Preloader

In vitro production of desired sex ovine embryos modulating polarity of oocytes for sex-specific sperm binding during fertilization

  • Bavister, B. D. Culture of pre implantation embryos facts and artifacts. Hum. Reprod. Update. 1(2), 91–148 (1995).

    CAS 
    PubMed 

    Google Scholar 

  • Mishra, A., Ramesh, K. G., Dhali, A. & Reddy, I. J. Interaction of apoptosis and pluripotency related transcripts for developmental potential of ovine embryos produced in vitro at different oxygen concentrations. Anim. Biotechnol. 32(4), 470–478. https://doi.org/10.1080/10495398.2020.1721513 (2021).

    CAS 
    Article 
    PubMed 

    Google Scholar 

  • Gardner, D. K. & Kelley, R. L. Male and female embryos differ in their response to oxygen concentration. Fertil. Steril. 100(3), S242 (2013).

    Google Scholar 

  • Meintjes, M. et al. Normalization of the live-birth sex ratio after human blastocyst transfer from optimized culture conditions. Fertil. Steril. 92, S229–S230 (2009).

    Google Scholar 

  • Heras, S. et al. Suboptimal culture conditions induce more deviations in gene expression in male than female bovine blastocysts. BMC. Genom. 17, 72. https://doi.org/10.1186/s12864-016-2393-z (2016).

    CAS 
    Article 

    Google Scholar 

  • Drickamer, L. C. Seasonal variation in fertility, fecundity and litter sex ratio in laboratory and wild stocks of house mice (Mus domesticus). Lab. Anim. Sci. 40, 284–288 (1990).

    CAS 
    PubMed 

    Google Scholar 

  • Gutierrez-Adan, A., Oter, M., Martinez-Madrid, B., Pintado, B. & De La Fuente, J. Differential expression of two genes located on the X chromosome between male and female in vitro-produced bovine embryos at the blastocyst stage. Mol. Reprod. Dev. 55, 146–151 (2000).

    CAS 
    PubMed 

    Google Scholar 

  • Tiffin, G. J., Rieger, D., Betteridge, K. J., Yadav, B. R. & King, W. A. Glucose and glutamine metabolism in pre-attachment cattle embryos in relation to sex and stage of development. J. Reprod. Fertil. 93, 125–132 (1991).

    CAS 
    PubMed 

    Google Scholar 

  • Ramesh Kumar, G., Mishra, A., Reddy, I. J., Dhali, A. & Roy, S. C. Low oxygen tension activates glucose metabolism, improves antioxidant capacity and augment developmental potential of ovine embryos in vitro. Anim. Prod. Sci. 60(4), 503–509 (2020).

    CAS 

    Google Scholar 

  • Hall, J.E. Guyton and Hall Textbook of Medical Physiology, 12th edn. 1600 John F. Kennedy Blvd. Ste 1800 19103-2899 (Saunders Elsevier, Philadelphia, PA, 2011).

  • Takahashi, T. et al. Supplementation of culture medium with l-carnitine improves development cryotolerance of bovine embryos produced in vitro. Reprod. Fert. Dev. 25, 589–599 (2013).

    CAS 

    Google Scholar 

  • You, J., Lee, J., Hyun, S. H. & Eunsong, L. l-Carnitine treatment during oocyte maturation improves in vitro development of cloned pig embryos by influencing intracellular glutathione sysnthesis embryonic gene expression. Theriogenology 78, 235–243 (2012).

    CAS 
    PubMed 

    Google Scholar 

  • Abdelrazik, H., Sharma, R., Mahfouz, R. & Agarwal, A. l-Carnitine decreases DNA damage and improvesthe in vitro blastocyst development rate in mouse embryos. Fertil. Steril. 91, 589–596 (2009).

    CAS 
    PubMed 

    Google Scholar 

  • Mishra, A., Reddy, I. J., Gupta, P. S. P. & Mondal, S. l-Carnitine mediated reduction in oxidative stress and alteration in transcripts level of antioxidant enzymes in sheep embryos produced in vitro. Reprod. Dom. Anim. 51(2), 311–321 (2016).

    CAS 

    Google Scholar 

  • Mishra, A., Reddy, I. J., Gupta, P. S. P. & Mondal, S. Developmental regulation and modulation of apoptotic genes expression in sheep oocytes and embryos cultured in vitro with l-carnitine. Reprod. Dom. Anim. 51(6), 1020–1029 (2016).

