Preloader

Impact of malathion toxicity on the oxidative stress parameters of the black soldier fly Hermetia illucens (Linnaeus, 1758) (Diptera: Stratiomyidae)

  • Ferronato, N. & Torretta, V. Waste mismanagement in developing countries: a review of global issues. Int. J. Environ. Res. Public Health 16(6), 1060 (2019).

    CAS 
    PubMed Central 

    Google Scholar 

  • Abdel-Shafy, H. I. & Mansour, M. S. Solid waste issue: Sources, composition, disposal, recycling, and valorization. Egypt. J. Pet. 27(4), 1275–1290 (2018).

    Google Scholar 

  • Roy, P. et al. A review of life cycle assessment (LCA) on some food products. J. Food Eng. 90(1), 1–10 (2009).

    Google Scholar 

  • Prakasam, A., Sethupathy, S. & Lalitha, S. Plasma and RBCs antioxidant status in occupational male pesticide sprayers. Clin. Chim. Acta 310(2), 107–112 (2001).

    CAS 
    PubMed 

    Google Scholar 

  • Abhilash, P. C. & Singh, N. Pesticide use and application: an Indian scenario. J. Hazard. Mater. 165(1–3), 1–12 (2009).

    CAS 
    PubMed 

    Google Scholar 

  • Pimentel, D. Amounts of pesticides reaching target pests: environmental impacts and ethics. J. Agric. Environ. Ethics 8(1), 17–29 (1995).

    Google Scholar 

  • DeLorenzo, M. E., Scott, G. I. & Ross, P. E. Toxicity of pesticides to aquatic microorganisms: a review. Environ. Toxicol. Chem. Int. J. 20(1), 84–98 (2001).

    CAS 

    Google Scholar 

  • Tchounwou, P. B., Patlolla, A. K., Yedjou, C. G. & Moore, P. D. Environmental exposure and health effects associated with Malathion toxicity. Toxic. Hazard Agrochem. 51, 2145–2149 (2015).

    Google Scholar 

  • Kale, M., Rathore, N., John, S. & Bhatnagar, D. Lipid peroxidative damage on pyrethroid exposure and alterations in antioxidant status in rat erythrocytes: a possible involvement of reactive oxygen species. Toxicol. Lett. 105(3), 197–205 (1999).

    CAS 
    PubMed 

    Google Scholar 

  • Akhgari, M., Abdollahi, M., Kebryaeezadeh, A., Hosseini, R. & Sabzevari, O. Biochemical evidence for free radicalinduced lipid peroxidation as a mechanism for subchronic toxicity of malathion in blood and liver of rats. Hum. Exp. Toxicol. 22(4), 205–211 (2003).

    CAS 
    PubMed 

    Google Scholar 

  • Saer, A., Lansing, S., Davitt, N. H. & Graves, R. E. Life cycle assessment of a food waste composting system: environmental impact hotspots. J. Clean. Prod. 52, 234–244 (2013).

    CAS 

    Google Scholar 

  • Azam, I. et al. Evaluating insects as bioindicators of heavy metal contamination and accumulation near industrial area of Gujrat, Pakistan. BioMed. Res. Int. https://doi.org/10.1155/2015/942751 (2015).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Abdelfattah, E. A., Augustyniak, M. & Yousef, H. A. Stage-, sex-and tissue-related changes in H2 O2, glutathione concentration, and glutathione-dependent enzymes activity in Aiolopus thalassinus (Orthoptera: Acrididae) from heavy metal polluted areas. Ecotoxicology 30(3), 478–491 (2021).

    CAS 
    PubMed 

    Google Scholar 

  • Cohn, Z., Latty, T. & Abbas, A. Understanding dietary carbohydrates in black soldier fly larvae treatment of organic waste in the circular economy. Waste Manag. 137, 9–19 (2022).

    CAS 
    PubMed 

    Google Scholar 

  • Meyer-Rochow, V. B. & Chakravorty, J. Notes on entomophagy and entomotherapy generally and information on the situation in India in particular. Appl. Entomol. Zool. 48(2), 105–112 (2013).

    Google Scholar 

  • Ravi, H. K. et al. Larvae mediated valorization of industrial, agriculture and food wastes: biorefinery concept through bioconversion, processes, procedures, and products. Processes 8(7), 857 (2020).

    CAS 

    Google Scholar 

  • Dos-Anjos, N. A. et al. Identification and evaluation of cyp1a transcript expression in fish as molecular biomarker for petroleum contamination in tropical freshwater ecosystems. Aquat. Toxicol. 103(1), 46–52 (2011).

    CAS 
    PubMed 

    Google Scholar 

  • Karihtala, P. & Soini, Y. Reactive oxygen species and antioxidant mechanisms in human tissues and their relation to malignancies. APMIS 115(2), 81–103 (2007).

