Preloader

Immunomodulatory matrix-bound nanovesicles mitigate acute and chronic pristane-induced rheumatoid arthritis

  • 1.

    Hussey, G. S., Dziki, J. L. & Badylak, S. F. Extracellular matrix-based materials for regenerative medicine. Nat. Rev. Mater. 3, 159–173 (2018).

    CAS 

    Google Scholar 

  • 2.

    Badylak, S. F., Freytes, D. O. & Gilbert, T. W. Extracellular matrix as a biological scaffold material: structure and function. Acta Biomater. 5, 1–13 (2009).

    CAS 
    PubMed 

    Google Scholar 

  • 3.

    Bissell, M. J., Hall, H. G. & Parry, G. How does the extracellular matrix direct gene expression? J. Theor. Biol. 99, 31–68 (1982).

    CAS 
    PubMed 

    Google Scholar 

  • 4.

    Brown, B. N. et al. Macrophage phenotype as a predictor of constructive remodeling following the implantation of biologically derived surgical mesh materials. Acta Biomater. 8, 978–987 (2012).

    CAS 
    PubMed 

    Google Scholar 

  • 5.

    Dziki, J. L. et al. Solubilized extracellular matrix bioscaffolds derived from diverse source tissues differentially influence macrophage phenotype. J. Biomed. Mater. Res. A 105, 138–147 (2017).

    CAS 
    PubMed 

    Google Scholar 

  • 6.

    Petrosyan, A. et al. A step towards clinical application of acellular matrix: a clue from macrophage polarization. Matrix Biol. 57–58, 334–346 (2017).

    PubMed 

    Google Scholar 

  • 7.

    Huleihel, L. et al. Matrix-bound nanovesicles recapitulate extracellular matrix effects on macrophage phenotype. Tissue Eng. Part A 23, 1283–1294 (2017).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • 8.

    Keane, T. J. et al. Restoring mucosal barrier function and modifying macrophage phenotype with an extracellular matrix hydrogel: potential therapy for ulcerative colitis. J. Crohns Colitis 11, 360–368 (2017).

    PubMed 

    Google Scholar 

  • 9.

    Huleihel, L. et al. Matrix-bound nanovesicles within ECM bioscaffolds. Sci. Adv. 2, e1600502 (2016).

    PubMed 
    PubMed Central 

    Google Scholar 

  • 10.

    Huleihel, L. et al. Macrophage phenotype in response to ECM bioscaffolds. Semin. Immunol. 29, 2–13 (2017).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • 11.

    Sicari, B. M. et al. The promotion of a constructive macrophage phenotype by solubilized extracellular matrix. Biomaterials 35, 8605–8612 (2014).

    CAS 
    PubMed 

    Google Scholar 

  • 12.

    Brown, B. N., Valentin, J. E., Stewart-Akers, A. M., McCabe, G. P. & Badylak, S. F. Macrophage phenotype and remodeling outcomes in response to biologic scaffolds with and without a cellular component. Biomaterials 30, 1482–1491 (2009).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • 13.

    Londono, R. et al. The effect of cell debris within biologic scaffolds upon the macrophage response. J. Biomed. Mater. Res. A 105, 2109–2118 (2017).

    CAS 
    PubMed 

    Google Scholar 

  • 14.

    Naranjo, J. D. et al. Esophageal extracellular matrix hydrogel mitigates metaplastic change in a dog model of Barrett’s esophagus. Sci. Adv. 6, eaba4526 (2020).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • 15.

    Saldin, L. T. et al. The effect of normal, metaplastic, and neoplastic esophageal extracellular matrix upon macrophage activation. J. Immunol. Regen. Med 13, 100037 (2021).

    CAS 
    PubMed 

    Google Scholar 

  • 16.

    Meng, F. W., Slivka, P. F., Dearth, C. L. & Badylak, S. F. Solubilized extracellular matrix from brain and urinary bladder elicits distinct functional and phenotypic responses in macrophages. Biomaterials 46, 131–140 (2015).

