Preloader

In vitro response of vanilla (Vanilla planifolia Jacks. ex Andrews) to PEG-induced osmotic stress

  • 1.

    Arya, S. S., Rookes, J. E., Cahill, D. M. & Lenka, S. K. Vanillin: A review on the therapeutic prospects of a popular flavouring molecule. Adv. Tradit. Med. https://doi.org/10.1007/s13596-020-00531-w (2021).

    Article 

    Google Scholar 

  • 2.

    Castro-Bobadilla, G., Martínez, A. J., Martínez, M. L. & y García-Franco, J. G. Aplicación de riego localizado para aumentar la retención de frutos de Vanilla planifolia en el Totonacapan, Veracruz, México. Agrociencia 45(3), 281–291 (2011).

    Google Scholar 

  • 3.

    Li, J., Demesyeux, L., Brym, M. & Chambers, A. H. Development of species-specific molecular markers in Vanilla for seedling selection of hybrids. Mol. Biol. Rep. 47(3), 1905–1920. https://doi.org/10.1007/s11033-020-05287-9 (2020).

    CAS 
    Article 
    PubMed 

    Google Scholar 

  • 4.

    Monterroso-Rivas, A. I. & y Gómez-Díaz, J. D. Impacto del cambio climático en la evapotranspiración potencial y periodo de crecimiento en México. Terra LatAm. 39, 1–19. https://doi.org/10.28940/terra.v39i0.774 (2021).

    Article 

    Google Scholar 

  • 5.

    Vinocur, B. & Altman, A. Recent advances in engineering plant tolerance to abiotic stress: Achievements and limitations. Curr. Opin. Biotechnol. 16(2), 123–132. https://doi.org/10.1016/j.copbio.2005.02.001 (2005).

    CAS 
    Article 
    PubMed 

    Google Scholar 

  • 6.

    Siddiqui, M. H. et al. Response of different genotypes of faba bean plant to drought stress. Int. J. Mol. Sci. 16, 10214–10227. https://doi.org/10.3390/ijms160510214 (2015).

    CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • 7.

    Siddiqui, M. H., Khan, M. N., Mohammad, F. & Khan, M. M. A. Role of nitrogen and gibberellin (GA3) in the regulation of enzyme activities and in osmoprotectant accumulation in Brassica juncea L. under salt stress. J. Agron. Crop Sci. 194, 214. https://doi.org/10.1111/j.1439-037X.2008.00308.x (2008).

    CAS 
    Article 

    Google Scholar 

  • 8.

    Hanif, S. et al. Biochemically triggered heat and drought stress tolerance in rice by proline application. J. Plant Growth Regul. 40, 305–312. https://doi.org/10.1007/s00344-020-10095-3 (2021).

    CAS 
    Article 

    Google Scholar 

  • 9.

    Ahanger, M. A., Gul, F., Ahmad, P. & Akram, N. A. Environmental stresses and metabolomics—Deciphering the role of stress responsive metabolites. In Plant Metabolites and Regulation Under Environmental Stress (eds Ahmad, P. et al.) 53–67 (Academic Press, 2018).

    Google Scholar 

  • 10.

    Nikam, A. A. et al. Radiation-induced in vitro mutagenesis system for salt tolerance and other agronomic characters in sugarcane (Saccharum officinarum L.). Crop J. 3, 46–56. https://doi.org/10.1016/j.cj.2014.09.002 (2015).

    Article 

    Google Scholar 

  • 11.

    Zivcak, M., Brestic, M. & Sytar, O. Osmotic adjustment and plant adaptation to drought stress. In Drought Stress Tolerance in Plants (eds Hossain, M. et al.) 105–143 (Springer, 2016).

    Chapter 

    Google Scholar 

  • 12.

    Sen, A. & Alikamanoglu, S. Analysis of drought-tolerant sugar beet (Beta vulgaris L.) mutants induced with gamma radiation using SDS-PAGE and ISSR markers. Mutat. Res. Fund. Mol. Mater. 738, 38–44. https://doi.org/10.1016/j.mrfmmm.2012.08.003 (2012).

    CAS 
    Article 

    Google Scholar 

  • 13.

    Mengesha, B., Mekbib, F. & Abraha, E. In vitro screening of cactus [Opuntia ficus-indicia (L) Mill] genotypes for drought tolerance. Am. J. Plant Sci. 7(13), 1741. https://doi.org/10.4236/ajps.2016.713163 (2016).

