Preloader

In situ monitoring reveals cellular environmental instabilities in human pluripotent stem cell culture

  • 1.

    Al-Ani, A. et al. Oxygenation in cell culture: Critical parameters for reproducibility are routinely not reported. PLOS ONE 13, e0204269, https://doi.org/10.1371/journal.pone.0204269 (2018).

    CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • 2.

    Wittenberg, B. A. & Wittenberg, B. J. Transport of oxygen in muscle. Annu. Rev. Physiol. 51, 857–878, https://doi.org/10.1146/annurev.ph.51.030189.004233 (1989).

    CAS 
    Article 
    PubMed 

    Google Scholar 

  • 3.

    Muoio, V., Persson, P. B. & Sendeski, M. M. The neurovascular unit – concept review. Acta Physiologica 210, 790–798, https://doi.org/10.1111/apha.12250 (2014).

    CAS 
    Article 
    PubMed 

    Google Scholar 

  • 4.

    Klein, S. G. et al. A prevalent neglect of environmental control in mammalian cell culture calls for best practices. Nat. Biomed. Eng. 5, 787–792, https://doi.org/10.1038/s41551-021-00775-0 (2021).

    Article 
    PubMed 

    Google Scholar 

  • 5.

    Jensen, F. B. Red blood cell pH, the Bohr effect, and other oxygenation‐linked phenomena in blood O2 and CO2 transport. Acta Physiologica Scandinavica 182, 215–227 (2004).

    CAS 
    PubMed 

    Google Scholar 

  • 6.

    López-Barneo, J., Pardal, R. & Ortega-Sáenz, P. Cellular mechanism of oxygen sensing. Annu. Rev. Physiol. 63, 259–287 (2001).

    PubMed 

    Google Scholar 

  • 7.

    Ausländer, D. et al. A synthetic multifunctional mammalian pH sensor and CO2 transgene-control device. Mol. Cell 55, 397–408, https://doi.org/10.1016/j.molcel.2014.06.007 (2014).

    CAS 
    Article 
    PubMed 

    Google Scholar 

  • 8.

    Tao, J.-H., Barbi, J. & Pan, F. Hypoxia-inducible factors in T lymphocyte differentiation and function. A review in the theme: cellular responses to hypoxia. Am. J. Physiol.-Cell Physiol. 309, C580–C589 (2015).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • 9.

    Ruan, K., Song, G. & Ouyang, G. Role of hypoxia in the hallmarks of human cancer. J. Cell. Biochem. 107, 1053–1062 (2009).

    CAS 
    PubMed 

    Google Scholar 

  • 10.

    White, K. A., Grillo-Hill, B. K. & Barber, D. L. Cancer cell behaviors mediated by dysregulated pH dynamics at a glance. J. Cell Sci. 130, 663–669 (2017).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • 11.

    Kondo, A. et al. Extracellular acidic pH activates the sterol regulatory element-binding protein 2 to promote tumor progression. Cell Rep. 18, 2228–2242 (2017).

    CAS 
    PubMed 

    Google Scholar 

  • 12.

    Laurent-Emmanuel Monfoulet, P. B. et al. The pH in the microenvironment of human mesenchymal stem cells is a critical factor for optimal osteogenesis in tissue-engineered constructs. Tissue Eng. Part A 20, 1827–1840, https://doi.org/10.1089/ten.tea.2013.0500 (2014).

    CAS 
    Article 
    PubMed 

    Google Scholar 

  • 13.

    Kikuchi, R. et al. Hypercapnia accelerates adipogenesis: a novel role of high CO2 in exacerbating obesity. Am. J. Respiratory Cell Mol. Biol. 57, 570–580 (2017).

    CAS 

    Google Scholar 

  • 14.

    Packer, L. & Fuehr, K. Low oxygen concentration extends the lifespan of cultured human diploid cells. Nature 267, 423–425 (1977).

    CAS 
    PubMed 

    Google Scholar 

  • 15.

    Ast, T. & Mootha, V. K. Oxygen and mammalian cell culture: are we repeating the experiment of Dr. Ox? Nat. Metab. 1, 858–860 (2019).

    CAS 
    PubMed 

    Google Scholar 

  • 16.

    Semenza, G. L. Hypoxia-inducible factors in physiology and medicine. Cell 148, 399–408, https://doi.org/10.1016/j.cell.2012.01.021 (2012).

    CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • 17.