    CAS 
    PubMed 

    Google Scholar 

  • 17.

    Ploeger, D. T. A., van Putten, S. M., Koerts, J. A., van Luyn, M. J. A. & Harmsen, M. C. Human macrophages primed with angiogenic factors show dynamic plasticity, irrespective of extracellular matrix components. Immunobiology 217, 299–306 (2012).

    CAS 
    PubMed 

    Google Scholar 

  • 18.

    Londono, R. & Badylak, S. F. Biologic scaffolds for regenerative medicine: mechanisms of in vivo remodeling. Ann. Biomed. Eng. 43, 577–592 (2015).

    PubMed 

    Google Scholar 

  • 19.

    Badylak, S. F. The extracellular matrix as a biologic scaffold material. Biomaterials 28, 3587–3593 (2007).

    CAS 
    PubMed 

    Google Scholar 

  • 20.

    Hussey, G. S. et al. Lipidomics and RNA sequencing reveal a novel subpopulation of nanovesicle within extracellular matrix biomaterials. Sci. Adv. 6, eaay4361 (2020).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • 21.

    van der Merwe, Y., Faust, A. E. & Steketee, M. B. Matrix bound vesicles and miRNA cargoes are bioactive factors within extracellular matrix bioscaffolds. Neural Regen. Res. 12, 1597–1599 (2017).

    PubMed 
    PubMed Central 

    Google Scholar 

  • 22.

    Zhu, W. et al. Anti-citrullinated protein antibodies induce macrophage subset disequilibrium in RA patients. Inflammation 38, 2067–2075 (2015).

    CAS 
    PubMed 

    Google Scholar 

  • 23.

    Fukui, S. et al. M1 and M2 monocytes in rheumatoid arthritis: a contribution of imbalance of M1/M2 monocytes to osteoclastogenesis. Front. Immunol. 8, 1958 (2017).

    PubMed 

    Google Scholar 

  • 24.

    Kennedy, A., Fearon, U., Veale, D. J. & Godson, C. Macrophages in synovial inflammation. Front. Immunol. 2, 52 (2011).

    PubMed 
    PubMed Central 

    Google Scholar 

  • 25.

    Feldmann, M., Brennan, F. M. & Maini, R. N. Role of cytokines in rheumatoid arthritis. Annu. Rev. Immunol. 14, 397–440 (1996).

    CAS 
    PubMed 

    Google Scholar 

  • 26.

    Iwamoto, T., Okamoto, H., Toyama, Y. & Momohara, S. Molecular aspects of rheumatoid arthritis: chemokines in the joints of patients. FEBS J. 275, 4448–4455 (2008).

    CAS 
    PubMed 

    Google Scholar 

  • 27.

    Smolen, J. S. et al. Rheumatoid arthritis. Nat. Rev. Dis. Prim. 4, 18001 (2018).

    PubMed 

    Google Scholar 

  • 28.

    Feldmann, M., Brennan, F. M. & Maini, R. N. Rheumatoid arthritis. Cell 85, 307–310 (1996).

    CAS 
    PubMed 

    Google Scholar 

  • 29.

    Iguchi, T., Kurosaka, M. & Ziff, M. Electron microscopic study of HLA-DR and monocyte/macrophage staining cells in the rheumatoid synovial membrane. Arthritis Rheum. 29, 600–613 (1986).

    CAS 
    PubMed 

    Google Scholar 

  • 30.

    Siouti, E. & Andreakos, E. The many facets of macrophages in rheumatoid arthritis. Biochem. Pharmacol. 165, 152–169 (2019).

    CAS 
    PubMed 

    Google Scholar 

  • 31.

    Kinne, R. W., Bräuer, R., Stuhlmüller, B., Palombo-Kinne, E. & Burmester, G. R. Macrophages in rheumatoid arthritis. Arthritis Res. 2, 189–202 (2000).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • 32.