    CAS 
    Article 

    Google Scholar 

  • 14.

    Kacem, N. S., Delporte, F., Muhovski, Y., Djekoun, A. & Watillon, B. In vitro screening of durum wheat against waterstress mediated through polyethylene glycol. J. Genet. Eng. Biotechnol. 15, 239–247. https://doi.org/10.1016/j.jgeb.2017.04.004 (2017).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • 15.

    Pradhan, N., Singh, P., Dwivedi, P. & Pandey, D. K. Evaluation of sodium nitroprusside and putrescine on polyethylene glycol induced drought stress in Stevia rebaudiana Bertoni under in vitro condition. Ind. Crop. Prod. 154, 112754. https://doi.org/10.1016/j.indcrop.2020.112754 (2020).

    CAS 
    Article 

    Google Scholar 

  • 16.

    Thakur, K., Sood, A., Kumar, P., Kumar, D. & Warghat, A. R. Steviol glycoside accumulation and expression profiling of biosynthetic pathway genes in elicited in vitro cultures of Stevia rebaudiana. In Vitro Cell. Dev. Biol. Plant. https://doi.org/10.1007/s11627-020-10151-3 (2021).

    Article 

    Google Scholar 

  • 17.

    El-Mahdy, M. T., Abdel-Wahab, D. A. & Youssef, M. In vitro morpho-physiological performance and DNA stability of banana under cadmium and drought stresses. In Vitro Cell. Dev. Biol. Plant. https://doi.org/10.1007/s11627-020-10142-4 (2021).

    Article 

    Google Scholar 

  • 18.

    Mohd Amnan, M. A. et al. Osmotic stress in banana is relieved by exogenous nitric oxide. PeerJ 9, e10879. https://doi.org/10.7717/peerj.10879 (2021).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • 19.

    Barbero, A. P. P., Barros, F. D., Silva, E. A. D. & e Suzuki, R. M. Influência do déficit hídrico na germinação de sementes e no desenvolvimento inicial de três espécies de Pleurothallidinae (Orchidaceae). Braz. J. Bot. 34(4), 593–601. https://doi.org/10.1590/S0100-84042011000400012 (2011).

    Article 

    Google Scholar 

  • 20.

    Jácome-Blásquez, F., Morales-Ramos, V., Martínez-Hernández, M. D. J., Sanchez-Viveros, G. & Bello-Bello, J. J. Response to peg-induced hydric stress on in vitro germination of Prosthechea vitellina (Lindl.) WE Higgins (Orchidaceae). Propag. Ornam. Plants 16(3), 73–78 (2016).

    Google Scholar 

  • 21.

    Gao, H., Xu, D., Zhang, H., Cheng, X. & Yang, Q. Effects of culture medium composition and PEG on hyperhydricity in Dendrobium officinale. In Vitro Cell. Dev. Biol. Plant https://doi.org/10.1007/s11627-020-10075-y (2020).

    Article 

    Google Scholar 

  • 22.

    Queiros, F., Fidalgo, F., Santos, I. & Salema, R. In vitro selection of salt tolerant cell lines in Solanum tuberosum L.. Biol. Plant 51(4), 728–734. https://doi.org/10.1007/s10535-007-0149-y (2007).

    CAS 
    Article 

    Google Scholar 

  • 23.

    Darvishani, S. N. H., Chamani, E., Omran, V. O. G., Esmaeilpour, B. & Yaghoubian, Y. In-vitro physiochemical responses of Viola odorata plant to combined salt and drought stress. Acta Sci. Pol. Hortoru. 19(4), 53–62. https://doi.org/10.24326/asphc.2020.4.5 (2020).

    Article 

    Google Scholar 

  • 24.

    Rao, K., Raghavendra, A. & Reddy, K. Physiology and Molecular Biology of Stress Tolerance in Plants 15–40 (Springer, 2006).

    Google Scholar 

  • 25.

    Bello-Bello, J. J., García-García, G. G. & e Iglesias-Andreu, L. Conservación de vainilla (Vanilla planifolia Jacks.) bajo condiciones de lento crecimiento in vitro. Rev. Fitotec. Mex. 38(2), 165–171. https://doi.org/10.35196/rfm.2015.2.165 (2015).

