Preloader

Improving lodgepole pine genomic evaluation using spatial correlation structure and SNP selection with single-step GBLUP

  • Aguilar I, Misztal I, Johnson DL, Legarra A, Tsuruta S, Lawlor TJ (2010) Hot topic: a unified approach to utilize phenotypic, full pedigree, and genomic information for genetic evaluation of Holstein final score. J Dairy Sci 93:743–752

    CAS 
    PubMed 

    Google Scholar 

  • Anderegg WRL, Hicke JA, Fisher RA, Allen CD, Aukema J, Bentz B et al. (2015) Tree mortality from drought, insects, and their interactions in a changing climate. N Phytol 208:674–683

    Google Scholar 

  • Arenas S, Cortés AJ, Mastretta-Yanes A, Jaramillo-Correa JP (2021) Evaluating the accuracy of genomic prediction for the management and conservation of relictual natural tree populations. Tree Genet Genomes 17:12

    Google Scholar 

  • Bernal-Vasquez A-M, Möhring J, Schmidt M, Schönleben M, Schön C-C, Piepho H-P (2014) The importance of phenotypic data analysis for genomic prediction-a case study comparing different spatial models in rye. BMC Genomics 15:646

    PubMed 
    PubMed Central 

    Google Scholar 

  • Bernatzky R, Mulcahy DL (1992) Marker-aided selection in a backcross breeding program for resistance to chestnut blight in the American chestnut. Can J Res 22:1031–1035

    Google Scholar 

  • Bohra A, Chand Jha U, Godwin ID, Kumar Varshney R (2020) Genomic interventions for sustainable agriculture. Plant Biotechnol J 18:2388–2405

    PubMed 
    PubMed Central 

    Google Scholar 

  • Bonan GB (2008) Forests and climate change: forcings, feedbacks, and the climate benefits of forests. Science 320:1444–1449

    CAS 
    PubMed 

    Google Scholar 

  • Calleja-Rodriguez A, Pan J, Funda T, Chen Z, Baison J, Isik F et al. (2020) Evaluation of the efficiency of genomic versus pedigree predictions for growth and wood quality traits in Scots pine. BMC Genomics 21:796

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Callister AN, Bradshaw BP, Elms S, Gillies RAW, Sasse JM, Brawner JT (2021) Single-step genomic BLUP enables joint analysis of disconnected breeding programs: an example with Eucalyptus globulus Labill. G3 Genes|Genomes|Genetics 11:jkab253

  • Cappa EP, Cantet RJC (2007) Bayesian estimation of a surface to account for a spatial trend using penalized splines in an individual-tree mixed model. Can J For Res 2677–2688

  • Cappa EP, El-Kassaby YA, Muñoz F, Garcia MN, Villalba PV, Klápště J et al. (2017) Improving accuracy of breeding values by incorporating genomic information in spatial-competition mixed models. Mol Breed 37:125

    Google Scholar 

  • Cappa EP, El-Kassaby YA, Muñoz F, Garcia MN, Villalba PV, Klápště J, et al. (2018) Genomic-based multiple-trait evaluation in Eucalyptus grandis using dominant DArT markers. Plant Sci 271:27–33

  • Cappa EP, de Lima BM, da Silva-Junior OB, Garcia CC, Mansfield SD, Grattapaglia D (2019) Improving genomic prediction of growth and wood traits in Eucalyptus using phenotypes from non-genotyped trees by single-step GBLUP. Plant Sci 284:9–15

    CAS 
    PubMed 

    Google Scholar 

  • Cappa EP, Muñoz F, Sanchez L (2019) Performance of alternative spatial models in empirical Douglas-fir and simulated datasets. Ann For Sci 76:16

  • Cappa EP, Yanchuk AD, Cartwright CV (2012) Bayesian inference for multi-environment spatial individual-tree models with additive and full-sib family genetic effects for large forest genetic trials. Ann For Sci 69:627–640

