Hotez, P. J., Aksoy, S., Brindley, P. J. & Kamhawi, S. What Constitutes a Neglected Tropical Disease? (Public Library of Science, 2020).
Google Scholar
Fitzpatrick, C., Nwankwo, U., Lenk, E., de Vlas, S. J. & Bundy, D. A. An Investment Case for Ending Neglected Tropical Diseases (The World Bank, 2017).
Google Scholar
Rees, C. A., Hotez, P. J., Monuteaux, M. C., Niescierenko, M. & Bourgeois, F. T. Neglected tropical diseases in children: An assessment of gaps in research prioritization. PLoS Negl. Trop. Dis. 13, e0007111 (2019).
Google Scholar
Adekiya, T. A., Aruleba, R. T., Klein, A. & Fadaka, A. O. In silico inhibition of SGTP4 as a therapeutic target for the treatment of schistosomiasis. J. Biomol. Struct. Dyn. https://doi.org/10.1080/07391102.2020.1850363 (2020).
Google Scholar
Hotez, P. J. Ten global “hotspots” for the neglected tropical diseases. PLoS Negl. Trop. Dis. 8, e2496 (2014).
Google Scholar
Relman, D. A. & Choffnes, E. R. The Causes and Impacts of Neglected Tropical and Zoonotic Diseases: Opportunities for Integrated Intervention Strategies (National Academies Press, 2011).
Waggoner, J. J. et al. Viremia and clinical presentation in Nicaraguan patients infected with Zika virus, chikungunya virus, and dengue virus. Clin. Infect. Dis. 63, 1584–1590 (2016).
Google Scholar
Organization WH, UNICEF. Global vector control response 2017–2030 (UNICEF, 2017).
Organization, W. H. A Global Brief on Vector-Borne Diseases (World Health Organization, 2014).
Gurugama, P., Garg, P., Perera, J., Wijewickrama, A. & Seneviratne, S. L. Dengue viral infections. Indian J. Dermatol. 55, 68 (2010).
Google Scholar
Malavige, G., Fernando, S., Fernando, D. & Seneviratne, S. Dengue viral infections. Postgrad. Med. J. 80, 588–601 (2004).
Google Scholar
da Silveira, L. T. C., Tura, B. & Santos, M. Systematic review of dengue vaccine efficacy. BMC Infect. Dis. 19, 750 (2019).
Google Scholar
Crill, W. D. & Roehrig, J. T. Monoclonal antibodies that bind to domain III of dengue virus E glycoprotein are the most efficient blockers of virus adsorption to Vero cells. J. Virol. 75, 7769–7773 (2001).
Google Scholar
Lai, C. Y. et al. Antibodies to envelope glycoprotein of dengue virus during the natural course of infection are predominantly cross-reactive and recognize epitopes containing highly conserved residues at the fusion loop of domain II. J. Virol. 82, 6631–6643 (2008).
Google Scholar
Beltramello, M. et al. The human immune response to Dengue virus is dominated by highly cross-reactive antibodies endowed with neutralizing and enhancing activity. Cell Host Microbe. 8, 271–283 (2010).
Google Scholar
Oliphant, T. et al. Antibody recognition and neutralization determinants on domains I and II of West Nile Virus envelope protein. J. Virol. 80, 12149–12159 (2006).
Google Scholar
Guy, B. et al. A recombinant live attenuated tetravalent vaccine for the prevention of dengue. Expert Rev. Vaccines 16, 671–684 (2017).
Google Scholar
Dayan, G. H. et al. Immunogenicity and safety of a recombinant tetravalent dengue vaccine in children and adolescents ages 9–16 years in Brazil. Am. J. Trop. Med. Hyg. 89, 1058 (2013).
Google Scholar
Sridhar, S. et al. Effect of dengue serostatus on dengue vaccine safety and efficacy. N. Engl. J. Med. 379, 327–340 (2018).
Google Scholar
Lanata, C. F. et al. Immunogenicity and safety of tetravalent dengue vaccine in 2–11 year-olds previously vaccinated against yellow fever: Randomized, controlled, phase II study in Piura, Peru. Vaccines 30, 5935–5941 (2012).
