Bavister, B. D. Culture of pre implantation embryos facts and artifacts. Hum. Reprod. Update. 1(2), 91–148 (1995).
Google Scholar
Mishra, A., Ramesh, K. G., Dhali, A. & Reddy, I. J. Interaction of apoptosis and pluripotency related transcripts for developmental potential of ovine embryos produced in vitro at different oxygen concentrations. Anim. Biotechnol. 32(4), 470–478. https://doi.org/10.1080/10495398.2020.1721513 (2021).
Google Scholar
Gardner, D. K. & Kelley, R. L. Male and female embryos differ in their response to oxygen concentration. Fertil. Steril. 100(3), S242 (2013).
Meintjes, M. et al. Normalization of the live-birth sex ratio after human blastocyst transfer from optimized culture conditions. Fertil. Steril. 92, S229–S230 (2009).
Heras, S. et al. Suboptimal culture conditions induce more deviations in gene expression in male than female bovine blastocysts. BMC. Genom. 17, 72. https://doi.org/10.1186/s12864-016-2393-z (2016).
Google Scholar
Drickamer, L. C. Seasonal variation in fertility, fecundity and litter sex ratio in laboratory and wild stocks of house mice (Mus domesticus). Lab. Anim. Sci. 40, 284–288 (1990).
Google Scholar
Gutierrez-Adan, A., Oter, M., Martinez-Madrid, B., Pintado, B. & De La Fuente, J. Differential expression of two genes located on the X chromosome between male and female in vitro-produced bovine embryos at the blastocyst stage. Mol. Reprod. Dev. 55, 146–151 (2000).
Google Scholar
Tiffin, G. J., Rieger, D., Betteridge, K. J., Yadav, B. R. & King, W. A. Glucose and glutamine metabolism in pre-attachment cattle embryos in relation to sex and stage of development. J. Reprod. Fertil. 93, 125–132 (1991).
Google Scholar
Ramesh Kumar, G., Mishra, A., Reddy, I. J., Dhali, A. & Roy, S. C. Low oxygen tension activates glucose metabolism, improves antioxidant capacity and augment developmental potential of ovine embryos in vitro. Anim. Prod. Sci. 60(4), 503–509 (2020).
Google Scholar
Hall, J.E. Guyton and Hall Textbook of Medical Physiology, 12th edn. 1600 John F. Kennedy Blvd. Ste 1800 19103-2899 (Saunders Elsevier, Philadelphia, PA, 2011).
Takahashi, T. et al. Supplementation of culture medium with l-carnitine improves development cryotolerance of bovine embryos produced in vitro. Reprod. Fert. Dev. 25, 589–599 (2013).
Google Scholar
You, J., Lee, J., Hyun, S. H. & Eunsong, L. l-Carnitine treatment during oocyte maturation improves in vitro development of cloned pig embryos by influencing intracellular glutathione sysnthesis embryonic gene expression. Theriogenology 78, 235–243 (2012).
Google Scholar
Abdelrazik, H., Sharma, R., Mahfouz, R. & Agarwal, A. l-Carnitine decreases DNA damage and improvesthe in vitro blastocyst development rate in mouse embryos. Fertil. Steril. 91, 589–596 (2009).
Google Scholar
Mishra, A., Reddy, I. J., Gupta, P. S. P. & Mondal, S. l-Carnitine mediated reduction in oxidative stress and alteration in transcripts level of antioxidant enzymes in sheep embryos produced in vitro. Reprod. Dom. Anim. 51(2), 311–321 (2016).
Google Scholar
Mishra, A., Reddy, I. J., Gupta, P. S. P. & Mondal, S. Developmental regulation and modulation of apoptotic genes expression in sheep oocytes and embryos cultured in vitro with l-carnitine. Reprod. Dom. Anim. 51(6), 1020–1029 (2016).
Google Scholar
Ye, J. et al. l-Carnitine attenuates oxidant injury in HK-2 cells via ROS–mitochondria pathway. Regula. Pep. 161, 58–66 (2010).
Google Scholar
Jaffe, L. A. & Cross, N. L. Electrical properties of vertebrate oocyte membranes. Biol. Reprod. 30, 50–54 (1984).
Google Scholar
Murnane, J. & De Felice, L. J. Electrical maturation of murine oocytes: An increase in calcium current coincides with acquisition of meiotic competence. Zygote 1, 49–60 (1993).
Google Scholar
Brodie, C., Bak, A., Shainberg, A. & Sampson, S. R. Role of Na-K ATPase in regulation of resting membrane potential of cultured rat skeletal myotubes. J. Cell. Physiol. 130, 191–198 (1987).
Google Scholar
Comellas, A. P. et al. Hypoxia-mediated degradation of Na, K-ATPase via mitochondrial reactive oxygen species and the ubiquitin conjugating system. Circ. Res. 98, 1314–1322 (2006).
Google Scholar
Tosti, E. & Boni, R. Electrical events during gamete maturation and fertilization in animals and humans. Hum. Reprod. Update. 10(1), 53–65 (2004).