  • Chateigner A, Lesage-Descauses MC, Rogier O, Jorge V, Leplé JC, Brunaud V et al. (2020) Gene expression predictions and networks in natural populations supports the omnigenic theory. BMC Genomics 21:416

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Chen ZQ, Baison J, Pan J, Karlsson B, Gull BA, Westin J, et al. (2018) Accuracy of genomic selection for growth and wood quality traits in two control – pollinated progeny trials using exome capture as genotyping platform in Norway spruce. BMC Genom 19:946

  • Chen C, Mitchell SE, Elshire RJ, Buckler ES, El-Kassaby YA (2013) Mining conifers’ mega-genome using rapid and efficient multiplexed high-throughput genotyping-by-sequencing (GBS) SNP discovery platform. Tree Genet Genomes 9:1537–1544

    Google Scholar 

  • Chhetri HB, Macaya-Sanz D, Kainer D, Biswal AK, Evans LM, Chen J-G et al. (2019) Multitrait genome-wide association analysis of Populus trichocarpa identifies key polymorphisms controlling morphological and physiological traits. N Phytol 223:293–309

    CAS 

    Google Scholar 

  • Christensen OF, Lund MS (2010) Genomic prediction when some animals are not genotyped. Genet Sel Evol 42:2

    PubMed 
    PubMed Central 

    Google Scholar 

  • Christensen OF, Madsen P, Nielsen B, Ostersen T, Su G (2012) Single-step methods for genomic evaluation in pigs. Animal 6:1565–1571

    CAS 
    PubMed 

    Google Scholar 

  • Coops NC, Waring RH (2011) A process-based approach to estimate lodgepole pine (Pinus contorta Dougl.) distribution in the Pacific Northwest under climate change. Clim Change 105:313–328

    Google Scholar 

  • Cortés AJ, Restrepo-Montoya M, Bedoya-Canas LE (2020) Modern strategies to assess and breed forest tree adaptation to changing climate. Front Plant Sci 11:1606

    Google Scholar 

  • Costa e Silva J, Dutkowski GW, Gilmour AR (2001) Analysis of early tree height in forest genetic trials is enhanced by including a spatially correlated residual. Can J Res 31:1887–1893

    Google Scholar 

  • Dhir NK (1983) Development of genetically improved strains of lodgepole pine seed for reforestation in Alberta. In: USDA Forest Service (ed) Lodgepole pine: regeneration and management., General Technical Report, PNW-157: 20–22, p 20

  • Dutkowski GW, Costa E, Silva J, Gilmour AR, Wellendorf H, Aguiar A (2006) Spatial analysis enhances modelling of a wide variety of traits in forest genetic trials. Can J Res 36:1851–1870

    Google Scholar 

  • Elshire RJ, Glaubitz JC, Sun Q, Poland JA, Kawamoto K, Buckler ES et al. (2011) A robust, simple genotyping-by-sequencing (GBS) approach for high diversity species. PLoS One 6:1–10

    Google Scholar 

  • FGRMS (2016) Alberta forest genetic resource management and conservation standards. Alberta Agriculture and Forestry, Government of Alberta, Edmonton, Alberta, 158

  • Gamal El-Dien O, Ratcliffe B, Klapste J, Chen C, Porth I, El-Kassaby YA et al. (2015) Prediction accuracies for growth and wood attributes of interior spruce in space using genotyping-by-sequencing. BMC Genomics 16:370

    PubMed 
    PubMed Central 

    Google Scholar 

  • Gamal El-Dien O, Ratcliffe B, Klápště J, Porth I, Chen C, El-Kassaby YA (2016) Implementation of the realized genomic relationship matrix to open-pollinated white spruce family testing for disentangling additive from nonadditive genetic effects. G3; Genes|Genomes|Genet 6:743–753

    PubMed 
    PubMed Central 

    Google Scholar 

  • Gianola D, Norton HW (1981) Scaling threshold characters. Genetics 99:357–364

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Gilmour AR, Cullis BR, Verbyla AP, Verbyla AP (1997) Accounting for natural and extraneous variation in the analysis of field experiments. J Agric Biol Environ Stat 2:269