Google Scholar
Amar-Singh, H. et al. Safety and immunogenicity of a tetravalent dengue vaccine in healthy children aged 2–11 years in Malaysia: A randomized, placebo-controlled, Phase III study. Vaccine 31, 5814–5821 (2013).
Google Scholar
Halstead, S. B. Safety issues from a Phase 3 clinical trial of a live-attenuated chimeric yellow fever tetravalent dengue vaccine. Hum. Vaccine Immunother. 14, 2158–2162 (2018).
Google Scholar
Halstead, S. B. Neutralization and antibody-dependent enhancement of dengue viruses. Adv. Virus Res. 60, 421–467 (2003).
Google Scholar
Pinheiro-Michelsen, J. R. et al. Anti-dengue Vaccines: From development to clinical trials. Front. Immunol. 11, 1252 (2020).
Google Scholar
Men, R., Bray, M., Clark, D., Chanock, R. M. & Lai, C. J. Dengue type 4 virus mutants containing deletions in the 3’ noncoding region of the RNA genome: Analysis of growth restriction in cell culture and altered viremia pattern and immunogenicity in rhesus monkeys. J. Virol. 70, 3930–3937 (1996).
Google Scholar
Durbin, A. P. et al. Attenuation and immunogenicity in humans of a live dengue virus type-4 vaccine candidate with a 30 nucleotide deletion in its 3’-untranslated region. Am. J. Trop. Med. Hyg. 65, 405–413 (2001).
Google Scholar
Durbin, A. P. et al. rDEN4delta30, a live attenuated dengue virus type 4 vaccine candidate, is safe, immunogenic, and highly infectious in healthy adult volunteers. J. Infect. Dis. 191, 710–718 (2005).
Google Scholar
Kirkpatrick, B. D. et al. The live attenuated dengue vaccine TV003 elicits complete protection against dengue in a human challenge model. Sci. Transl. Med. 8, 33036 (2016).
Google Scholar
Osorio, J. E. et al. Safety and immunogenicity of a recombinant live attenuated tetravalent dengue vaccine (DENVax) in flavivirus-naive healthy adults in Colombia: A randomised, placebo-controlled, phase 1 study. Lancet. Infect. Dis. 14, 830–838 (2014).
Google Scholar
Sáez-Llorens, X. et al. Immunogenicity and safety of one versus two doses of tetravalent dengue vaccine in healthy children aged 2–17 years in Asia and Latin America: 18-month interim data from a phase 2, randomised, placebo-controlled study. Lancet. Infect. Dis 18, 162–170 (2018).
Google Scholar
Sáez-Llorens, X. et al. Safety and immunogenicity of one versus two doses of Takeda’s tetravalent dengue vaccine in children in Asia and Latin America: Interim results from a phase 2, randomised, placebo-controlled study. Lancet Infect. Dis. 17, 615–625 (2017).
Google Scholar
Jackson, L. A. et al. A phase 1 study of safety and immunogenicity following intradermal administration of a tetravalent dengue vaccine candidate. Vaccine 36, 3976–3983 (2018).
Google Scholar
Manoff, S. B. et al. Preclinical and clinical development of a dengue recombinant subunit vaccine. Vaccine 33, 7126–7134 (2015).
Google Scholar
Clements, D. E. et al. Development of a recombinant tetravalent dengue virus vaccine: Immunogenicity and efficacy studies in mice and monkeys. Vaccine 28, 2705–2715 (2018).
Google Scholar
Manoff, S. B. et al. Immunogenicity and safety of an investigational tetravalent recombinant subunit vaccine for dengue: Results of a Phase I randomized clinical trial in flavivirus-naive adults. Hum. Vaccines Immunother. 15, 2195–2204 (2019).
Google Scholar
Danko, J. R. et al. Safety and immunogenicity of a tetravalent dengue DNA vaccine administered with a cationic lipid-based adjuvant in a phase 1 clinical trial. Am. J. Trop. Med. Hyg. 98, 849 (2018).
Google Scholar
Schmidt, A. C. et al. Phase 1 randomized study of a tetravalent dengue purified inactivated vaccine in healthy adults in the United States. Am. J. Trop. Med. Hyg. 96, 1325 (2017).
