Ferronato, N. & Torretta, V. Waste mismanagement in developing countries: a review of global issues. Int. J. Environ. Res. Public Health 16(6), 1060 (2019).
Google Scholar
Abdel-Shafy, H. I. & Mansour, M. S. Solid waste issue: Sources, composition, disposal, recycling, and valorization. Egypt. J. Pet. 27(4), 1275–1290 (2018).
Roy, P. et al. A review of life cycle assessment (LCA) on some food products. J. Food Eng. 90(1), 1–10 (2009).
Prakasam, A., Sethupathy, S. & Lalitha, S. Plasma and RBCs antioxidant status in occupational male pesticide sprayers. Clin. Chim. Acta 310(2), 107–112 (2001).
Google Scholar
Abhilash, P. C. & Singh, N. Pesticide use and application: an Indian scenario. J. Hazard. Mater. 165(1–3), 1–12 (2009).
Google Scholar
Pimentel, D. Amounts of pesticides reaching target pests: environmental impacts and ethics. J. Agric. Environ. Ethics 8(1), 17–29 (1995).
DeLorenzo, M. E., Scott, G. I. & Ross, P. E. Toxicity of pesticides to aquatic microorganisms: a review. Environ. Toxicol. Chem. Int. J. 20(1), 84–98 (2001).
Google Scholar
Tchounwou, P. B., Patlolla, A. K., Yedjou, C. G. & Moore, P. D. Environmental exposure and health effects associated with Malathion toxicity. Toxic. Hazard Agrochem. 51, 2145–2149 (2015).
Kale, M., Rathore, N., John, S. & Bhatnagar, D. Lipid peroxidative damage on pyrethroid exposure and alterations in antioxidant status in rat erythrocytes: a possible involvement of reactive oxygen species. Toxicol. Lett. 105(3), 197–205 (1999).
Google Scholar
Akhgari, M., Abdollahi, M., Kebryaeezadeh, A., Hosseini, R. & Sabzevari, O. Biochemical evidence for free radicalinduced lipid peroxidation as a mechanism for subchronic toxicity of malathion in blood and liver of rats. Hum. Exp. Toxicol. 22(4), 205–211 (2003).
Google Scholar
Saer, A., Lansing, S., Davitt, N. H. & Graves, R. E. Life cycle assessment of a food waste composting system: environmental impact hotspots. J. Clean. Prod. 52, 234–244 (2013).
Google Scholar
Azam, I. et al. Evaluating insects as bioindicators of heavy metal contamination and accumulation near industrial area of Gujrat, Pakistan. BioMed. Res. Int. https://doi.org/10.1155/2015/942751 (2015).
Google Scholar
Abdelfattah, E. A., Augustyniak, M. & Yousef, H. A. Stage-, sex-and tissue-related changes in H2 O2, glutathione concentration, and glutathione-dependent enzymes activity in Aiolopus thalassinus (Orthoptera: Acrididae) from heavy metal polluted areas. Ecotoxicology 30(3), 478–491 (2021).
Google Scholar
Cohn, Z., Latty, T. & Abbas, A. Understanding dietary carbohydrates in black soldier fly larvae treatment of organic waste in the circular economy. Waste Manag. 137, 9–19 (2022).
Google Scholar
Meyer-Rochow, V. B. & Chakravorty, J. Notes on entomophagy and entomotherapy generally and information on the situation in India in particular. Appl. Entomol. Zool. 48(2), 105–112 (2013).
Ravi, H. K. et al. Larvae mediated valorization of industrial, agriculture and food wastes: biorefinery concept through bioconversion, processes, procedures, and products. Processes 8(7), 857 (2020).
Google Scholar
Dos-Anjos, N. A. et al. Identification and evaluation of cyp1a transcript expression in fish as molecular biomarker for petroleum contamination in tropical freshwater ecosystems. Aquat. Toxicol. 103(1), 46–52 (2011).
Google Scholar
Karihtala, P. & Soini, Y. Reactive oxygen species and antioxidant mechanisms in human tissues and their relation to malignancies. APMIS 115(2), 81–103 (2007).
Google Scholar
Gilbert, D. L. Fifty years of radical ideas. Ann. New York Acad. Sci. 899(1), 1–14 (2000).