    Wang, G. L., Jiang, B.-H., Rue, E. A. & Semenza, G. L. Hypoxia-inducible factor 1 is a basic-helix-loop-helix-PAS heterodimer regulated by cellular O2 tension. Proc. Natl. Acad. Sci. 92, 5510–5514 (1995).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • 18.

    Semenza, G. L., Nejfelt, M. K., Chi, S. M. & Antonarakis, S. E. Hypoxia-inducible nuclear factors bind to an enhancer element located 3’to the human erythropoietin gene. Proc. Natl. Acad. Sci. 88, 5680–5684 (1991).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • 19.

    Jang, Y. Y. & Sharkis, S. J. A low level of reactive oxygen species selects for primitive hematopoietic stem cells that may reside in the low-oxygenic niche. Blood 110, 3056–3063, https://doi.org/10.1182/blood-2007-05-087759 (2007).

    CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • 20.

    Tsai, C.-C. et al. Hypoxia inhibits senescence and maintains mesenchymal stem cell properties through down-regulation of E2A-p21 by HIF-TWIST. Blood, J. Am. Soc. Hematol. 117, 459–469 (2011).

    CAS 

    Google Scholar 

  • 21.

    Gao, L. et al. Intermittent high oxygen influences the formation of neural retinal tissue from human embryonic stem cells. Sci. Rep. 6, 1–13 (2016).

    Google Scholar 

  • 22.

    DiStefano, T. et al. Accelerated and improved differentiation of retinal organoids from pluripotent stem cells in rotating-wall vessel bioreactors. Stem Cell Rep. 10, 300–313 (2018).

    CAS 

    Google Scholar 

  • 23.

    Li, M. & Izpisua Belmonte, J. C. Organoids—preclinical models of human disease. N. Engl. J. Med. 380, 569–579 (2019).

    PubMed 

    Google Scholar 

  • 24.

    Miyazaki, T. et al. Laminin E8 fragments support efficient adhesion and expansion of dissociated human pluripotent stem cells. Nat. Commun. 3, 1–11 (2012).

    Google Scholar 

  • 25.

    Nagaoka, M., Si-Tayeb, K., Akaike, T. & Duncan, S. A. Culture of human pluripotent stem cells using completely defined conditions on a recombinant E-cadherin substratum. BMC Developmental Biol. 10, 1–12 (2010).

    Google Scholar 

  • 26.

    Laperle, A. et al. α-5 laminin synthesized by human pluripotent stem cells promotes self-renewal. Stem Cell Rep. 5, 195–206 (2015).

    CAS 

    Google Scholar 

  • 27.

    Chen, G. et al. Chemically defined conditions for human iPSC derivation and culture. Nat. Methods 8, 424–429 (2011).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • 28.

    Pera, M. F. et al. Regulation of human embryonic stem cell differentiation by BMP-2 and its antagonist noggin. J. Cell Sci. 117, 1269–1280 (2004).

    CAS 
    PubMed 

    Google Scholar 

  • 29.

    Kim, N., Minami, N., Yamada, M. & Imai, H. Immobilized pH in culture reveals an optimal condition for somatic cell reprogramming and differentiation of pluripotent stem cells. Reprod. Med. Biol. 16, 58–66 (2017).

    CAS 
    PubMed 

    Google Scholar 

  • 30.

    Li, M. & Belmonte, J. C. I. Deconstructing the pluripotency gene regulatory network. Nat. Cell Biol. 20, 382–392 (2018).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • 31.

    Donovan, P. J. & Gearhart, J. The end of the beginning for pluripotent stem cells. Nature 414, 92–97, https://doi.org/10.1038/35102154 (2001).

    CAS 
    Article 
    PubMed 

    Google Scholar 

  • 32.

    Zakrzewski, W., Dobrzyński, M., Szymonowicz, M. & Rybak, Z. Stem cells: past, present, and future. Stem Cell Res. Ther. 10, 68–68, https://doi.org/10.1186/s13287-019-1165-5 (2019).

    CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • 33.

    Chan, S. W., Rizwan, M. & Yim, E. K. F. Emerging methods for enhancing pluripotent stem cell expansion. Front. Cell Dev Biol 8, 70 https://doi.org/10.3389/fcell.2020.00070 (2020).

  • 34.

    Kropp, C., Massai, D. & Zweigerdt, R. Progress and challenges in large-scale expansion of human pluripotent stem cells. Process Biochem. 59, 244–254, https://doi.org/10.1016/j.procbio.2016.09.032 (2017).

    CAS 
    Article 

    Google Scholar 

  • 35.