Google Scholar
Thomas, S. J. et al. A phase II, randomized, safety and immunogenicity study of a re-derived, live-attenuated dengue virus vaccine in healthy adults. Am. J. Trop. Med. Hyg. 88, 73 (2013).
Google Scholar
Porter, K. R. et al. Immunogenicity and protective efficacy of a vaxfectin-adjuvanted tetravalent dengue DNA vaccine. Vaccine 30, 336–341 (2012).
Google Scholar
Osatomi, K. & Sumiyoshi, H. Complete nucleotide sequence of dengue type 3 virus genome RNA. Virology 176, 643–647 (1990).
Google Scholar
Wang, B. et al. Phylogenetic analysis of dengue virus reveals the high relatedness between imported and local strains during the 2013 dengue outbreak in Yunnan, China: A retrospective analysis. BMC Infect. Dis. 15, 1–7 (2015).
Google Scholar
Bäck, A. & Lundkvist, A. Dengue viruses: An overview. Infect. Ecol. Epidemiol. 3, 19839 (2013).
Cao, J. et al. Epidemiological and clinical characteristics of Dengue virus outbreaks in two regions of China, 2014–2015. PLoS ONE 14, e0213353 (2019).
Google Scholar
Fajardo-Sánchez, E., Galiano, V. & Villalaín, J. Molecular dynamics study of the membrane interaction of a membranotropic dengue virus C protein-derived peptide. J. Biomol. Struct. Dyn. 35, 1283–1294 (2017).
Google Scholar
Tuiskunen Bäck, A. & Lundkvist, Å. Dengue viruses: An overview. Infect. Ecol. Epidemiol. 3, 19839 (2013).
Naz, A. et al. Identification of putative vaccine candidates against Helicobacter pylori exploiting exoproteome and secretome: A reverse vaccinology based approach. Infect. Genet. Evol. 32, 280–291 (2015).
Google Scholar
Ka, T. et al. A Candidate multi-epitope vaccine against SARS-CoV-2. Sci. Rep. 10, 10895 (2020).
Google Scholar
Ullah, A., Sarkar, B. & Islam, S. S. Exploiting the reverse vaccinology approach to design novel subunit vaccine against ebola virus. Immunobiology 8, 151949 (2020).
Google Scholar
Alam, A., Ali, S., Ahamad, S., Malik, M. Z. & Ishrat, R. From ZikV genome to vaccine: In silico approach for the epitope-based peptide vaccine against Zika virus envelope glycoprotein. Immunology 149, 386–399 (2016).
Google Scholar
Anwar, S., Mourosi, J. T., Khan, M. F. & Hosen, M. J. Prediction of epitope-based peptide vaccine against the chikungunya virus by immuno-informatics approach. Curr. Pharm. Biotechnol. 21, 325–340 (2020).
Google Scholar
Chong, L. C. & Khan, A. M. Vaccine Target Discovery. Encyclopedia of Bioinformatics and Computational Biology (Elsevier, 2019).
María, R., Arturo, C., Alicia, J. A., Paulina, M. & Gerardo, A. O. The Impact of Bioinformatics on Vaccine Design and Development (InTech, 2017).
Google Scholar
Ali, M. et al. Exploring dengue genome to construct a multi-epitope based subunit vaccine by utilizing immunoinformatics approach to battle against dengue infection. Sci. Rep. 7, 1–13 (2017).
Google Scholar
Chaplin, D. D. Overview of the immune response. J. Allergy Clin. Immunol. 125, S3–S23 (2010).
Google Scholar
Fadaka, A. O. et al. Inhibitory potential of repurposed drugs against the SARS-CoV-2 main protease: A computational-aided approach. J. Biomol. Struct. Dyn. https://doi.org/10.1080/07391102.2020.1847197 (2020).
Google Scholar
Fadaka, A. O., Pretorius, A. & Klein, A. MicroRNA assisted gene regulation in colorectal cancer. Int. J. Mol. Sci. 20, 4899 (2019).
Google Scholar
Abedi Karjiban, R. et al. Molecular dynamics study of the structure, flexibility and dynamics of thermostable L1 lipase at high temperatures. Protein. J. 28, 14–23 (2009).