Google Scholar
Halliwell, B. & Gutteridge, J. M. Oxygen toxicity, oxygen radicals, transition metals and disease. Biochem. J. 219(1), 1–14 (1984).
Google Scholar
Abdelfattah, E. A., Augustyniak, M. & Yousef, H. A. Biomonitoring of genotoxicity of industrial fertilizer pollutants in Aiolopus thalassinus (Orthoptera: Acrididae) using alkaline comet assay. Chemosphere 182, 762–770 (2017).
Google Scholar
Lushchak, V. I. Environmentally induced oxidative stress in aquatic animals. Aquat. Toxicol. 101(1), 13–30 (2011).
Google Scholar
Zheng, C. D. et al. DPPH-scavenging activities and structure-activity relationships of phenolic compounds. Nat. Prod. Commun. 5(11), 1934578X1000501112 (2010).
Barragan-Fonseca, K. B., Dicke, M. & van Loon, J. J. Nutritional value of the black soldier fly (Hermetia illucens L.) and its suitability as animal feed–a review. J. Insects Food Feed 3(2), 105–120 (2017).
Hahn, T. et al. Current state of chitin purification and chitosan production from insects. J. Chem. Technol. Biotechnol. 95(11), 2775–2795 (2020).
Google Scholar
Mouithys-Mickalad, A. et al. Black soldier fly (Hermetia illucens) larvae protein derivatives: potential to promote animal health. Animals 10(6), 941 (2020).
Google Scholar
Scala, A. et al. Rearing substrate impacts growth and macronutrient composition of Hermetia illucens (L.)(Diptera: Stratiomyidae) larvae produced at an industrial scale. Sci. Rep. 10(1), 1–8 (2020).
Abdelfattah, E. A., & Lim, J. W. Biotechnology application of organic waste management using black soldier fly, Hermetia illucens. African J. Biol. Sci., 17(1), 171–187 (2021).
Abdelfattah, E. A. et al. The various vulnerable products and services from organic waste management using Black soldier fly. Hermetia illucens. Zool. Entomol. Lett. 1(1), 44–56 (2021).
Franco, A. et al. Lipids from Hermetia illucens, an Innovative and sustainable source. Sustainability 13(18), 10198 (2021).
Google Scholar
Liu, C., Wang, C., Yao, H. & Chapman, S. J. Pretreatment is an important method for increasing the conversion efficiency of rice straw by black soldier fly larvae based on the function of gut microorganisms. Sci. Total Environ. 762, 144118 (2021).
Google Scholar
Triunfo, M. et al. Insect Chitin-Based Nanomaterials for Innovative Cosmetics and Cosmeceuticals. Cosmetics 8(2), 40 (2021).
Google Scholar
Zhang, L. et al. Bioaccumulation and changes of trace metals over the last two decades in marine organisms from Guangdong coastal regions, South China. J. Environ. Sci. 98, 103–108 (2020).
Abdelfattah, E. A., & Renault, D. Effect of different doses of the catecholamine epinephrine on antioxidant responses of larvae of the flesh fly Sarcophaga dux. Environ. Sci. Pollut. Res., 17(1), 1–8. (2021).
Abdelfattah, E. A. & Dorrah, M. A. L-dopa and ferrous iron increase dna strand-breaks in the desert locust Schistocerca gregaria (Orthoptera: Acridade). Efflatounia 15, 1–7 (2015).
Renault, D., Dorrah, M. A., Mohamed, A. A., Abdelfattah, E. A. & Bassal, T. T. Assessment of oxidative stress and activities of antioxidant enzymes depicts the negative systemic effect of iron-containing fertilizers and plant phenolic compounds in the desert locust. Environ. Sci. Pollut. Res. 23(21), 21989–22000 (2016).
Google Scholar
Abdelfattah, E. A. Effect of different concentration and application time of vitamin B12 on antioxidant response of Physiophora alceae. African J. Biol. Sci. 17(1), 189–203. (2021).
Yousef, H. A., Abdelfattah, E. A. & Augustyniak, M. Antioxidant enzyme activity in responses to environmentally induced oxidative stress in the 5th instar nymphs of Aiolopus thalassinus (Orthoptera: Acrididae). Environ. Sci. Pollut. Res. 26(4), 3823–3833 (2019).