    Google Scholar 

  • Grattapaglia D, Resende MDV (2011) Genomic selection in forest tree breeding. Tree Genet Genomes 7:241–255

    Google Scholar 

  • Grattapaglia D, Silva-Junior OB, Resende RT, Cappa EP, Müller BSF, Tan B et al. (2018) Quantitative genetics and genomics converge to accelerate forest tree breeding. Front Plant Sci 9:1–10

    Google Scholar 

  • Habier D, Fernando RL, Garrick DJ (2013) Genomic BLUP decoded: a look into the black box of genomic prediction. Genetics 194:597–607

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Henderson CR (1984) Applications of linear models in animal breeding. University of Guelph, Guelph

  • Holliday JA, Wang T, Aitken S (2013) Predicting adaptive phenotypes from multilocus genotypes in sitka spruce (Picea sitchensis) using random forest. G3#58; Genes|Genomes|Genet 2:1085–1093

    Google Scholar 

  • John S, Sadoway S (2019) Region C lodgepole pine controlled parentage program plan seed orchards G284 and G827. West Fraser Mills Ltd, Blue Ridge Lumber Inc. Alberta, Canada

  • Klápště J, Dungey HS, Graham NJ, Telfer EJ (2020) Effect of trait’s expression level on single-step genomic evaluation of resistance to Dothistroma needle blight. BMC Plant Biol 20:205

    PubMed 
    PubMed Central 

    Google Scholar 

  • Klápště J, Dungey HS, Telfer EJ, Suontama M, Graham NJ, Li Y et al. (2020) Marker selection in multivariate genomic prediction improves accuracy of low heritability traits. Front Genet 11:1240

    Google Scholar 

  • Klápště J, Suontama M, Dungey HS, Telfer EJ, Graham NJ, Low CB et al. (2018) Effect of hidden relatedness on single-step genetic evaluation in an advanced open-pollinated breeding program. J Hered 109:802–810

    PubMed 
    PubMed Central 

    Google Scholar 

  • Lado B, Matus I, Rodriguez A, Inostroza L, Poland J, Belzile F et al. (2013) Increased genomic prediction accuracy in wheat breeding through spatial adjustment of field trial data. G3 Genes, Genomes, Genet 3:2105–2114

    Google Scholar 

  • Legarra A, Aguilar I, Misztal I (2009) A relationship matrix including full pedigree and genomic information. J Dairy Sci 92:4656–4663

    CAS 
    PubMed 

    Google Scholar 

  • Legarra A, Christensen OF, Aguilar I, Misztal I (2014) Single Step, a general approach for genomic selection. Livest Sci 166:54–65

    Google Scholar 

  • Legarra A, Robert-Granié C, Manfredi E, Elsen JM (2008) Performance of genomic selection in mice. Genetics 180:611–618

    PubMed 
    PubMed Central 

    Google Scholar 

  • Lenz PRN, Beaulieu J, Mansfield SD, Clément S, Desponts M, Bousquet J (2017) Factors affecting the accuracy of genomic selection for growth and wood quality traits in an advanced-breeding population of black spruce (Picea mariana). BMC Genomics 18:335

    PubMed 
    PubMed Central 

    Google Scholar 

  • Lenz PRN, Nadeau S, Mottet MJ, Perron M, Isabel N, Beaulieu J et al. (2020) Multi-trait genomic selection for weevil resistance, growth, and wood quality in Norway spruce. Evol Appl 13:76–94

    CAS 
    PubMed 

    Google Scholar 

  • Ling AS, Hay EH, Aggrey SE, Rekaya R (2021) Dissection of the impact of prioritized QTL-linked and -unlinked SNP markers on the accuracy of genomic selection(1). BMC Genom data 22:26

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • de los Campos G, Vazquez AI, Fernando R, Klimentidis YC, Sorensen D (2013) Prediction of complex human traits using the genomic best linear unbiased predictor. PLoS Genet 9:e1003608