    Article 

    Google Scholar 

  • 26.

    Ramírez-Mosqueda, M. A., Cruz-Cruz, C. A., Atlahua-Temoxtle, J. & Bello-Bello, J. J. In vitro conservation and regeneration of Laelia anceps Lindl.. S. Afr. J. Bot. 121, 219–223. https://doi.org/10.1016/j.sajb.2018.11.010 (2019).

    CAS 
    Article 

    Google Scholar 

  • 27.

    Piwowarczyk, B., Kamińska, I. & Rybiński, W. Influence of PEG generated osmotic stress on shoot regeneration and some biochemical parameters in Lathyrus culture. Czech J. Genet. Plant 50(2), 77–83. https://doi.org/10.17221/110/2013-CJGPB (2014).

    Article 

    Google Scholar 

  • 28.

    Rai, M. K., Kalia, R. K., Singh, R., Gangola, M. P. & Dhawan, A. K. Developing stress tolerant plants through in vitro selection—An overview of the recent progress. Environ. Exp. Bot. 71(1), 89–98. https://doi.org/10.1016/j.envexpbot.2010.10.021 (2011).

    Article 

    Google Scholar 

  • 29.

    Agurla, S., Gahir, S., Munemasa, S., Murata, Y. & Raghavendra, A. S. Mechanism of stomatal closure in plants exposed to drought and cold stress. In Survival Strategies in Extreme Cold and Desiccation. Advances in Experimental Medicine and Biology Vol. 1081 (eds Iwaya-Inoue, M. et al.) (Springer, 2018).

    Google Scholar 

  • 30.

    Suis, M. A. F., Ping, K. S., Keong, C. C. & Subramaniam, S. Biochemical and physiological responses to polyethylene glycol (PEG) treatment in protocorm-like bodies (PLBs) of Aranda Broga Blue Bell. Emir. J. Food Agric. https://doi.org/10.9755/ejfa.2015-04-080 (2015).

    Article 

    Google Scholar 

  • 31.

    Chandran, S. & Puthur, J. T. Assorted response of mutated variants of Vanilla planifolia Andr. towards drought. Acta Physiol. Plant 31(5), 1023–1029. https://doi.org/10.1007/s11738-009-0321-4 (2009).

    Article 

    Google Scholar 

  • 32.

    Hussain, H. A. et al. Chilling and drought stresses in crop plants: Implications, cross talk, and potential management opportunities. Front. Plant Sci. 9, 1–21. https://doi.org/10.3389/fpls.2018.00393 (2018).

    CAS 
    Article 

    Google Scholar 

  • 33.

    Tokarz, B., Wójtowicz, T., Makowski, W., Jędrzejczyk, R. J. & Tokarz, K. M. What is the Difference between the response of grass pea (Lathyrus sativus L.) to salinity and drought stress?—A physiological study. Agronomy 10(6), 1–24. https://doi.org/10.3390/agronomy10060833 (2020).

    CAS 
    Article 

    Google Scholar 

  • 34.

    Hu, S., Ding, Y. & Zhu, C. Sensitivity and responses of chloroplasts to heat stress in plants. Front. Plant Sci. 11, 1–11. https://doi.org/10.3389/fpls.2020.00375 (2020).

    Article 

    Google Scholar 

  • 35.

    Razavizadeh, R., Farahzadianpoor, F., Adabavazeh, F. & Komatsu, S. Physiological and morphological analyses of Thymus vulgaris L. in vitro cultures under polyethylene glycol (PEG)-induced osmotic stress. In Vitro Cell. Dev. Biol. Plant 55(3), 342–357. https://doi.org/10.1007/s11627-019-09979-1 (2019).

    CAS 
    Article 

    Google Scholar 

  • 36.

    Miglani, G. S., Kaur, R., Sharma, P. & Gupta, N. Leveraging photosynthetic efficiency toward improving crop yields. J. Crop Improv. https://doi.org/10.1080/15427528.2020.1824168 (2020).

    Article 

    Google Scholar 

  • 37.

    Ilyas, M. et al. Drought tolerance strategies in plants: A mechanistic approach. J. Plant Growth Regul. https://doi.org/10.1007/s00344-020-10174-5 (2020).

    Article 

    Google Scholar 

  • 38.