    CAS 

    Google Scholar 

  • Ye, J. et al. l-Carnitine attenuates oxidant injury in HK-2 cells via ROS–mitochondria pathway. Regula. Pep. 161, 58–66 (2010).

    CAS 

    Google Scholar 

  • Jaffe, L. A. & Cross, N. L. Electrical properties of vertebrate oocyte membranes. Biol. Reprod. 30, 50–54 (1984).

    CAS 
    PubMed 

    Google Scholar 

  • Murnane, J. & De Felice, L. J. Electrical maturation of murine oocytes: An increase in calcium current coincides with acquisition of meiotic competence. Zygote 1, 49–60 (1993).

    CAS 
    PubMed 

    Google Scholar 

  • Brodie, C., Bak, A., Shainberg, A. & Sampson, S. R. Role of Na-K ATPase in regulation of resting membrane potential of cultured rat skeletal myotubes. J. Cell. Physiol. 130, 191–198 (1987).

    CAS 
    PubMed 

    Google Scholar 

  • Comellas, A. P. et al. Hypoxia-mediated degradation of Na, K-ATPase via mitochondrial reactive oxygen species and the ubiquitin conjugating system. Circ. Res. 98, 1314–1322 (2006).

    CAS 
    PubMed 

    Google Scholar 

  • Tosti, E. & Boni, R. Electrical events during gamete maturation and fertilization in animals and humans. Hum. Reprod. Update. 10(1), 53–65 (2004).

    CAS 
    PubMed 

    Google Scholar 

  • Arangasamy, A. et al. Role of calcium and magnesium administration on sex ratio skewing, follicular fluid protein profiles and steroid hormone level and oocyte transcripts expression pattern in Wistar rat. Ind. J. Anim. Sci. 85(11), 1190–1194 (2015).

    CAS 

    Google Scholar 

  • Siristatidis, C. et al. The effect of reactive oxygen species on embryo quality in IVF. In Vivo 30, 149–154 (2016).

    CAS 
    PubMed 

    Google Scholar 

  • Stokes, Y. M. Quantifying oxygen diffusion in paraffin oil used in oocyte and embryo culture. Mol. Reprod. Develop. 76, 1178–1187 (2009).

    CAS 

    Google Scholar 

  • Javvaji, P. K. et al. Interleukin-7 improves in vitro maturation of ovine cumulus-oocyte complexes in a dose dependent manner. Cytokine 113, 296–304 (2019).

    CAS 
    PubMed 

    Google Scholar 

  • Veronique, C. M. & Shazib, P. Intracellular superoxide and hydrogen peroxide concentrations: A critical balance that determines survival or death. Redox Rep. 6(4), 211–214 (2001).

    Google Scholar 

  • Baud, C. Developmental change of a depolarization induced sodium permeability in the oocyte of Xenopus laevis. Dev. Biol. 99, 524–528 (1983).

    CAS 
    PubMed 

    Google Scholar 

  • Dale, B. & De Santis, A. Maturation and fertilization of the sea urchin oocyte: An electrophysiological study. Dev. Biol. 85, 474–484 (1981).

    CAS 
    PubMed 

    Google Scholar 

  • Tosti, E., Boni, R. & Cuomo, A. Ca2+ current activity decreases during meiotic progression in bovine oocytes. Am. J. Physiol. Cell. Physiol. 279, C1795–C1800 (2000).

    CAS 
    PubMed 

    Google Scholar 

  • Kitasato, H. The influence of H+ on the membrane potential and ion fluxes of Nitella. J. Gen. Physiol. 52(1), 60–87 (1968).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Rodeau, T., Stephane, F., Edith, B. & Jean-Pierre, V. Effect of procaine on membrane potential and intracellular pH in Xenopus laevis oocytes. Mol. Memb. Biol. 15, 145–151 (1998).

    CAS 

    Google Scholar 

  • Unterberger, F. Geschlechtsbestimmung und Wasserstoffionenkonzentrati on Dtsch. Med. Wochenschr. 58(1), 729 (1932).

    CAS 

    Google Scholar 

  • Muehleis, P. M. & Long, S. Y. The effects of altering the pH of seminal fluid on the sex ratio of rabbit offspring. Fert. Ster. 27(12), 1438–1445 (1976).