Google Scholar
Abdelfattah, E. A. Biomolecules oxidation and antioxidant enzymes response as a result of injection of oxidative stressor into 5th instar of Schistocerca gregaria (Orthoptera, Acrididae). Entomol. Ornithol. Herpetol. 5(181), 2161–2983 (2016).
Altuntas, I., Delibas, N., Doguc, D. K., Ozmen, S. & Gultekin, F. Role of reactive oxygen species in organophosphate insecticide phosalone toxicity in erythrocytes in vitro. Toxicol. Vitro 17(2), 153–157 (2003).
Google Scholar
Aksoy, L. & Alper, Y. The effects of royal jelly on oxidative stress and toxicity in tissues induced by malathion, an organophosphate insecticide. J. Hell. Vet. Med. Soc. 70(2), 1517–1524 (2019).
Büyükgüzel, K. Malathion-induced oxidative stress in a parasitoid wasp: effect on adult emergence, longevity, fecundity, and oxidative and antioxidative response of Pimpla turionellae (Hymenoptera: Ichneumonidae). J. Econ. Entomol. 99(4), 1225–1234 (2006).
Google Scholar
Giri, S., Prasad, S. B., Giri, A. & Sharma, G. D. Genotoxic effects of malathion: an organophosphorus insecticide, using three mammalian bioassays in vivo. Mutat. Res. Genet. Toxicol. Environ. Mutagen. 514(1–2), 223–231 (2002).
Google Scholar
Bakr, R. F., Refaei, B. M., Radwan, E. M. & El-Heneady, A. A. Toxicological and Biochemical Effects of Malathion and Spinosad on the Peach Fruit Fly, Bacterorcera zonata (saunders). Egyp. Acad. J. Biol. Sci. F Toxicol. Pest Control 8(1), 7–19 (2016).
Augustyniak, M. et al. Phenotypic plasticity, epigenetic or genetic modifications in relation to the duration of Cd-exposure within a microevolution time range in the beet armyworm. PLoS ONE 11(12), e0167371 (2016).
Google Scholar
Gultekin, F., Ozturk, M. & Akdogan, M. The effects of organophosphate insecticide chlorpyrifos-ethyl on lipid peroxidation and antioxidant enzymes (in vitro). Arch. Toxicol. 74, 533–538 (2000).
Google Scholar
Wu, H. et al. Biochemical effects of acute phoxim administration on antioxidant system and acethylcholinesterase in Oxya chinensis (Thunberg) (Orthoptera: Acrididae). Pestic. Biochem. Physiol. 100, 23–26 (2011).
Google Scholar
Uzun, F. G., Kalender, S., Durak, D., Demir, F. & Kalender, Y. Malathion-induced testicular toxicity in male rats and the protective effect of vitamins C and E. Food Chem. Toxicol. 47(8), 1903–1908 (2009).
Google Scholar
Dubovskiy, I. M. et al. Effect of bacterial infection on antioxidant activity and lipid peroxidation in the midgut of Galleria mellonella L. larvae (Lepidoptera, Pyralidae). Comp. Biochem. Physiol. Part C 148, 1–5 (2008).
Google Scholar
Costa, V., Quintanilha, A. & Moradas-Ferreira, P. Protein oxidation, repair mechanisms and proteolysis in Saccharomyces cerevisiae. IUBMB Life 59(4–5), 293–298 (2007).
Google Scholar
Girotti, A. W. Mechanisms of lipid peroxidation. J. Free Radic. Biol. Med. 1, 87–95 (1985).
Google Scholar
Birben, E., Sahiner, U. M., Sackesen, C., Erzurum, S. & Kalayci, O. Oxidative stress and antioxidant defense. World Allergy Organ. J. 5, 9 (2012).
Google Scholar
Yu, W. H. Nitric oxide synthase in motor neurons after axotomy. J. Histochem. Cytochem. 42, 451–457 (1994).
Google Scholar
Altuntas, I. et al. The effects of diazinon on lipid peroxidation and antioxidant enzymes in erythrocytes in vitro. Hum. Exp. Toxicol. 23(1), 9–13 (2004).