    Battaglia, M., Olvera-Carrillo, Y., Garciarrubio, A., Campos, F. & Covarrubias, A. A. The enigmatic LEA proteins and other hydrophilins. Plant Physiol. 148, 6–24. https://doi.org/10.1104/pp.108.120725 (2008).

    CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • 39.

    Hussain, S. S., Iqbal, M. T., Arif, M. A. & Amjad, M. Beyond osmolytes and transcription factors: Drought tolerance in plants via protective proteins and aquaporins. Biol. Plant 55, 401–413. https://doi.org/10.1007/s10535-011-0104-9 (2011).

    CAS 
    Article 

    Google Scholar 

  • 40.

    Chiappetta, A. et al. A dehydrin gene isolated from feral olive enhances drought tolerance in Arabidopsis transgenic plants. Front. Plant Sci. 6, 392. https://doi.org/10.3389/fpls.2015.00392 (2015).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • 41.

    Sewelam, N., Kazan, K. & Schenk, P. M. Global plant stress signaling: Reactive oxygen species at the cross-road. Front. Plant Sci. 7, 187. https://doi.org/10.3389/fpls.2016.00187 (2016).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • 42.

    Zia, R., Nawaz, M. S., Siddique, M. J., Hakim, S. & Imran, A. Plant survival under drought stress: Implications, adaptive responses, and integrated rhizosphere management strategy for stress mitigation. Microbiol. Res. https://doi.org/10.1016/j.micres.2020.126626 (2020).

    Article 
    PubMed 

    Google Scholar 

  • 43.

    Li, X., Tang, Q., Tang, H. & Chen, W. Identifying antioxidant proteins by combining multiple methods. Front. Bioeng. Biotechnol. 8, 858. https://doi.org/10.3389/fbioe.2020.00858 (2020).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • 44.

    Qayyum, A. et al. Water stress effects on biochemical traits and antioxidant activities of wheat (Triticum aestivum L.) under in vitro conditions. Acta Agric. Scand. B 68, 283–290. https://doi.org/10.1080/09064710.2017.1395064 (2018).

    CAS 
    Article 

    Google Scholar 

  • 45.

    Forlani, G., Trovato, M., Funck, D. & Signorelli, S. Regulation of proline accumulation and its molecular and physiological functions in stress defence. In Osmoprotectant-Mediated Abiotic Stress Tolerance in Plants 1st edn (eds Hossain, M. A. et al.) 73–97 (Springer, 2019).

    Chapter 

    Google Scholar 

  • 46.

    Kaur, G. & Asthir, B. Proline: A key player in plant abiotic stress tolerance. Biol. Plant 59(4), 609–619. https://doi.org/10.1007/s10535-015-0549-3 (2015).

    CAS 
    Article 

    Google Scholar 

  • 47.

    Seleiman, M. F. et al. Drought stress impacts on plants and different approaches to alleviate its adverse effects. Plants 10(2), 259. https://doi.org/10.3390/plants10020259 (2021).

    CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • 48.

    Hajihashemi, S. & Ehsanpour, A. A. Influence of exogenously applied paclobutrazol on some physiological traits and growth of Stevia rebaudiana under in vitro drought stress. Biología 68(3), 414–420. https://doi.org/10.2478/s11756-013-0165-7 (2013).

    CAS 
    Article 

    Google Scholar 

  • 49.

    Datir, S. S. & Inamdar, A. Biochemical responses of wheat cultivars to PEG-induced drought stress. Russ. Agric. Sci. 45(1), 5–12. https://doi.org/10.3103/S1068367419010038 (2019).

    Article 

    Google Scholar 

  • 50.

    Yang, X., Liang, Z., Wen, X. & Lu, C. Genetic engineering of the biosynthesis of glycinebetaine leads to increased tolerance of photosynthesis to salt stress in transgenic tobacco plants. Plant Mol. Biol. 66(1–2), 73. https://doi.org/10.1007/s11103-007-9253-9 (2008).

    CAS 
    Article 
    PubMed 

    Google Scholar 

  • 51.

    Chen, T. H. & Murata, N. Glycinebetaine protects plants against abiotic stress: Mechanisms and biotechnological applications. Plant Cell Environ. 34(1), 1–20. https://doi.org/10.1111/j.1365-3040.2010.02232.x (2011).

    CAS 
    Article 
    PubMed 

    Google Scholar 

  • 52.