Google Scholar
Fadaka, A. O., Sibuyi, N. R. S., Madiehe, A. M. & Meyer, M. Computational insight of dexamethasone against potential targets of SARS-CoV-2. J. Biomol. Struct. Dyn. https://doi.org/10.1080/07391102.2020.1819880 (2020).
Google Scholar
Jyotisha, S. S. & Qureshi, I. A. Multi-epitope vaccine against SARS-CoV-2 applying immunoinformatics and molecular dynamics simulation approaches. J. Biomol. Struct. Dyn. 1, 17. https://doi.org/10.1080/07391102.2020.1844060 (2020).
Google Scholar
Sarkar, B., Ullah, M. A., Johora, F. T., Taniya, M. A. & Araf, Y. Immunoinformatics-guided designing of epitope-based subunit vaccines against the SARS Coronavirus-2 (SARS-CoV-2). Immunobiology 225, 151955 (2020).
Google Scholar
Ghaebi, M., Osali, A., Valizadeh, H., Roshangar, L. & Ahmadi, M. Vaccine development and therapeutic design for 2019-nCoV/SARS-CoV-2: Challenges and chances. J. Cell. Physiol. 235, 9098–9109 (2020).
Google Scholar
Dong, R., Chu, Z., Yu, F. & Zha, Y. Contriving Multi-Epitope Subunit of Vaccine for COVID-19: Immunoinformatics Approaches. Front. Immunol. 11, 1784 (2020).
Google Scholar
Lim, H. X., Lim, J., Jazayeri, S. D., Poppema, S. & Poh, C. L. Development of multi-epitope peptide-based vaccines against SARS-CoV-2. Biomed. J. 44, 18–30 (2020).
Google Scholar
Rahman, N. et al. Vaccine design from the ensemble of surface glycoprotein epitopes of SARS-CoV-2: An immunoinformatics approach. Vaccines. 8, 423 (2020).
Google Scholar
Kar, P. P. & Srivastava, A. Immuno-informatics analysis to identify novel vaccine candidates and design of a multi-epitope based vaccine candidate against theileria parasites. Front. Immunol. 9, 2213 (2018).
Google Scholar
Zawawi, A. et al. In silico design of a T-cell epitope vaccine candidate for parasitic helminth infection. PLoS Pathog. 16, e1008243 (2020).
Google Scholar
Tripathi, N. K. & Shrivastava, A. Recent developments in recombinant protein–based dengue vaccines. Front. Immunol. 2018, 1919 (2018).
Google Scholar
Thomas, S. J. & Rothman, A. L. Trials and tribulations on the path to developing a dengue vaccine. Vaccine 33, D24–D31 (2015).
Google Scholar
Halstead, S. B. Antibody, macrophages, dengue virus infection, shock, and hemorrhage: A pathogenetic cascade. Rev. Infect. Dis. 11, S830–S839 (1989).
Google Scholar
Thomas, S. J. Preventing dengue: Is the possibility now a reality?. N. Engl. J. Med. 372, 172–173 (2015).
Google Scholar
Naz, K. et al. PanRV: Pangenome-reverse vaccinology approach for identifications of potential vaccine candidates in microbial pangenome. BMC Bioinform. 20, 123 (2019).
Google Scholar
Kumar Jaiswal, A. et al. An in silico identification of common putative vaccine candidates against Treponema pallidum: A reverse vaccinology and subtractive genomics based approach. Int. J. Mol. Sci. 18, 402 (2017).
Google Scholar
Kar, T. et al. A candidate multi-epitope vaccine against SARS-CoV-2. Sci. Rep. 10, 10895 (2020).
Google Scholar
Sauer, K. & Harris, T. An effective COVID-19 vaccine needs to engage T cells. Front. Immunol. 11, 581807 (2020).
Google Scholar
Yadav, S. et al. In silico and in vitro studies on the protein-protein interactions between Brugia malayi immunomodulatory protein calreticulin and human C1q. PLoS ONE 9, e106413 (2014).
