Pirasteh-Anosheh, H., Saed-Moucheshi, A., Pakniyat, H. & Pessarakli, M. Stomatal responses to drought stress. In Water Stress and Crop Plants: A Sustainable Approach (ed. Ahmad, P.) 24–40 (Wiley, 2016).
Google Scholar
Aliniaeifard, S., Asayesh, Z. M., Driver, J. & Vahdati, K. Stomatal features and desiccation responses of Persian walnut leaf as caused by in vitro stimuli aimed at stomatal closure. Trees 34, 1219–1232. https://doi.org/10.1007/s00468-020-01992-x (2020).
Google Scholar
Farooq, M., Wahid, A., Kobayashi, N., Fujita, D. & Basra, S. M. A. Plant drought stress: Effects, mechanisms and management. In Sustainable Agriculture 1st edn (eds Lichtfouse, E. et al.) 153–188 (Springer, 2009).
Google Scholar
Souza, T. C. et al. Morphophysiology, morphoanatomy, and grain yield under field conditions for two maize hybrids with contrasting response to drought stress. Acta Physiol. Plant 35(11), 3201–3211. https://doi.org/10.1007/s11738-013-1355-1 (2013).
Google Scholar
Murashige, T. & Skoog, F. A revised medium for rapid growth and bio assays with tobacco tissue cultures. Physiol. Plant. 15(3), 473–497. https://doi.org/10.1111/j.1399-3054.1962.tb08052.x (1962).
Google Scholar
Harborne, J. B. Nitrogen compounds. In Phytochemical Methods (ed. Harborne, J. B.) 166–211 (Springer, 1973).
Google Scholar
Martínez-Estrada, E., Islas-Luna, B., Pérez-Sato, J. A. & Bello-Bello, J. J. Temporary immersion improves in vitro multiplication and acclimatization of Anthurium andreanum Lind.. Sci. Hortic. 249, 185–191. https://doi.org/10.1016/j.scienta.2019.01.053 (2019).
Google Scholar
Bradford, M. M. A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Anal. Biochem. 72(1–2), 248–254. https://doi.org/10.1016/0003-2697(76)90527-3 (1976).
Google Scholar
Bates, L. S., Waldren, R. P. & Teare, I. D. Rapid determination of free proline for water-stress studies. Plant Soil 39(1), 205–207. https://doi.org/10.1007/BF00018060 (1973).
Google Scholar
Grieve, C. M. & Grattan, S. R. Rapid assay for determination of water soluble quaternary ammonium compounds. Plant Soil 70(2), 303–307. https://doi.org/10.1007/BF02374789 (1983).
Google Scholar