    CAS 
    PubMed 

    Google Scholar 

  • Gilbert, D. L. Fifty years of radical ideas. Ann. New York Acad. Sci. 899(1), 1–14 (2000).

    ADS 
    CAS 

    Google Scholar 

  • Halliwell, B. & Gutteridge, J. M. Oxygen toxicity, oxygen radicals, transition metals and disease. Biochem. J. 219(1), 1–14 (1984).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Abdelfattah, E. A., Augustyniak, M. & Yousef, H. A. Biomonitoring of genotoxicity of industrial fertilizer pollutants in Aiolopus thalassinus (Orthoptera: Acrididae) using alkaline comet assay. Chemosphere 182, 762–770 (2017).

    ADS 
    CAS 
    PubMed 

    Google Scholar 

  • Lushchak, V. I. Environmentally induced oxidative stress in aquatic animals. Aquat. Toxicol. 101(1), 13–30 (2011).

    CAS 
    PubMed 

    Google Scholar 

  • Zheng, C. D. et al. DPPH-scavenging activities and structure-activity relationships of phenolic compounds. Nat. Prod. Commun. 5(11), 1934578X1000501112 (2010).

    Google Scholar 

  • Barragan-Fonseca, K. B., Dicke, M. & van Loon, J. J. Nutritional value of the black soldier fly (Hermetia illucens L.) and its suitability as animal feed–a review. J. Insects Food Feed 3(2), 105–120 (2017).

    Google Scholar 

  • Hahn, T. et al. Current state of chitin purification and chitosan production from insects. J. Chem. Technol. Biotechnol. 95(11), 2775–2795 (2020).

    CAS 

    Google Scholar 

  • Mouithys-Mickalad, A. et al. Black soldier fly (Hermetia illucens) larvae protein derivatives: potential to promote animal health. Animals 10(6), 941 (2020).

    PubMed Central 

    Google Scholar 

  • Scala, A. et al. Rearing substrate impacts growth and macronutrient composition of Hermetia illucens (L.)(Diptera: Stratiomyidae) larvae produced at an industrial scale. Sci. Rep. 10(1), 1–8 (2020).

    Google Scholar 

  • Abdelfattah, E. A., & Lim, J. W. Biotechnology application of organic waste management using black soldier fly, Hermetia illucens. African J. Biol. Sci., 17(1), 171–187 (2021).

  • Abdelfattah, E. A. et al. The various vulnerable products and services from organic waste management using Black soldier fly. Hermetia illucens. Zool. Entomol. Lett. 1(1), 44–56 (2021).

    Google Scholar 

  • Franco, A. et al. Lipids from Hermetia illucens, an Innovative and sustainable source. Sustainability 13(18), 10198 (2021).

    CAS 

    Google Scholar 

  • Liu, C., Wang, C., Yao, H. & Chapman, S. J. Pretreatment is an important method for increasing the conversion efficiency of rice straw by black soldier fly larvae based on the function of gut microorganisms. Sci. Total Environ. 762, 144118 (2021).

    ADS 
    CAS 
    PubMed 

    Google Scholar 

  • Triunfo, M. et al. Insect Chitin-Based Nanomaterials for Innovative Cosmetics and Cosmeceuticals. Cosmetics 8(2), 40 (2021).

    CAS 

    Google Scholar 

  • Zhang, L. et al. Bioaccumulation and changes of trace metals over the last two decades in marine organisms from Guangdong coastal regions, South China. J. Environ. Sci. 98, 103–108 (2020).

    Google Scholar 

  • Abdelfattah, E. A., & Renault, D. Effect of different doses of the catecholamine epinephrine on antioxidant responses of larvae of the flesh fly Sarcophaga dux. Environ. Sci. Pollut. Res., 17(1), 1–8. (2021).

  • Abdelfattah, E. A. & Dorrah, M. A. L-dopa and ferrous iron increase dna strand-breaks in the desert locust Schistocerca gregaria (Orthoptera: Acridade). Efflatounia 15, 1–7 (2015).

    Google Scholar 

  • Renault, D., Dorrah, M. A., Mohamed, A. A., Abdelfattah, E. A. & Bassal, T. T. Assessment of oxidative stress and activities of antioxidant enzymes depicts the negative systemic effect of iron-containing fertilizers and plant phenolic compounds in the desert locust. Environ. Sci. Pollut. Res. 23(21), 21989–22000 (2016).

    CAS 

    Google Scholar 

  • Abdelfattah, E. A. Effect of different concentration and application time of vitamin B12 on antioxidant response of Physiophora alceae. African J. Biol. Sci. 17(1), 189–203. (2021).