    CAS 

    Google Scholar 

  • Perez-crespo, M. et al. Differential sensitivity of male and female mouse embryos to oxidative induced heat-stress is mediated by glucose-6-phosphate dehydrogenase gene expression. Mol. Reprod. Dev. 72, 502–510 (2005).

    CAS 
    PubMed 

    Google Scholar 

  • Hansen, D., Moller, H. & Olsen, J. Severe periconceptional life events and the sex ratio in offspring: follow up study based on five national registers. BMJ 319, 548–549 (1999).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Lequarre, A. S. et al. Expression of Cu/Zn Mn superoxide dismutase during bovine embryo development: Influence of in vitro culture. Mol. Reprod. Dev. 58, 45–53 (2001).

    CAS 
    PubMed 

    Google Scholar 

  • Gulcin, I. Antioxidant and antiradical activities of l-carnitine. Life Sci. 78, 803–811 (2006).

    PubMed 

    Google Scholar 

  • Godin, N. et al. Catalase overexpression prevents hypertension and tubular apoptosis in angiotensinogen transgenic mice. Kidney Int. 77, 1086–1097 (2010).

    CAS 
    PubMed 

    Google Scholar 

  • Kander, M. C., Cui, Y. & Liu, Z. Gender difference in oxidative stress: A new look at the mechanisms for cardiovascular diseases. J. Cell. Mol. Med. 21(5), 1024–1032 (2017).

    PubMed 

    Google Scholar 

  • Chen, Y., Ji, L. L., Liu, T. Y. & Wang, Z. T. Evaluation of gender-related differences in various oxidative stress enzymes in mice. Chinese. J. Physiol. 54, 385–390 (2011).

    CAS 

    Google Scholar 

  • Barp, J. et al. Myocardial antioxidant and oxidative stress changes due to sex hormones. Braz. J. Med. Biol. Res. 35, 1075–1081 (2002).

    CAS 
    PubMed 

    Google Scholar 

  • Vina, J. et al. Females live longer than males: Role of oxidative stress. Curr. Pharm. Des. 17, 3959–3965 (2011).

    CAS 
    PubMed 

    Google Scholar 

  • Bellanti, F. et al. Sex hormones modulate circulating antioxidant enzymes: Impact of estrogen therapy. Redox. Biol. 1, 340–346 (2013).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Gomez, P. Y., Gianotti, M., Llado, I. & Proenza, A. M. Sex-dependent effects of high-fat-diet feeding on rat pancreas oxidative stress. Pancreas 40(5), 682–688 (2011).

    Google Scholar 

  • Azevedo, R. B., Lacava, Z. G., Miyasaka, C. K., Chaves, S. B. & Curi, R. Regulation of antioxidant enzyme activities in male and female rat macrophages by sex steroids. Braz. J. Med. Biol. Res. 34, 683–687 (2001).

    CAS 
    PubMed 

    Google Scholar 

  • Mishra, A., Reddy, I. J., Dhali, A. & Javvaji, P. K. l-Ergothioneine improves the developmental potential of in vitro sheep embryos without influencing OCTN1-mediated cross-membrane transcript expression. Zygote 26(2), 149–161 (2018).

    CAS 
    PubMed 

    Google Scholar 

  • Shimizu, N., Shimizu, Y., Kondo, I., Woods, C. & Wegner, T. The bovine genes for phosphoglycerate kinase, glucose-6-phosphate dehydrogenase, alpha-galactosidase and hypoxanthine phosphoribosyl transferase are linked to the X chromosome in cattle-mouse cell hybrids. Cyto. Genet. Cell. Genet. 29, 26–31 (1981).

    CAS 

    Google Scholar 

  • Wrenzycki, C. et al. In vitro production and nuclear transfer affect dosage compensation of the X-linked gene transcripts G6PD, PGK, and Xist in preimplantation bovine embryos. Biol. Reprod. 66(1), 127–134 (2002).

    CAS 
    PubMed 

    Google Scholar 

  • Sandhu, A. et al. Effect of sex of embryo on developmental competence, epigenetic status, and gene expression in buffalo (Bubalus bubalis) embryos produced by hand-made cloning. Cell. Reprog. https://doi.org/10.1089/cell.2015.0077 (2016).

    Article 

    Google Scholar 

  • Peippo, J. et al. Sex-chromosome linked gene expression in in vitro produced bovine embryos. Mol. Hum. Reprod. 8, 923–929 (2002).

