Cenni, E. et al. Established cell lines and primary cultures in testing medical devices in vitro. Toxicol. In Vitro 13, 801–810 (1999).
Google Scholar
Lund, A., Lam, K. & Parks, P. Disaster Medicine Online: Evaluation of an online, modular, interactive, asynchronous curriculum. CJEM 4, 408–413 (2002).
Google Scholar
Li, W., Zhou, J. & Xu, Y. Study of the in vitro cytotoxicity testing of medical devices. Biomed. Rep. 3, 617–620. https://doi.org/10.3892/br.2015.481 (2015).
Google Scholar
Anderson, J. M. Biological responses to materials. Ann. Rev. Mater. Res. 31, 81–110. https://doi.org/10.1146/annurev.matsci.31.1.81 (2001).
Google Scholar
O’Brien, J., Wilson, I., Orton, T. & Pognan, F. Investigation of the Alamar Blue (resazurin) fluorescent dye for the assessment of mammalian cell cytotoxicity. Eur. J. Biochem. FEBS 267, 5421–5426 (2000).
Google Scholar
Perrot, S., Dutertre-Catella, H., Martin, C., Warnet, J. M. & Rat, P. A new nondestructive cytometric assay based on resazurin metabolism and an organ culture model for the assessment of corneal viability. Cytometry Part A J. Int. Soc. Anal. Cytol. 55, 7–14. https://doi.org/10.1002/cyto.a.10067 (2003).
Google Scholar
Youn, H. Y., McCanna, D. J., Sivak, J. G. & Jones, L. W. In vitro ultraviolet-induced damage in human corneal, lens, and retinal pigment epithelial cells. Mol. Vis. 17, 237–246 (2011).
Google Scholar
Oh, S., McCanna, D. J., Subbaraman, L. N. & Jones, L. W. Cytotoxic and inflammatory effects of contact lens solutions on human corneal epithelial cells in vitro. Contact Lens Anterior Eye J. Brit. Contact Lens Assoc. 41, 282–289. https://doi.org/10.1016/j.clae.2017.12.006 (2018).
Google Scholar
Anderson, J. M., Rodriguez, A. & Chang, D. T. Foreign body reaction to biomaterials. Semin. Immunol. 20, 86–100. https://doi.org/10.1016/j.smim.2007.11.004 (2008).
Google Scholar
Van Tienhoven, E. A., Korbee, D., Schipper, L., Verharen, H. W. & De Jong, W. H. In vitro and in vivo (cyto)toxicity assays using PVC and LDPE as model materials. J. Biomed. Mater. Res., Part A 78, 175–182. https://doi.org/10.1002/jbm.a.30679 (2006).
Google Scholar
Pot, S. A. et al. Selenium functionalized intraocular lenses inhibit posterior capsule opacification in an ex vivo canine lens capsular bag assay. Exp. Eye Res. 89, 728–734. https://doi.org/10.1016/j.exer.2009.06.016 (2009).
Google Scholar
Schaumberg, D. A., Dana, M. R., Christen, W. G. & Glynn, R. J. A systematic overview of the incidence of posterior capsule opacification. Ophthalmology 105, 1213–1221. https://doi.org/10.1016/S0161-6420(98)97023-3 (1998).
Google Scholar
Schmidbauer, J. M. et al. Posterior capsule opacification. Int. Ophthalmol. Clin. 41, 109–131 (2001).
Google Scholar
Bodnar, Z., Clouser, S. & Mamalis, N. Toxic anterior segment syndrome: Update on the most common causes. J. Cataract Refract. Surg. 38, 1902–1910. https://doi.org/10.1016/j.jcrs.2012.06.053 (2012).
Google Scholar
Wijnants, D. et al. Late-onset Toxic Anterior Segment Syndrome after possible aluminum and silicon contaminated intraocular lens implantation. J. Cataract Refract. Surg. https://doi.org/10.1097/j.jcrs.0000000000000783 (2021).
Google Scholar
Ursell, P. G., Dhariwal, M., O’Boyle, D., Khan, J. & Venerus, A. 5 year incidence of YAG capsulotomy and PCO after cataract surgery with single-piece monofocal intraocular lenses: A real-world evidence study of 20,763 eyes. Eye 34, 960–968. https://doi.org/10.1038/s41433-019-0630-9 (2020).
Google Scholar
Green, K. & Tonjum, A. M. The effect of benzalkonium chloride on the electropotential of the rabbit cornea. Acta Ophthalmol. 53, 348–357 (1975).
Google Scholar
Pisella, P. J. et al. Conjunctival proinflammatory and proapoptotic effects of latanoprost and preserved and unpreserved timolol: An ex vivo and in vitro study. Invest. Ophthalmol. Vis. Sci. 45, 1360–1368 (2004).
Google Scholar
Tsuchiya, T. et al. Rabbit eye irritation caused by wearing toxic contact lenses and their cytotoxicities: In vivo/in vitro correlation study using standard reference materials. J. Biomed. Mater. Res. 27, 885–893. https://doi.org/10.1002/jbm.820270707 (1993).
Google Scholar
Youn, H. Y., Moran, K. L., Oriowo, O. M., Bols, N. C. & Sivak, J. G. Surfactant and UV-B-induced damage of the cultured bovine lens. Toxicol. In Vitro 18, 841–852. https://doi.org/10.1016/j.tiv.2004.04.007 (2004).
Google Scholar
De Jong, W. H. et al. Ranking of allergenic potency of rubber chemicals in a modified local lymph node assay. Toxicol. Sci. 66, 226–232 (2002).