  • Lourenco D, Legarra A, Tsuruta S, Masuda Y, Aguilar I, Misztal I (2020) Single-step genomic evaluations from theory to practice: using snp chips and sequence data in blupf90. Genes (Basel) 11:1–32

    Google Scholar 

  • Mao X, Dutta S, Wong RKW, Nettleton D (2020) Adjusting for spatial effects in genomic prediction. J Agric Biol Environ Stat 25:699–718

  • Meuwissen THE, Hayes BJ, Goddard ME (2001) Prediction of total genetic value using genome-wide dense marker maps. Genetics 157:1819–1829

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Meuwissen T, Hayes B, Goddard M (2013) Accelerating improvement of livestock with genomic selection. Annu Rev Anim Biosci 1:221–237

    PubMed 

    Google Scholar 

  • Misztal I, Legarra A, Aguilar I (2009) Computing procedures for genetic evaluation including phenotypic, full pedigree, and genomic information. J Dairy Sci 92:4648–4655

    CAS 
    PubMed 

    Google Scholar 

  • Misztal I, Tsuruta S, Lourenco D, Aguilar I, Legarra A, Vitezica Z (2018) Manual for BLUPF90 family of programs. University of Georgia, Athens, USA, 125

  • Mphahlele MM, Isik F, Hodge GR, Myburg AA (2021) Genomic breeding for diameter growth and tolerance to leptocybe gall wasp and botryosphaeria/teratosphaeria fungal disease complex in Eucalyptus grandis. Front Plant Sci 12:228

    Google Scholar 

  • Mphahlele MM, Isik F, Mostert-O’Neill MM, Reynolds SM, Hodge GR, Myburg AA (2020) Expected benefits of genomic selection for growth and wood quality traits in Eucalyptus grandis. Tree Genet Genomes 16:1–12

    Google Scholar 

  • Muñoz F, Sanchez L (2020) breedR: Statistical methods for forest genetic resources analysts. R package version 0.12–4. https://github.com/famuvie/breedR

  • Muranty H, Jorge V, Bastien C, Lepoittevin C, Bouffier L, Sanchez L (2014) Potential for marker-assisted selection for forest tree breeding: lessons from 20 years of MAS in crops. Tree Genet Genomes 10:1491–1510

    Google Scholar 

  • Nagano S, Hirao T, Takashima Y, Matsushita M, Mishima K, Takahashi M, et al. (2020) SNP genotyping with target amplicon sequencing using a multiplexed primer panel and its application to genomic prediction in Japanese cedar, Cryptomeria japonica (L.f.) D.Don. Forests 11:898

  • Paludeto JGZ, Grattapaglia D, Estopa RA, Tambarussi EV (2021) Genomic relationship–based genetic parameters and prospects of genomic selection for growth and wood quality traits in Eucalyptus benthamii. Tree Genet Genomes 17:38

    Google Scholar 

  • Qaim M (2020) Role of new plant breeding technologies for food security and sustainable agricultural development. Appl Econ Perspect Policy 42:129–150

    Google Scholar 

  • Ratcliffe B, El-Dien OG, Klápště J, Porth I, Chen C, Jaquish B et al. (2015) A comparison of genomic selection models across time in interior spruce (Picea engelmannii × glauca) using unordered SNP imputation methods. Heredity (Edinb) 115:547–555

    CAS 

    Google Scholar 

  • Ratcliffe B, Gamal El-Dien O, Cappa EP, Porth I, Klapste J, Chen C, et al. (2017) Single-step BLUP with varying genotyping effort in open-pollinated picea glauca. G3 Genes|Genomes|Genetics 7:935–942

  • Resende MFR, Munoz P, Resende MD, Garrick DJ, Fernando RL, Davis JM et al. (2012) Accuracy of genomic selection methods in a standard data set of loblolly pine (Pinus taeda L.). Genetics 190:1503–1510

    PubMed 
    PubMed Central 

    Google Scholar 

  • Resende RT, Resende MDV, Silva FF, Azevedo CF, Takahashi EK, Silva-Junior OB, et al. (2017) Assessing the expected response to genomic selection of individuals and families in Eucalyptus breeding with an additive-dominant model. Heredity 119:245–255