Google Scholar
John, S., Kale, M., Rathore, N. & Bhatnagar, D. Protective effect of vitamin E in dimethoate and malathion induced oxidative stress in rat erythrocytes. J. Nutr. Biochem. 12(9), 500–504 (2001).
Google Scholar
Fortunato, J. J. et al. Lipid peroxidative damage on malathion exposure in rats. Neurotox. Res. 9(1), 23–28 (2006).
Google Scholar
Truong, V. L., Jun, M. & Jeong, W. S. Role of resveratrol in regulation of cellular defense systems against oxidative stress. BioFactors 44(1), 36–49 (2018).
Google Scholar
Zhou, P., Smith, N. L. & Lee, C. Y. Potential purification and some properties of Monroe apple peel polyphenol oxidase. J. Agric. Food Chem. 41(4), 532–536 (1993).
Google Scholar
Gerçek, E., Zengin, H., Erişir, F. E. & Yılmaz, Ö. Biochemical changes and antioxidant capacity of naringin and naringenin against malathion toxicity in Saccharomyces cerevisiae. Comp. Biochem. Physiol. Part C Toxicol. Pharm. 241, 108969 (2021).
Li, X., Wang, M., Jiang, R., Zheng, L. & Chen, W. Evaluation of joint toxicity of heavy metals and herbicide mixtures in soils to earthworms (Eisenia fetida). J. Environ. Sci. 94, 137–146 (2020).
Jozefczak, M., Remans, T., Vangronsveld, J. & Cuypers, A. Glutathione is a key player in metal-induced oxidative stress defenses. Int. J. Mol. Sci. 13(3), 3145–3175 (2012).
Google Scholar
Kafel, A., Zawisza-Raszka, A. & Szulińska, E. Effects of multigenerational cadmium exposure of insects (Spodoptera exigua larvae) on anti-oxidant response in haemolymph and developmental parameters. Environ. Pollut. 162, 8–14 (2012).
Google Scholar
Junglee, S., Urban, L., Sallanon, H. & Lopez-Lauri, F. Optimized assay for hydrogen peroxide determination in plant tissue using potassium iodide. Am. J. Anal. Chem. 5, 730–736 (2014).
Google Scholar
Chen, W. P. & Li, P. H. Chilling-induced Ca2+ overload enhances production of active oxygen species in maize (Zea mays L.) cultured cells: the effect of abscisic acid treatment. Plant Cell Environ. 24(8), 791–800 (2001).
Google Scholar
Levine, R. L. et al. Determination of carbonyl content in oxidatively modified proteins. Method Enzymol. 186, 464–478 (1990).
Google Scholar
Hermes-Lima, M., Willmore, W. G. & Storey, K. B. Quantification of lipid peroxidation in tissue extracts based on Fe (III) xylenol orange complex formation. Free Rad. Bio Med. 19(3), 271–280 (1995).
Google Scholar
Misra, H. P. & Fridovich, I. The role of superoxide anion in the autoxidation of epinephrine and a simple assay for superoxide dismutase. J. Biol. Chem. 247(10), 3170–3175 (1972).
Google Scholar
Aebi, H. Catalase in vitro. Method Enzymol. 105, 121–126 (1984).
Google Scholar
Kumar, K. B. & Khan, P. A. Peroxidase and polyphenol oxidase in excised ragi (Eleusine corocana cv PR 202) leaves during senescence. Int. J. Exp. Biol. 20(5), 412–416 (1982).
Google Scholar
Blois, M. S. Antioxidant determinations by the use of a stable free radical. Nature 181, 1199–1200. https://doi.org/10.1038/1811199a0 (1958).
Google Scholar
Allen, R. G., Farmer, K. J., Newton, R. K. & Sohal, R. S. Effects of paraquat administration on longevity, oxygen consumption, lipid peroxidation, superoxide dismutase, catalase, glutathione reductase, inorganic peroxides and glutathione in the adult housefly. Comp. Biochem. Phys. Comp. Pharm. 78(2), 283–288 (1984).
Google Scholar
Bradford, M. M. A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Anal. Biochem. 72(1), 248–254 (1976).
Google Scholar