    Eagle, H. Buffer combinations for mammalian cell culture. Science 174, 500–503 (1971).

    CAS 
    PubMed 

    Google Scholar 

  • 36.

    Balin, A. K., Goodman, D. B., Rasmussen, H. & Cristofalo, V. J. Atmospheric stability in cell culture vessels. vitro 12, 687–692 (1976).

    CAS 

    Google Scholar 

  • 37.

    Michl, J., Park, K. C. & Swietach, P. Evidence-based guidelines for controlling pH in mammalian live-cell culture systems. Commun. Biol. 2, 144, https://doi.org/10.1038/s42003-019-0393-7 (2019).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • 38.

    Vallejos, J. R., Brorson, K. A., Moreira, A. R. & Rao, G. Dissolved oxygen and pH profile evolution after cryovial thaw and repeated cell passaging in a T-75 flask. Biotechnol. Bioeng. 105, 1040–1047 (2010).

    CAS 
    PubMed 

    Google Scholar 

  • 39.

    Pradhan, K., Pant, T. & Gadgil, M. In situ pH maintenance for mammalian cell cultures in shake flasks and tissue culture flasks. Biotechnol. Prog. 28, 1605–1610 (2012).

    CAS 
    PubMed 

    Google Scholar 

  • 40.

    Naciri, M., Kuystermans, D. & Al-Rubeai, M. Monitoring pH and dissolved oxygen in mammalian cell culture using optical sensors. Cytotechnology 57, 245–250 (2008).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • 41.

    Papkovsky, D. B. Methods in optical oxygen sensing: protocols and critical analyses. Methods Enzymol. 381, 715–735, https://doi.org/10.1016/s0076-6879(04)81046-2 (2004).

    CAS 
    Article 
    PubMed 

    Google Scholar 

  • 42.

    Kieninger, J. et al. Sensor access to the cellular microenvironment using the sensing cell culture flask. Biosensors 8, 44 (2018).

  • 43.

    Ellert, A. & Grebe, A. Process optimization made easy: design of experiments with multi-bioreactor system BIOSTAT® Qplus. Nat. Methods 8, i–ii, https://doi.org/10.1038/nmeth.f.340 (2011).

    CAS 
    Article 

    Google Scholar 

  • 44.

    Wittmann, C., Kim, H. M., John, G. & Heinzle, E. Characterization and application of an optical sensor for quantification of dissolved O2 in shake-flasks. Biotechnol. Lett. 25, 377–380 (2003).

    CAS 
    PubMed 

    Google Scholar 

  • 45.

    Barrett, T. A., Wu, A., Zhang, H., Levy, M. S. & Lye, G. J. Microwell engineering characterization for mammalian cell culture process development. Biotechnol. Bioeng. 105, 260–275, https://doi.org/10.1002/bit.22531 (2010).

    CAS 
    Article 
    PubMed 

    Google Scholar 

  • 46.

    Wenger, R. H., Kurtcuoglu, V., Scholz, C. C., Marti, H. H. & Hoogewijs, D. Frequently asked questions in hypoxia research. Hypoxia (Auckl., N. Z.) 3, 35–43, https://doi.org/10.2147/HP.S92198 (2015).

    Article 

    Google Scholar 

  • 47.

    Blaszczak, W., Tan, Z. & Swietach, P. Cost-effective real-time metabolic profiling of cancer cell lines for plate-based assays. Chemosensors 9, 139 (2021).

    CAS 

    Google Scholar 

  • 48.

    Jose, C., Bellance, N. & Rossignol, R. Choosing between glycolysis and oxidative phosphorylation: a tumor’s dilemma? Biochimica et. Biophysica Acta (BBA)-Bioenerg. 1807, 552–561 (2011).

    CAS 

    Google Scholar 

  • 49.

    Zheng, J. Energy metabolism of cancer: Glycolysis versus oxidative phosphorylation. Oncol. Lett. 4, 1151–1157 (2012).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • 50.

    Gu, W. et al. Glycolytic metabolism plays a functional role in regulating human pluripotent stem cell state. Cell Stem Cell 19, 476–490 (2016).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • 51.

    Hopkins, E., Sanvictores, T. & Sharma, S. Acid Base Balance. [Updated 2021 Sep 14]. In: StatPearls [Internet]. Treasure Island (FL): StatPearls Publishing; 2022. Available from: http://creativecommons.org/licenses/by/4.0/.

  • 52.

    Aoi, W. & Marunaka, Y. Importance of pH homeostasis in metabolic health and diseases: crucial role of membrane proton transport. BioMed. Res. Int. 2014, 598986–598986, https://doi.org/10.1155/2014/598986 (2014).

    CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • 53.

    Brandenburg, M. A. & Dire, D. J. Comparison of arterial and venous blood gas values in the initial emergency department evaluation of patients with diabetic ketoacidosis. Ann. Emerg. Med. 31, 459–465 (1998).

    CAS 
    PubMed 

    Google Scholar 

  • 54.

    Street, D., Bangsbo, J. & Juel, C. Interstitial pH in human skeletal muscle during and after dynamic graded exercise. J. Physiol. 537, 993–998 (2001).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • 55.

    Good, N. E. et al. Hydrogen ion buffers for biological research. Biochemistry 5, 467–477 (1966).

    CAS 
    PubMed 

    Google Scholar 

  • 56.

    Kreü, S., Jazrawi, A., Miller, J., Baigi, A. & Chew, M. Alkalosis in critically ill patients with severe sepsis and septic Shock. PloS one 12, e0168563–e0168563, https://doi.org/10.1371/journal.pone.0168563 (2017).

    CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • 57.

    Fessler, M. B. CO2 as a potential obesogen: a gas that will stick to your ribs. Am. J. Respir. Cell Mol. Biol. 57, 499–500 (2017).

  • 58.

    Duarte, C. M., Jaremko, Ł. & Jaremko, M. Hypothesis: potentially systemic impacts of elevated CO2 on the human proteome and health. Front. Public Health 8, 645 (2020).

  • 59.

    Van Der Sanden, B., Dhobb, M., Berger, F. & Wion, D. Optimizing stem cell culture. J. Cell. Biochem. 111, 801–807 (2010).

    PubMed 

    Google Scholar 

  • 60.

    Kim, N. pH variation impacts molecular pathways associated with somatic cell reprogramming and differentiation of pluripotent stem cells. Reprod. Med. Biol. 20, 20–26 (2021).

    PubMed 

    Google Scholar 

  • 61.

    McBrian, M. A. et al. Histone acetylation regulates intracellular pH. Mol. Cell 49, 310–321 (2013).

    CAS 
    PubMed 

    Google Scholar 

  • 62.

    Zhang, C., Du, L., Pang, K. & Wu, X. Differentiation of human embryonic stem cells into corneal epithelial progenitor cells under defined conditions. PLOS ONE 12, e0183303, https://doi.org/10.1371/journal.pone.0183303 (2017).

    CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • 63.

    Yoshida, Y., Takahashi, K., Okita, K., Ichisaka, T. & Yamanaka, S. Hypoxia enhances the generation of induced pluripotent stem cells. Cell Stem Cell 5, 237–241 (2009).

    CAS 
    PubMed 

    Google Scholar 

  • 64.

    Farzana Hakim, T. K. et al. High oxygen condition facilitates the differentiation of mouse and human. Annu. Rev. Cell Developmental Biol. 15, 551–578 (2001).

    Google Scholar 

  • 65.

    Ben-David, U. et al. Genetic and transcriptional evolution alters cancer cell line drug response. Nature 560, 325–330 (2018).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • 66.

    Klein, S. G. et al. Toward best practices for controlling mammalian cell culture environments. Front. Cell Dev. Biol. https://doi.org/10.3389/fcell.2022.788808 (in press).

  • 67.

    Young, E. W. & Beebe, D. J. Fundamentals of microfluidic cell culture in controlled microenvironments. Chem. Soc. Rev. 39, 1036–1048 (2010).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • 68.

    Shi, J. et al. Current progress in long-term and continuous cell metabolite detection using microfluidics. TrAC Trends Anal. Chem. 117, 263–279 (2019).

    CAS 

    Google Scholar 

  • 69.

    Koenig, L. et al. Production of human induced pluripotent stem cell-derived cortical neurospheres in the DASbox® mini bioreactor system. Application Note 364, 1–12 (2018).

    Google Scholar 

  • 70.

    Kumar, G. S., Kumar, B. K. & Mishra, M. K. Mitigation of voltage unbalances and sags with phase-jumps in grid connected wind generation. in IET Conference on Renewable Power Generation (RPG 2011), 2011, pp. 1–6, https://doi.org/10.1049/cp.2011.0176 (2011).

  • 71.

    Klein, S. G. et al. In situ monitoring reveals cellular environmental instabilities in human pluripotent stem cell culture, Dryad, Dataset, https://doi.org/10.5061/dryad.41ns1rnd9 (2021).

  • Source link