    Cauli, A., Yanni, G. & Panayi, G. S. Interleukin-1, interleukin-1 receptor antagonist and macrophage populations in rheumatoid arthritis synovial membrane. Br. J. Rheumatol. 36, 935–940 (1997).

    CAS 
    PubMed 

    Google Scholar 

  • 33.

    Ridley, M. G., Kingsley, G., Pitzalis, C. & Panayi, G. S. Monocyte activation in rheumatoid arthritis: evidence for in situ activation and differentiation in joints. Br. J. Rheumatol. 29, 84–88 (1990).

    CAS 
    PubMed 

    Google Scholar 

  • 34.

    Sun, W. et al. Targeting notch-activated M1 macrophages attenuates joint tissue damage in a mouse model of inflammatory arthritis. J. Bone Miner. Res. 32, 1469–1480 (2017).

    CAS 
    PubMed 

    Google Scholar 

  • 35.

    Kinne, R. W., Stuhlmüller, B. & Burmester, G.-R. Cells of the synovium in rheumatoid arthritis. Macrophages. Arthritis Res. Ther. 9, 224 (2007).

    PubMed 
    PubMed Central 

    Google Scholar 

  • 36.

    Alivernini, S. et al. Distinct synovial tissue macrophage subsets regulate inflammation and remission in rheumatoid arthritis. Nat. Med. 26, 1295–1306 (2020).

    CAS 
    PubMed 

    Google Scholar 

  • 37.

    Kuan, W. P. et al. CXCL 9 and CXCL 10 as sensitive markers of disease activity in patients with rheumatoid arthritis. J. Rheumatol. 37, 257–264 (2010).

    CAS 
    PubMed 

    Google Scholar 

  • 38.

    Lee, J.-H. et al. Pathogenic roles of CXCL10 signaling through CXCR3 and TLR4 in macrophages and T cells: relevance for arthritis. Arthritis Res. Ther. 19, 163 (2017).

    PubMed 
    PubMed Central 

    Google Scholar 

  • 39.

    Katschke, K. J. et al. Differential expression of chemokine receptors on peripheral blood, synovial fluid, and synovial tissue monocytes/macrophages in rheumatoid arthritis. Arthritis Rheum. 44, 1022–1032 (2001).

    CAS 
    PubMed 

    Google Scholar 

  • 40.

    Szekanecz, Z., Vegvari, A., Szabo, Z. & Koch, A. E. Chemokines and chemokine receptors in arthritis. Front. Biosci. (Sch. Ed.) 2, 153–167 (2010).

    Google Scholar 

  • 41.

    Bankhead, P. et al. QuPath: open source software for digital pathology image analysis. Sci. Rep. 7, 16878 (2017).

    PubMed 
    PubMed Central 

    Google Scholar 

  • 42.

    Brown, B. N., Ratner, B. D., Goodman, S. B., Amar, S. & Badylak, S. F. Macrophage polarization: an opportunity for improved outcomes in biomaterials and regenerative medicine. Biomaterials 33, 3792–3802 (2012).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • 43.

    Badylak, S. F. Extracellular matrix and the immune system: friends or foes. Nat. Rev. Urol. 16, 389–390 (2019).

    PubMed 

    Google Scholar 

  • 44.

    Badylak, S. F. et al. Biologic scaffolds for constructive tissue remodeling. Biomaterials 32, 316–319 (2011).

    CAS 
    PubMed 

    Google Scholar 

  • 45.

    Badylak, S. F., Valentin, J. E., Ravindra, A. K., McCabe, G. P. & Stewart-Akers, A. M. Macrophage phenotype as a determinant of biologic scaffold remodeling. Tissue Eng. Part A 14, 1835–1842 (2008).

    CAS 
    PubMed 

    Google Scholar 

  • 46.

    Agrawal, V. et al. Epimorphic regeneration approach to tissue replacement in adult mammals. Proc. Natl Acad. Sci. USA 107, 3351–3355 (2010).