Google Scholar
Depree, G. J., Bledsoe, T. A. & Siegel, P. D. Survey of sulfur-containing rubber accelerator levels in latex and nitrile exam gloves. Contact Dermatitis 53, 107–113. https://doi.org/10.1111/j.0105-1873.2005.00657.x (2005).
Google Scholar
Joseph, L., Velayudhan, A., Charuvila, M. V. & Vayalappil, M. C. Reference biomaterials for biological evaluation. J. Mater. Sci. Mater. Med. 20(Suppl 1), S9-17. https://doi.org/10.1007/s10856-008-3522-2 (2009).
Google Scholar
Tsuchiya, T. Studies on the standardization of cytotoxicity tests and new standard reference materials useful for evaluating the safety of biomaterials. J. Biomater. Appl. 9, 138–157 (1994).
Google Scholar
Ayaki, M., Yaguchi, S., Iwasawa, A. & Koide, R. Cytotoxicity of ophthalmic solutions with and without preservatives to human corneal endothelial cells, epithelial cells and conjunctival epithelial cells. Clin. Exp. Ophthalmol. 36, 553–559. https://doi.org/10.1111/j.1442-9071.2008.01803.x (2008).
Google Scholar
Cha, S. H., Lee, J. S., Oum, B. S. & Kim, C. D. Corneal epithelial cellular dysfunction from benzalkonium chloride (BAC) in vitro. Clin. Exp. Ophthalmol. 32, 180–184. https://doi.org/10.1111/j.1442-9071.2004.00782.x (2004).
Google Scholar
Draize, J. H., Woodard, G. & Calvery, H. O. Methods for the study of irritation and toxicity of substances applied topically to the skin and mucous membranes. J. Pharmacol. Exp. Ther. 82, 377–390 (1944).
Google Scholar
Grant, R. L. & Acosta, D. Prolonged adverse effects of benzalkonium chloride and sodium dodecyl sulfate in a primary culture system of rabbit corneal epithelial cells. Fundam. Appl. Toxicol. 33, 71–82 (1996).
Google Scholar
Kao, E. C., McCanna, D. J. & Jones, L. W. Utilization of in vitro methods to determine the biocompatibility of intraocular lens materials. Toxicol. In Vitro 25, 1906–1911. https://doi.org/10.1016/j.tiv.2011.06.005 (2011).
Google Scholar
Pisella, P. J., Fillacier, K., Elena, P. P., Debbasch, C. & Baudouin, C. Comparison of the effects of preserved and unpreserved formulations of timolol on the ocular surface of albino rabbits. Ophthalm. Res. 32, 3–8 (2000).
Google Scholar
Sivak, J. G., Herbert, K. L. & Segal, L. Ocular lens organ-culture as a measure of ocular irritancy—the effect of surfactants. Toxicol. Method 4, 56–65. https://doi.org/10.3109/15376519409049113 (1994).
Google Scholar
Ziegler, U. & Groscurth, P. Morphological features of cell death. News Physiol. Sci. 19, 124–128. https://doi.org/10.1152/nips.01519.2004 (2004).
Google Scholar
Knudsen, B. B. et al. Allergologically relevant rubber accelerators in single-use medical gloves. Contact Dermatitis 43, 9–15 (2000).
Google Scholar
Bergendorff, O., Persson, C. & Hansson, C. High-performance liquid chromatography analysis of rubber allergens in protective gloves used in health care. Contact Dermatitis 55, 210–215. https://doi.org/10.1111/j.1600-0536.2006.00912.x (2006).
Google Scholar
Rosengren, A., Faxius, L., Tanaka, N., Watanabe, M. & Bjursten, L. M. Comparison of implantation and cytotoxicity testing for initially toxic biomaterials. J. Biomed. Mater. Res. Part A 75, 115–122. https://doi.org/10.1002/jbm.a.30431 (2005).
Google Scholar
Park, J. C. et al. Evaluation of the cytotoxicity of polyetherurethane (PU) film containing zinc diethyldithiocarbamate (ZDEC) on various cell lines. Yonsei Med. J. 43, 518–526 (2002).
Google Scholar
Haanen, C. & Vermes, I. Apoptosis and inflammation. Mediators Inflamm. 4, 5–15. https://doi.org/10.1155/S0962935195000020 (1995).
Google Scholar
Malecaze, F. et al. Prevention of posterior capsule opacification by the induction of therapeutic apoptosis of residual lens cells. Gene Ther. 13, 440–448. https://doi.org/10.1038/sj.gt.3302667 (2006).
Google Scholar
McCanna, D. J., Barthod-Malat, A. V. & Gorbet, M. B. In vitro methods of assessing ocular biocompatibility using THP-1-derived macrophages. Cutan. Ocul. Toxicol. 34, 89–100. https://doi.org/10.3109/15569527.2014.908205 (2015).
Google Scholar
Mishra, V. & Heath, R. J. Structural and biochemical features of human serum albumin essential for eukaryotic cell culture. Int. J. Mol. Sci. https://doi.org/10.3390/ijms22168411 (2021).
Google Scholar
Yamamoto, S. et al. pH-dependent protein binding properties of uremic toxins in vitro. Toxins https://doi.org/10.3390/toxins13020116 (2021).
Google Scholar
Ozyol, P., Ozyol, E. & Karel, F. Biocompatibility of intraocular lenses. Turk. J. Ophthalmol. 47, 221–225. https://doi.org/10.4274/tjo.10437 (2017).
Google Scholar