  • Yousef, H. A., Abdelfattah, E. A. & Augustyniak, M. Antioxidant enzyme activity in responses to environmentally induced oxidative stress in the 5th instar nymphs of Aiolopus thalassinus (Orthoptera: Acrididae). Environ. Sci. Pollut. Res. 26(4), 3823–3833 (2019).

    CAS 

    Google Scholar 

  • Abdelfattah, E. A. Biomolecules oxidation and antioxidant enzymes response as a result of injection of oxidative stressor into 5th instar of Schistocerca gregaria (Orthoptera, Acrididae). Entomol. Ornithol. Herpetol. 5(181), 2161–2983 (2016).

    Google Scholar 

  • Altuntas, I., Delibas, N., Doguc, D. K., Ozmen, S. & Gultekin, F. Role of reactive oxygen species in organophosphate insecticide phosalone toxicity in erythrocytes in vitro. Toxicol. Vitro 17(2), 153–157 (2003).

    CAS 

    Google Scholar 

  • Aksoy, L. & Alper, Y. The effects of royal jelly on oxidative stress and toxicity in tissues induced by malathion, an organophosphate insecticide. J. Hell. Vet. Med. Soc. 70(2), 1517–1524 (2019).

    Google Scholar 

  • Büyükgüzel, K. Malathion-induced oxidative stress in a parasitoid wasp: effect on adult emergence, longevity, fecundity, and oxidative and antioxidative response of Pimpla turionellae (Hymenoptera: Ichneumonidae). J. Econ. Entomol. 99(4), 1225–1234 (2006).

    PubMed 

    Google Scholar 

  • Giri, S., Prasad, S. B., Giri, A. & Sharma, G. D. Genotoxic effects of malathion: an organophosphorus insecticide, using three mammalian bioassays in vivo. Mutat. Res. Genet. Toxicol. Environ. Mutagen. 514(1–2), 223–231 (2002).

    CAS 

    Google Scholar 

  • Bakr, R. F., Refaei, B. M., Radwan, E. M. & El-Heneady, A. A. Toxicological and Biochemical Effects of Malathion and Spinosad on the Peach Fruit Fly, Bacterorcera zonata (saunders). Egyp. Acad. J. Biol. Sci. F Toxicol. Pest Control 8(1), 7–19 (2016).

    Google Scholar 

  • Augustyniak, M. et al. Phenotypic plasticity, epigenetic or genetic modifications in relation to the duration of Cd-exposure within a microevolution time range in the beet armyworm. PLoS ONE 11(12), e0167371 (2016).

    PubMed 
    PubMed Central 

    Google Scholar 

  • Gultekin, F., Ozturk, M. & Akdogan, M. The effects of organophosphate insecticide chlorpyrifos-ethyl on lipid peroxidation and antioxidant enzymes (in vitro). Arch. Toxicol. 74, 533–538 (2000).

    CAS 
    PubMed 

    Google Scholar 

  • Wu, H. et al. Biochemical effects of acute phoxim administration on antioxidant system and acethylcholinesterase in Oxya chinensis (Thunberg) (Orthoptera: Acrididae). Pestic. Biochem. Physiol. 100, 23–26 (2011).

    CAS 

    Google Scholar 

  • Uzun, F. G., Kalender, S., Durak, D., Demir, F. & Kalender, Y. Malathion-induced testicular toxicity in male rats and the protective effect of vitamins C and E. Food Chem. Toxicol. 47(8), 1903–1908 (2009).

    CAS 
    PubMed 

    Google Scholar 

  • Dubovskiy, I. M. et al. Effect of bacterial infection on antioxidant activity and lipid peroxidation in the midgut of Galleria mellonella L. larvae (Lepidoptera, Pyralidae). Comp. Biochem. Physiol. Part C 148, 1–5 (2008).

    CAS 

    Google Scholar 

  • Costa, V., Quintanilha, A. & Moradas-Ferreira, P. Protein oxidation, repair mechanisms and proteolysis in Saccharomyces cerevisiae. IUBMB Life 59(4–5), 293–298 (2007).

    CAS 
    PubMed 

    Google Scholar 

  • Girotti, A. W. Mechanisms of lipid peroxidation. J. Free Radic. Biol. Med. 1, 87–95 (1985).

    CAS 
    PubMed 

    Google Scholar 

  • Birben, E., Sahiner, U. M., Sackesen, C., Erzurum, S. & Kalayci, O. Oxidative stress and antioxidant defense. World Allergy Organ. J. 5, 9 (2012).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Yu, W. H. Nitric oxide synthase in motor neurons after axotomy. J. Histochem. Cytochem. 42, 451–457 (1994).

    CAS 
    PubMed 

    Google Scholar 

  • Altuntas, I. et al. The effects of diazinon on lipid peroxidation and antioxidant enzymes in erythrocytes in vitro. Hum. Exp. Toxicol. 23(1), 9–13 (2004).