    CAS 
    PubMed 

    Google Scholar 

  • 47.

    Allman, A. J. et al. Xenogeneic extracellular matrix grafts elicit a TH2-restricted immune response. Transplantation 71, 1631–1640 (2001).

    CAS 
    PubMed 

    Google Scholar 

  • 48.

    Beattie, A. J., Gilbert, T. W., Guyot, J. P., Yates, A. J. & Badylak, S. F. Chemoattraction of progenitor cells by remodeling extracellular matrix scaffolds. Tissue Eng. Part A 15, 1119–1125 (2009).

    CAS 
    PubMed 

    Google Scholar 

  • 49.

    Allman, A. J., McPherson, T. B., Merrill, L. C., Badylak, S. F. & Metzger, D. W. The Th2-restricted immune response to xenogeneic small intestinal submucosa does not influence systemic protective immunity to viral and bacterial pathogens. Tissue Eng. 8, 53–62 (2002).

    CAS 
    PubMed 

    Google Scholar 

  • 50.

    Dziki, J. L., Huleihel, L., Scarritt, M. E. & Badylak, S. F. Extracellular matrix bioscaffolds as immunomodulatory biomaterials. Tissue Eng. Part A 23, 1152–1159 (2017).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • 51.

    Badylak, S. F., Dziki, J. L., Sicari, B. M., Ambrosio, F. & Boninger, M. L. Mechanisms by which acellular biologic scaffolds promote functional skeletal muscle restoration. Biomaterials 103, 128–136 (2016).

    CAS 
    PubMed 

    Google Scholar 

  • 52.

    van der Merwe, Y. et al. Matrix-bound nanovesicles prevent ischemia-induced retinal ganglion cell axon degeneration and death and preserve visual function. Sci. Rep. 9, 3482 (2019).

    PubMed 
    PubMed Central 

    Google Scholar 

  • 53.

    Sicari, B. M. et al. An acellular biologic scaffold promotes skeletal muscle formation in mice and humans with volumetric muscle loss. Sci. Transl. Med. 6, 234ra58 (2014).

    PubMed 
    PubMed Central 

    Google Scholar 

  • 54.

    Sicari, B. M. et al. A murine model of volumetric muscle loss and a regenerative medicine approach for tissue replacement. Tissue Eng. Part A 18, 1941–1948 (2012).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • 55.

    Dziki, J. et al. An acellular biologic scaffold treatment for volumetric muscle loss: results of a 13-patient cohort study. npj Regen. Med. 1, 16008 (2016).

    PubMed 
    PubMed Central 

    Google Scholar 

  • 56.

    Turner, N. J., Badylak, J. S., Weber, D. J. & Badylak, S. F. Biologic scaffold remodeling in a dog model of complex musculoskeletal injury. J. Surg. Res. 176, 490–502 (2012).

    CAS 
    PubMed 

    Google Scholar 

  • 57.

    Friedman, B. & Cronstein, B. Methotrexate mechanism in treatment of rheumatoid arthritis. Jt. Bone Spine 86, 301–307 (2019).

    CAS 

    Google Scholar 

  • 58.

    Ahuja, V., Miller, S. E. & Howell, D. N. Identification of two subpopulations of rat monocytes expressing disparate molecular forms and quantities of CD43. Cell Immunol. 163, 59–69 (1995).

    CAS 
    PubMed 

    Google Scholar 

  • 59.

    Thomas, G., Tacke, R., Hedrick, C. C. & Hanna, R. N. Nonclassical patrolling monocyte function in the vasculature. Arterioscler. Thromb. Vasc. Biol. 35, 1306–1316 (2015).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • 60.

    Barnett-Vanes, A., Sharrock, A., Birrell, M. A. & Rankin, S. A single 9-colour flow cytometric method to characterise major leukocyte populations in the rat: validation in a model of LPS-induced pulmonary inflammation. PLoS ONE 11, e0142520 (2016).