    CAS 
    PubMed 

    Google Scholar 

  • Jegalian, K. & Page, D. C. A proposed path by which genes common to mammalian X and Y chromosomes evolve to become X inactivated. Nature 394, 776–780 (1998).

    CAS 
    PubMed 
    ADS 

    Google Scholar 

  • Brown, C. J. et al. A gene from the region of the human X inactivation center is expressed exclusively from the inactive X chromosome. Nature 349, 38–44 (1991).

    CAS 
    PubMed 
    ADS 

    Google Scholar 

  • Denicol, A. C., Leão, B. C. S., Dobbs, K. B., Mingoti, G. Z. & Hansen, P. J. Influence of sex on basal and dickkopf-1 regulated gene expression in the Bovine Morula. PLoS ONE 10(7), e0133587 (2015).

    PubMed 
    PubMed Central 

    Google Scholar 

  • Iwata, H. et al. Role of G6PD activity on sex ratio and developmental competence under oxidative stress. J. Reprod. Dev. 48, 447–453 (2002).

    CAS 

    Google Scholar 

  • Fico, A. et al. Glucose-6-phosphate dehydrogenase plays a crucial role in protection from redox-stress-induced apoptosis. Cell. Death. Differ. 11, 823–831 (2004).

    CAS 
    PubMed 

    Google Scholar 

  • Bermejo-Alvarez, P., Rizos, D., Rath, D., Lonergan, P. & Gutierrez-Adan, A. Sex determines the expression level of one third of the actively expressed genes in bovine blastocysts. Proc. Natl. Acad. Sci. USA 107, 3394–3399 (2010).

    CAS 
    PubMed 
    PubMed Central 
    ADS 

    Google Scholar 

  • Verma, A. S. & Shapiro, B. H. Sex-dependent expression of seven housekeeping genes in rat liver. J. Gastroenter. Hep. 21, 1004–1008 (2006).

    CAS 

    Google Scholar 

  • Ghys, E. et al. Female bovine blastocysts are more prone to apoptosis than male ones. Theriogenology 85, 591–600 (2016).

    CAS 
    PubMed 

    Google Scholar 

  • Li, H. J. et al. Early apoptosis is associated with improved developmental potential in bovine oocyte. Anim. Reprod. Sci. 114, 89–98 (2009).

    CAS 
    PubMed 

    Google Scholar 

  • Gutierrez-Adan, A. et al. Developmental consequences of sexual dimorphism during pre-implantation embryonic development. Rep. Dom. Anim. 41(s2), 54–62 (2006).

    Google Scholar 

  • Favetta, L. A., St John, E. J., King, W. A. & Betts, D. H. High levels of p66 shc and intracellular ROS in permanently arrested early embryos. Free. Rad. Biol. Med. 42, 1201–1210 (2007).

    CAS 
    PubMed 

    Google Scholar 

  • De-Bao, H., Zhong-Shu, L., Ihsan, A., Li-Jie, X. & Zhu, F. N. Effect of potential role of p53 on embryo development arrest induced by H2O2 in mouse. In Vitro. Cell. Dev. Biol. Animal. https://doi.org/10.1007/s11626-016-0122-1 (2017).

    Article 

    Google Scholar 

  • Paunesku, T. et al. Proliferating cell nuclear antigen (PCNA): Ringmaster of the genome. Int. J. Radiat. Biol. 77, 1007–1021 (2001).

    CAS 
    PubMed 

    Google Scholar 

  • Gandolfi, F. & Moor, R. M. Stimulation of early embryonic development in the sheep by co-culture with oviduct epithelial cells. J. Reprod. Fert. 81, 23–28 (1987).

    CAS 

    Google Scholar 

  • Mishra, A., Dhali, A., Reddy, I. J. & Kolte, A. P. Sexing of pre-implantation ovine embryos through polymerase chain reaction-based amplification of GAPDH, SRY and AMEL genes. Reprod. Dom. Anim. 55, 885–892 (2020).

    CAS 

    Google Scholar 

  • Mishra, A., Reddy, I. J., Gupta, P. S. P. & Mondal, S. Expression of apoptotic and antioxidant enzyme genes in sheep oocytes and in vitro produced embryos. Anim. Biotechnol. 28(1), 18–25 (2017).

    CAS 
    PubMed 

    Google Scholar 

  • Source link