    Zhang, X. et al. Mechanisms of glycine betaine enhancing oxidative stress tolerance and biocontrol efficacy of Pichia caribbica against blue mold on apples. Biol. Control 108, 55–63. https://doi.org/10.1016/j.biocontrol.2017.02.011 (2017).

    CAS 
    Article 

    Google Scholar 

  • 53.

    Giri, J. Glycinebetaine and abiotic stress tolerance in plants. Plant Signal. Behav. 6(11), 1746–1751. https://doi.org/10.4161/psb.6.11.17801 (2011).

    CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • 54.

    Kumar, V. et al. Glycinebetaine-mediated abiotic oxidative-stress tolerance in plants: Physiological and biochemical mechanisms. In Stress Signaling in Plants: Genomics and Proteomics Perspective 1st edn (eds Sarwat, M. et al.) 111–133 (Springer, 2017).

    Chapter 

    Google Scholar 

  • 55.

    Paletri, T. S., Nurcahyani, E., Yulianty, Y. & Agustrina, R. Stomata index of Cattleya sp. Lindl., planlet in drought-stress conditions. J. BEKH 6(1), 15–19 (2019).

    Article 

    Google Scholar 

  • 56.

    Pirasteh-Anosheh, H., Saed-Moucheshi, A., Pakniyat, H. & Pessarakli, M. Stomatal responses to drought stress. In Water Stress and Crop Plants: A Sustainable Approach (ed. Ahmad, P.) 24–40 (Wiley, 2016).

    Chapter 

    Google Scholar 

  • 57.

    Aliniaeifard, S., Asayesh, Z. M., Driver, J. & Vahdati, K. Stomatal features and desiccation responses of Persian walnut leaf as caused by in vitro stimuli aimed at stomatal closure. Trees 34, 1219–1232. https://doi.org/10.1007/s00468-020-01992-x (2020).

    CAS 
    Article 

    Google Scholar 

  • 58.

    Farooq, M., Wahid, A., Kobayashi, N., Fujita, D. & Basra, S. M. A. Plant drought stress: Effects, mechanisms and management. In Sustainable Agriculture 1st edn (eds Lichtfouse, E. et al.) 153–188 (Springer, 2009).

    Chapter 

    Google Scholar 

  • 59.

    Souza, T. C. et al. Morphophysiology, morphoanatomy, and grain yield under field conditions for two maize hybrids with contrasting response to drought stress. Acta Physiol. Plant 35(11), 3201–3211. https://doi.org/10.1007/s11738-013-1355-1 (2013).

    Article 

    Google Scholar 

  • 60.

    Murashige, T. & Skoog, F. A revised medium for rapid growth and bio assays with tobacco tissue cultures. Physiol. Plant. 15(3), 473–497. https://doi.org/10.1111/j.1399-3054.1962.tb08052.x (1962).

    CAS 
    Article 

    Google Scholar 

  • 61.

    Harborne, J. B. Nitrogen compounds. In Phytochemical Methods (ed. Harborne, J. B.) 166–211 (Springer, 1973).

    Chapter 

    Google Scholar 

  • 62.

    Martínez-Estrada, E., Islas-Luna, B., Pérez-Sato, J. A. & Bello-Bello, J. J. Temporary immersion improves in vitro multiplication and acclimatization of Anthurium andreanum Lind.. Sci. Hortic. 249, 185–191. https://doi.org/10.1016/j.scienta.2019.01.053 (2019).

    Article 

    Google Scholar 

  • 63.

    Bradford, M. M. A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Anal. Biochem. 72(1–2), 248–254. https://doi.org/10.1016/0003-2697(76)90527-3 (1976).

    CAS 
    Article 
    PubMed 

    Google Scholar 

  • 64.

    Bates, L. S., Waldren, R. P. & Teare, I. D. Rapid determination of free proline for water-stress studies. Plant Soil 39(1), 205–207. https://doi.org/10.1007/BF00018060 (1973).

    CAS 
    Article 

    Google Scholar 

  • 65.

    Grieve, C. M. & Grattan, S. R. Rapid assay for determination of water soluble quaternary ammonium compounds. Plant Soil 70(2), 303–307. https://doi.org/10.1007/BF02374789 (1983).

    CAS 
    Article 

    Google Scholar 

  • Source link