    PubMed 
    PubMed Central 

    Google Scholar 

  • 61.

    Misharin, A. V. et al. Nonclassical Ly6C(−) monocytes drive the development of inflammatory arthritis in mice. Cell Rep. 9, 591–604 (2014).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • 62.

    Vingsbo, C. et al. Pristane-induced arthritis in rats: a new model for rheumatoid arthritis with a chronic disease course influenced by both major histocompatibility complex and non-major histocompatibility complex genes. Am. J. Pathol. 149, 1675–1683 (1996).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • 63.

    Hoffmann, M. H. et al. The rheumatoid arthritis-associated autoantigen hnRNP-A2 (RA33) is a major stimulator of autoimmunity in rats with pristane-induced arthritis. J. Immunol. 179, 7568–7576 (2007).

    CAS 
    PubMed 

    Google Scholar 

  • 64.

    Tuncel, J. et al. Animal models of rheumatoid arthritis (I): pristane-induced arthritis in the rat. PLoS ONE 11, e0155936 (2016).

    PubMed 
    PubMed Central 

    Google Scholar 

  • 65.

    Huber, L. C. et al. Synovial fibroblasts: key players in rheumatoid arthritis. Rheumatology 45, 669–675 (2006).

    CAS 
    PubMed 

    Google Scholar 

  • 66.

    Yang, C. & Robbins, P. D. Immunosuppressive exosomes: a new approach for treating arthritis. Int. J. Rheumatol. 2012, 573528 (2012).

    PubMed 
    PubMed Central 

    Google Scholar 

  • 67.

    Kim, S.-H. et al. Exosomes derived from IL-10-treated dendritic cells can suppress inflammation and collagen-induced arthritis. J. Immunol. 174, 6440–6448 (2005).

    CAS 
    PubMed 

    Google Scholar 

  • 68.

    Ruffner, M. A. et al. B7-1/2, but not PD-L1/2 molecules, are required on IL-10-treated tolerogenic DC and DC-derived exosomes for in vivo function. Eur. J. Immunol. 39, 3084–3090 (2009).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • 69.

    Kim, S. H., Bianco, N. R., Shufesky, W. J., Morelli, A. E. & Robbins, P. D. Effective treatment of inflammatory disease models with exosomes derived from dendritic cells genetically modified to express IL-4. J. Immunol. 179, 2242–2249 (2007).

    CAS 
    PubMed 

    Google Scholar 

  • 70.

    Kim, S. H. et al. Exosomes derived from genetically modified DC expressing FasL are anti-inflammatory and immunosuppressive. Mol. Ther. 13, 289–300 (2006).

    CAS 
    PubMed 

    Google Scholar 

  • 71.

    Bianco, N. R., Kim, S. H., Ruffner, M. A. & Robbins, P. D. Therapeutic effect of exosomes from indoleamine 2,3-dioxygenase-positive dendritic cells in collagen-induced arthritis and delayed-type hypersensitivity disease models. Arthritis Rheum. 60, 380–389 (2009).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • 72.

    Kim, S. H., Bianco, N. R., Shufesky, W. J., Morelli, A. E. & Robbins, P. D. MHC class II+ exosomes in plasma suppress inflammation in an antigen-specific and Fas ligand/Fas-dependent manner. J. Immunol. 179, 2235–2241 (2007).

    CAS 
    PubMed 

    Google Scholar 

  • 73.

    Quijano, L. M. et al. Matrix-bound nanovesicles: the effects of isolation method upon yield, purity, and function. Tissue Eng. Part C 26, 528–540 (2020).

    CAS 

    Google Scholar 

  • 74.

    Schulze-Koops, H. & Kalden, J. R. The balance of Th1/Th2 cytokines in rheumatoid arthritis. Best. Pract. Res. Clin. Rheumatol. 15, 677–691 (2001).