Google Scholar
Arangasamy, A. et al. Role of calcium and magnesium administration on sex ratio skewing, follicular fluid protein profiles and steroid hormone level and oocyte transcripts expression pattern in Wistar rat. Ind. J. Anim. Sci. 85(11), 1190–1194 (2015).
Google Scholar
Siristatidis, C. et al. The effect of reactive oxygen species on embryo quality in IVF. In Vivo 30, 149–154 (2016).
Google Scholar
Stokes, Y. M. Quantifying oxygen diffusion in paraffin oil used in oocyte and embryo culture. Mol. Reprod. Develop. 76, 1178–1187 (2009).
Google Scholar
Javvaji, P. K. et al. Interleukin-7 improves in vitro maturation of ovine cumulus-oocyte complexes in a dose dependent manner. Cytokine 113, 296–304 (2019).
Google Scholar
Veronique, C. M. & Shazib, P. Intracellular superoxide and hydrogen peroxide concentrations: A critical balance that determines survival or death. Redox Rep. 6(4), 211–214 (2001).
Baud, C. Developmental change of a depolarization induced sodium permeability in the oocyte of Xenopus laevis. Dev. Biol. 99, 524–528 (1983).
Google Scholar
Dale, B. & De Santis, A. Maturation and fertilization of the sea urchin oocyte: An electrophysiological study. Dev. Biol. 85, 474–484 (1981).
Google Scholar
Tosti, E., Boni, R. & Cuomo, A. Ca2+ current activity decreases during meiotic progression in bovine oocytes. Am. J. Physiol. Cell. Physiol. 279, C1795–C1800 (2000).
Google Scholar
Kitasato, H. The influence of H+ on the membrane potential and ion fluxes of Nitella. J. Gen. Physiol. 52(1), 60–87 (1968).
Google Scholar
Rodeau, T., Stephane, F., Edith, B. & Jean-Pierre, V. Effect of procaine on membrane potential and intracellular pH in Xenopus laevis oocytes. Mol. Memb. Biol. 15, 145–151 (1998).
Google Scholar
Unterberger, F. Geschlechtsbestimmung und Wasserstoffionenkonzentrati on Dtsch. Med. Wochenschr. 58(1), 729 (1932).
Google Scholar
Muehleis, P. M. & Long, S. Y. The effects of altering the pH of seminal fluid on the sex ratio of rabbit offspring. Fert. Ster. 27(12), 1438–1445 (1976).
Google Scholar
Perez-crespo, M. et al. Differential sensitivity of male and female mouse embryos to oxidative induced heat-stress is mediated by glucose-6-phosphate dehydrogenase gene expression. Mol. Reprod. Dev. 72, 502–510 (2005).
Google Scholar
Hansen, D., Moller, H. & Olsen, J. Severe periconceptional life events and the sex ratio in offspring: follow up study based on five national registers. BMJ 319, 548–549 (1999).
Google Scholar
Lequarre, A. S. et al. Expression of Cu/Zn Mn superoxide dismutase during bovine embryo development: Influence of in vitro culture. Mol. Reprod. Dev. 58, 45–53 (2001).
Google Scholar
Gulcin, I. Antioxidant and antiradical activities of l-carnitine. Life Sci. 78, 803–811 (2006).
Google Scholar
Godin, N. et al. Catalase overexpression prevents hypertension and tubular apoptosis in angiotensinogen transgenic mice. Kidney Int. 77, 1086–1097 (2010).
Google Scholar
Kander, M. C., Cui, Y. & Liu, Z. Gender difference in oxidative stress: A new look at the mechanisms for cardiovascular diseases. J. Cell. Mol. Med. 21(5), 1024–1032 (2017).
Google Scholar
Chen, Y., Ji, L. L., Liu, T. Y. & Wang, Z. T. Evaluation of gender-related differences in various oxidative stress enzymes in mice. Chinese. J. Physiol. 54, 385–390 (2011).
Google Scholar
Barp, J. et al. Myocardial antioxidant and oxidative stress changes due to sex hormones. Braz. J. Med. Biol. Res. 35, 1075–1081 (2002).
Google Scholar
Vina, J. et al. Females live longer than males: Role of oxidative stress. Curr. Pharm. Des. 17, 3959–3965 (2011).
Google Scholar
Bellanti, F. et al. Sex hormones modulate circulating antioxidant enzymes: Impact of estrogen therapy. Redox. Biol. 1, 340–346 (2013).
Google Scholar
Gomez, P. Y., Gianotti, M., Llado, I. & Proenza, A. M. Sex-dependent effects of high-fat-diet feeding on rat pancreas oxidative stress. Pancreas 40(5), 682–688 (2011).
Azevedo, R. B., Lacava, Z. G., Miyasaka, C. K., Chaves, S. B. & Curi, R. Regulation of antioxidant enzyme activities in male and female rat macrophages by sex steroids. Braz. J. Med. Biol. Res. 34, 683–687 (2001).