  • Rosenberg NA, Li LM, Ward R, Pritchard JK (2003) Informativeness of genetic markers for inference of ancestry. Am J Hum Genet 73:1402–1422

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Rweyongeza DM (2016) A new approach to prediction of the age-age correlation for use in tree breeding. Ann Sci 73:1099–1111

    Google Scholar 

  • Shalizi MN, Cumbie WP, Isik F (2021) Genomic prediction for fusiform rust disease incidence in a large cloned population of Pinus taeda. G3 Genes|Genomes|Genetics 11:jkab235

  • Tan B, Grattapaglia D, Martins GS, Ferreira KZ, Sundberg B, Ingvarsson PK (2017) Evaluating the accuracy of genomic prediction of growth and wood traits in two Eucalyptus species and their F1 hybrids. BMC Plant Biol 17:110

    PubMed 
    PubMed Central 

    Google Scholar 

  • Thavamanikumar S, Arnold RJ, Luo J, Thumma BR (2020) Genomic studies reveal substantial dominant effects and improved genomic predictions in an open-pollinated breeding population of Eucalyptus pellita. Genes|Genomes|Genet 10:g3.401601.2020

    Google Scholar 

  • Thistlethwaite FR, El-Dien OG, Ratcliffe B, Klápště J, Porth I, Chen C et al. (2020) Linkage disequilibrium vs. pedigree: Genomic selection prediction accuracy in conifer species. PLoS One 15:1–14

    Google Scholar 

  • Thomas B, El-Kassaby Y, Cappa E, Klutsch J, Ullah A, Erbilgin N (2019) Genome Canada’s RES-FOR project: Genomic selection for white spruce and lodgepole pine – linking phenotypes and genotypes. In: Genomic Selection for white spruce and lodgepole pine – linking phenotypes and genotypes, Quebec, Canada

  • Tsai HY, Cericola F, Edriss V, Andersen JR, Orabi J, Jensen JD et al. (2020) Use of multiple traits genomic prediction, genotype by environment interactions and spatial effect to improve prediction accuracy in yield data. PLoS One 15:1–14

    Google Scholar 

  • Ukrainetz NK, Mansfield SD (2020a) Prediction accuracy of single-step BLUP for growth and wood quality traits in the lodgepole pine breeding program in British Columbia. Tree Genet Genomes 16:1–13

    Google Scholar 

  • Ukrainetz NK, Mansfield SD (2020b) Assessing the sensitivities of genomic selection for growth and wood quality traits in lodgepole pine using Bayesian models. Tree Genet Genomes 16:14

  • VanRaden PM (2008) Efficient methods to compute genomic predictions. J Dairy Sci 91:4414–4423

    CAS 
    PubMed 

    Google Scholar 

  • Varshney RK, Bohra A, Yu J, Graner A, Zhang Q, Sorrells ME (2021) Designing future crops: genomics-assisted breeding comes of age. Trends Plant Sci 26:631–649

    CAS 
    PubMed 

    Google Scholar 

  • Ward BP, Brown-Guedira G, Tyagi P, Kolb FL, van Sanford DA, Sneller CH et al. (2019) Multienvironment and multitrait genomic selection models in unbalanced early-generation wheat yield trials. Crop Sci 59:491–507

    Google Scholar 

  • Westfall J, Ebata T (2012) Summary of forest health conditions in British Columbia. Victoria, British Columbia

  • Ye TZ, Jayawickrama KJS (2008) Efficiency of using spatial analysis in first-generation coastal Douglas-fir progeny tests in the US Pacific Northwest. Tree Genet Genomes 4:677–692

    Google Scholar 

  • Zhang J, Yang J, Zhang L, Luo J, Zhao H, Zhang J et al. (2020) A new SNP genotyping technology target SNP-seq and its application in genetic analysis of cucumber varieties. Sci Rep 10:5623

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Source link