    CAS 
    PubMed 

    Google Scholar 

  • 75.

    Roberts, C. A., Dickinson, A. K. & Taams, L. S. The interplay between monocytes/macrophages and CD4(+) T cell subsets in rheumatoid arthritis. Front. Immunol. 6, 571 (2015).

    PubMed 
    PubMed Central 

    Google Scholar 

  • 76.

    Walter, G. J. et al. Interaction with activated monocytes enhances cytokine expression and suppressive activity of human CD4+CD45ro+CD25+CD127(low) regulatory T cells. Arthritis Rheum. 65, 627–638 (2013).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • 77.

    Evans, H. G. et al. In vivo activated monocytes from the site of inflammation in humans specifically promote Th17 responses. Proc. Natl Acad. Sci. USA 106, 6232–6237 (2009).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • 78.

    van Amelsfort, J. M. R. et al. Proinflammatory mediator-induced reversal of CD4+,CD25+ regulatory T cell-mediated suppression in rheumatoid arthritis. Arthritis Rheum. 56, 732–742 (2007).

    PubMed 

    Google Scholar 

  • 79.

    Köller, M. et al. Expression of adhesion molecules on synovial fluid and peripheral blood monocytes in patients with inflammatory joint disease and osteoarthritis. Ann. Rheum. Dis. 58, 709–712 (1999).

    PubMed 
    PubMed Central 

    Google Scholar 

  • 80.

    Müller-Ladner, U., Ospelt, C., Gay, S., Distler, O. & Pap, T. Cells of the synovium in rheumatoid arthritis. Synovial fibroblasts. Arthritis Res. Ther. 9, 223 (2007).

    PubMed 
    PubMed Central 

    Google Scholar 

  • 81.

    Pretzel, D., Pohlers, D., Weinert, S. & Kinne, R. W. In vitro model for the analysis of synovial fibroblast-mediated degradation of intact cartilage. Arthritis Res. Ther. 11, R25 (2009).

    PubMed 
    PubMed Central 

    Google Scholar 

  • 82.

    Danks, L. et al. RANKL expressed on synovial fibroblasts is primarily responsible for bone erosions during joint inflammation. Ann. Rheum. Dis. 75, 1187–1195 (2016).

    CAS 
    PubMed 

    Google Scholar 

  • 83.

    Kramer, I., Wibulswas, A., Croft, D. & Genot, E. Rheumatoid arthritis: targeting the proliferative fibroblasts. Prog. Cell Cycle Res. 5, 59–70 (2003).

    PubMed 

    Google Scholar 

  • 84.

    Pap, T., Müller-Ladner, U., Gay, R. E. & Gay, S. Fibroblast biology. Role of synovial fibroblasts in the pathogenesis of rheumatoid arthritis. Arthritis Res. 2, 361–367 (2000).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • 85.

    Odobasic, D. et al. Formyl peptide receptor activation inhibits the expansion of effector T cells and synovial fibroblasts and attenuates joint injury in models of rheumatoid arthritis. Int. Immunopharmacol. 61, 140–149 (2018).

    CAS 
    PubMed 

    Google Scholar 

  • 86.

    Pap, T., Cinski, A., Baier, A., Gay, S. & Meinecke, I. Modulation of pathways regulating both the invasiveness and apoptosis in rheumatoid arthritis synovial fibroblasts. Jt. Bone Spine: Rev. Rhum. 70, 477–479 (2003).

    Google Scholar 

  • 87.

    Andreas, K. et al. Key regulatory molecules of cartilage destruction in rheumatoid arthritis: an in vitro study. Arthritis Res. Ther. 10, R9 (2008).

    PubMed 
    PubMed Central 

    Google Scholar 

  • 88.

    Korb-Pap, A. et al. Early structural changes in cartilage and bone are required for the attachment and invasion of inflamed synovial tissue during destructive inflammatory arthritis. Ann. Rheum. Dis. 71, 1004–1011 (2012).