    CAS 
    PubMed 

    Google Scholar 

  • John, S., Kale, M., Rathore, N. & Bhatnagar, D. Protective effect of vitamin E in dimethoate and malathion induced oxidative stress in rat erythrocytes. J. Nutr. Biochem. 12(9), 500–504 (2001).

    CAS 
    PubMed 

    Google Scholar 

  • Fortunato, J. J. et al. Lipid peroxidative damage on malathion exposure in rats. Neurotox. Res. 9(1), 23–28 (2006).

    CAS 
    PubMed 

    Google Scholar 

  • Truong, V. L., Jun, M. & Jeong, W. S. Role of resveratrol in regulation of cellular defense systems against oxidative stress. BioFactors 44(1), 36–49 (2018).

    CAS 
    PubMed 

    Google Scholar 

  • Zhou, P., Smith, N. L. & Lee, C. Y. Potential purification and some properties of Monroe apple peel polyphenol oxidase. J. Agric. Food Chem. 41(4), 532–536 (1993).

    CAS 

    Google Scholar 

  • Gerçek, E., Zengin, H., Erişir, F. E. & Yılmaz, Ö. Biochemical changes and antioxidant capacity of naringin and naringenin against malathion toxicity in Saccharomyces cerevisiae. Comp. Biochem. Physiol. Part C Toxicol. Pharm. 241, 108969 (2021).

    Google Scholar 

  • Li, X., Wang, M., Jiang, R., Zheng, L. & Chen, W. Evaluation of joint toxicity of heavy metals and herbicide mixtures in soils to earthworms (Eisenia fetida). J. Environ. Sci. 94, 137–146 (2020).

    Google Scholar 

  • Jozefczak, M., Remans, T., Vangronsveld, J. & Cuypers, A. Glutathione is a key player in metal-induced oxidative stress defenses. Int. J. Mol. Sci. 13(3), 3145–3175 (2012).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Kafel, A., Zawisza-Raszka, A. & Szulińska, E. Effects of multigenerational cadmium exposure of insects (Spodoptera exigua larvae) on anti-oxidant response in haemolymph and developmental parameters. Environ. Pollut. 162, 8–14 (2012).

    CAS 
    PubMed 

    Google Scholar 

  • Junglee, S., Urban, L., Sallanon, H. & Lopez-Lauri, F. Optimized assay for hydrogen peroxide determination in plant tissue using potassium iodide. Am. J. Anal. Chem. 5, 730–736 (2014).

    CAS 

    Google Scholar 

  • Chen, W. P. & Li, P. H. Chilling-induced Ca2+ overload enhances production of active oxygen species in maize (Zea mays L.) cultured cells: the effect of abscisic acid treatment. Plant Cell Environ. 24(8), 791–800 (2001).

    CAS 

    Google Scholar 

  • Levine, R. L. et al. Determination of carbonyl content in oxidatively modified proteins. Method Enzymol. 186, 464–478 (1990).

    CAS 

    Google Scholar 

  • Hermes-Lima, M., Willmore, W. G. & Storey, K. B. Quantification of lipid peroxidation in tissue extracts based on Fe (III) xylenol orange complex formation. Free Rad. Bio Med. 19(3), 271–280 (1995).

    CAS 

    Google Scholar 

  • Misra, H. P. & Fridovich, I. The role of superoxide anion in the autoxidation of epinephrine and a simple assay for superoxide dismutase. J. Biol. Chem. 247(10), 3170–3175 (1972).

    CAS 
    PubMed 

    Google Scholar 

  • Aebi, H. Catalase in vitro. Method Enzymol. 105, 121–126 (1984).

    CAS 

    Google Scholar 

  • Kumar, K. B. & Khan, P. A. Peroxidase and polyphenol oxidase in excised ragi (Eleusine corocana cv PR 202) leaves during senescence. Int. J. Exp. Biol. 20(5), 412–416 (1982).

    CAS 

    Google Scholar 

  • Blois, M. S. Antioxidant determinations by the use of a stable free radical. Nature 181, 1199–1200. https://doi.org/10.1038/1811199a0 (1958).

    ADS 
    CAS 
    Article 

    Google Scholar 

  • Allen, R. G., Farmer, K. J., Newton, R. K. & Sohal, R. S. Effects of paraquat administration on longevity, oxygen consumption, lipid peroxidation, superoxide dismutase, catalase, glutathione reductase, inorganic peroxides and glutathione in the adult housefly. Comp. Biochem. Phys. Comp. Pharm. 78(2), 283–288 (1984).

    CAS 

    Google Scholar 

  • Bradford, M. M. A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Anal. Biochem. 72(1), 248–254 (1976).

    CAS 
    PubMed 

    Google Scholar 

  • Source link