Google Scholar
Mishra, A., Reddy, I. J., Dhali, A. & Javvaji, P. K. l-Ergothioneine improves the developmental potential of in vitro sheep embryos without influencing OCTN1-mediated cross-membrane transcript expression. Zygote 26(2), 149–161 (2018).
Google Scholar
Shimizu, N., Shimizu, Y., Kondo, I., Woods, C. & Wegner, T. The bovine genes for phosphoglycerate kinase, glucose-6-phosphate dehydrogenase, alpha-galactosidase and hypoxanthine phosphoribosyl transferase are linked to the X chromosome in cattle-mouse cell hybrids. Cyto. Genet. Cell. Genet. 29, 26–31 (1981).
Google Scholar
Wrenzycki, C. et al. In vitro production and nuclear transfer affect dosage compensation of the X-linked gene transcripts G6PD, PGK, and Xist in preimplantation bovine embryos. Biol. Reprod. 66(1), 127–134 (2002).
Google Scholar
Sandhu, A. et al. Effect of sex of embryo on developmental competence, epigenetic status, and gene expression in buffalo (Bubalus bubalis) embryos produced by hand-made cloning. Cell. Reprog. https://doi.org/10.1089/cell.2015.0077 (2016).
Google Scholar
Peippo, J. et al. Sex-chromosome linked gene expression in in vitro produced bovine embryos. Mol. Hum. Reprod. 8, 923–929 (2002).
Google Scholar
Jegalian, K. & Page, D. C. A proposed path by which genes common to mammalian X and Y chromosomes evolve to become X inactivated. Nature 394, 776–780 (1998).
Google Scholar
Brown, C. J. et al. A gene from the region of the human X inactivation center is expressed exclusively from the inactive X chromosome. Nature 349, 38–44 (1991).
Google Scholar
Denicol, A. C., Leão, B. C. S., Dobbs, K. B., Mingoti, G. Z. & Hansen, P. J. Influence of sex on basal and dickkopf-1 regulated gene expression in the Bovine Morula. PLoS ONE 10(7), e0133587 (2015).
Google Scholar
Iwata, H. et al. Role of G6PD activity on sex ratio and developmental competence under oxidative stress. J. Reprod. Dev. 48, 447–453 (2002).
Google Scholar
Fico, A. et al. Glucose-6-phosphate dehydrogenase plays a crucial role in protection from redox-stress-induced apoptosis. Cell. Death. Differ. 11, 823–831 (2004).
Google Scholar
Bermejo-Alvarez, P., Rizos, D., Rath, D., Lonergan, P. & Gutierrez-Adan, A. Sex determines the expression level of one third of the actively expressed genes in bovine blastocysts. Proc. Natl. Acad. Sci. USA 107, 3394–3399 (2010).
Google Scholar
Verma, A. S. & Shapiro, B. H. Sex-dependent expression of seven housekeeping genes in rat liver. J. Gastroenter. Hep. 21, 1004–1008 (2006).
Google Scholar
Ghys, E. et al. Female bovine blastocysts are more prone to apoptosis than male ones. Theriogenology 85, 591–600 (2016).
Google Scholar
Li, H. J. et al. Early apoptosis is associated with improved developmental potential in bovine oocyte. Anim. Reprod. Sci. 114, 89–98 (2009).
Google Scholar
Gutierrez-Adan, A. et al. Developmental consequences of sexual dimorphism during pre-implantation embryonic development. Rep. Dom. Anim. 41(s2), 54–62 (2006).
Favetta, L. A., St John, E. J., King, W. A. & Betts, D. H. High levels of p66 shc and intracellular ROS in permanently arrested early embryos. Free. Rad. Biol. Med. 42, 1201–1210 (2007).
Google Scholar
De-Bao, H., Zhong-Shu, L., Ihsan, A., Li-Jie, X. & Zhu, F. N. Effect of potential role of p53 on embryo development arrest induced by H2O2 in mouse. In Vitro. Cell. Dev. Biol. Animal. https://doi.org/10.1007/s11626-016-0122-1 (2017).
Google Scholar
Paunesku, T. et al. Proliferating cell nuclear antigen (PCNA): Ringmaster of the genome. Int. J. Radiat. Biol. 77, 1007–1021 (2001).
Google Scholar
Gandolfi, F. & Moor, R. M. Stimulation of early embryonic development in the sheep by co-culture with oviduct epithelial cells. J. Reprod. Fert. 81, 23–28 (1987).
Google Scholar
Mishra, A., Dhali, A., Reddy, I. J. & Kolte, A. P. Sexing of pre-implantation ovine embryos through polymerase chain reaction-based amplification of GAPDH, SRY and AMEL genes. Reprod. Dom. Anim. 55, 885–892 (2020).
Google Scholar
Mishra, A., Reddy, I. J., Gupta, P. S. P. & Mondal, S. Expression of apoptotic and antioxidant enzyme genes in sheep oocytes and in vitro produced embryos. Anim. Biotechnol. 28(1), 18–25 (2017).
Google Scholar