    CAS 
    PubMed 

    Google Scholar 

  • 89.

    Meyer, L.-H., Franssen, L. & Pap, T. The role of mesenchymal cells in the pathophysiology of inflammatory arthritis. Best. Pract. Res. Clin. Rheumatol. 20, 969–981 (2006).

    CAS 
    PubMed 

    Google Scholar 

  • 90.

    Donlin, L. T., Jayatilleke, A., Giannopoulou, E. G., Kalliolias, G. D. & Ivashkiv, L. B. Modulation of TNF-induced macrophage polarization by synovial fibroblasts. J. Immunol. 193, 2373–2383 (2014).

    CAS 
    PubMed 

    Google Scholar 

  • 91.

    Rengel, Y., Ospelt, C. & Gay, S. Proteinases in the joint: clinical relevance of proteinases in joint destruction. Arthritis Res. Ther. 9, 221 (2007).

    PubMed 
    PubMed Central 

    Google Scholar 

  • 92.

    Burrage, P. S., Mix, K. S. & Brinckerhoff, C. E. Matrix metalloproteinases: role in arthritis. Front. Biosci. 11, 529–543 (2006).

    CAS 
    PubMed 

    Google Scholar 

  • 93.

    Page-McCaw, A., Ewald, A. J. & Werb, Z. Matrix metalloproteinases and the regulation of tissue remodelling. Nat. Rev. Mol. Cell Biol. 8, 221–233 (2007).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • 94.

    McInnes, I. B. & Schett, G. Cytokines in the pathogenesis of rheumatoid arthritis. Nat. Rev. Immunol. 7, 429–442 (2007).

    CAS 
    PubMed 

    Google Scholar 

  • 95.

    Catterall, J. B. et al. Synergistic induction of matrix metalloproteinase 1 by interleukin-1alpha and oncostatin M in human chondrocytes involves signal transducer and activator of transcription and activator protein 1 transcription factors via a novel mechanism. Arthritis Rheum. 44, 2296–2310 (2001).

    CAS 
    PubMed 

    Google Scholar 

  • 96.

    Eberhardt, W., Huwiler, A., Beck, K. F., Walpen, S. & Pfeilschifter, J. Amplification of IL-1 beta-induced matrix metalloproteinase-9 expression by superoxide in rat glomerular mesangial cells is mediated by increased activities of NF-kappa B and activating protein-1 and involves activation of the mitogen-activated protein kinase pathways. J. Immunol. 165, 5788–5797 (2000).

    CAS 
    PubMed 

    Google Scholar 

  • 97.

    Wei, S., Kitaura, H., Zhou, P., Ross, F. P. & Teitelbaum, S. L. IL-1 mediates TNF-induced osteoclastogenesis. J. Clin. Investig. 115, 282–290 (2005).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • 98.

    Dayer, J.-M. & Bresnihan, B. Targeting interleukin-1 in the treatment of rheumatoid arthritis. Arthritis Rheum. 46, 574–578 (2002).

    CAS 
    PubMed 

    Google Scholar 

  • 99.

    Eriksson, K. et al. Effects by periodontitis on pristane-induced arthritis in rats. J. Transl. Med. 14, 311 (2016).

    PubMed 
    PubMed Central 

    Google Scholar 

  • 100.

    Seeuws, S. et al. A multiparameter approach to monitor disease activity in collagen-induced arthritis. Arthritis Res. Ther. 12, R160 (2010).

    PubMed 
    PubMed Central 

    Google Scholar 

  • 101.

    McQuin, C. et al. CellProfiler 3.0: next-generation image processing for biology. PLoS Biol. 16, e2005970 (2018).

    PubMed 
    PubMed Central 

    Google Scholar 

  • 102.

    McInnes, L., Healy, J., Saul, N. & Großberger, L. UMAP: uniform manifold approximation and projection. J. Open Source Softw. 3, 861 (2018).

    Google Scholar 

  • Source link