Google Scholar
Aathmanathan, V. S., Jothi, N., Prajapati, V. K. & Krishnan, M. Investigation of immunogenic properties of Hemolin from silkworm, Bombyx mori as carrier protein: an immunoinformatic approach. Sci. Rep. 8, 1–10 (2018).
Google Scholar
Droppa-Almeida, D., Franceschi, E. & Padilha, F. F. Immune-informatic analysis and design of peptide vaccine from multi-epitopes against Corynebacterium pseudotuberculosis. Bioinform. Biol. Insights 12, 1177932218755337 (2018).
Google Scholar
Rekik, I. et al. In silico characterization and Molecular modeling of double-strand break repair protein MRE11 from Phoenix dactylifera v deglet nour. Theor. Biol. Med. Model. 12, 1–14 (2015).
Google Scholar
Hashemzadeh, P., Ghorbanzadeh, V., Lashgarian, H. E., Kheirandish, F. & Dariushnejad, H. Harnessing bioinformatic approaches to design novel multi-epitope subunit vaccine against Leishmania infantum. Int. J. Pept. Res. Ther. 26, 1417–1428 (2020).
Google Scholar
Vijay, K. Toll-like receptors in immunity and inflammatory diseases: Past, present, and future. Int. Immunopharmacol. 59, 391–412 (2018).
Google Scholar
Ahmad, S. et al. Design of a novel multi epitope-based vaccine for pandemic coronavirus disease (COVID-19) by vaccinomics and probable prevention strategy against avenging zoonotics. Eur. J. Pharm. Sci. 151, 105387 (2020).
Google Scholar
Pfarr, K. M., Fischer, K. & Hoerauf, A. Involvement of Toll-like receptor 4 in the embryogenesis of the rodent filaria Litomosoides sigmodontis. Med. Microbiol. Immunol. 192, 53–56 (2003).
Google Scholar
Kerepesi, L. A., Leon, O., Lustigman, S. & Abraham, D. Protective immunity to the larval stages of Onchocerca volvulus is dependent on Toll-like receptor 4. Infect. Immun. 73, 8291–8297 (2005).
Google Scholar
Compton, T. et al. Human cytomegalovirus activates inflammatory cytokine responses via CD14 and Toll-like receptor 2. J. Virol. 77, 4588–4596 (2003).
Google Scholar
Marín, A. et al. Relationship between G+ C content, ORF-length and mRNA concentration in Saccharomyces cerevisiae. Yeast 20, 703–711 (2003).
Google Scholar
Rapin, N., Lund, O., Bernaschi, M. & Castiglione, F. Computational immunology meets bioinformatics: The use of prediction tools for molecular binding in the simulation of the immune system. PLoS ONE 5, e9862 (2010).
Google Scholar
Devi, A. & Chaitanya, N. S. In silico designing of multi-epitope vaccine construct against human coronavirus infections. J. Biomol. Struct. Dyn. https://doi.org/10.1080/07391102.2020.1804460 (2020).
Google Scholar
Ismail, S., Ahmad, S. & Azam, S. S. Vaccinomics to design a novel single chimeric subunit vaccine for broad-spectrum immunological applications targeting nosocomial Enterobacteriaceae pathogens. Eur. J. Pharm. Sci. 146, 105258 (2020).
Google Scholar
Tahir ul Qamar, M. et al. Multiepitope-based subunit vaccine design and evaluation against respiratory syncytial virus using reverse vaccinology approach. Vaccines 8, 288 (2020).
Google Scholar
Khan, A. et al. Computational identification, characterization and validation of potential antigenic peptide vaccines from hrHPVs E6 proteins using immunoinformatics and computational systems biology approaches. PLoS ONE 13, e0196484 (2018).
Google Scholar
Banisharif-Dehkordi, F., Mobini-Dehkordi, M., Shakhsi-Niaei, M. & Mahnam, K. Design and molecular dynamic simulation of a new double-epitope tolerogenic protein as a potential vaccine for multiple sclerosis disease. Res. Pharm. Sci. 14, 20–26 (2019).
Google Scholar
Nielsen, H. Predicting Secretory Proteins with SignalP 59–73 (Springer, 2017).
Petersen, T. N., Brunak, S., Von Heijne, G. & Nielsen, H. SignalP 4.0: Discriminating signal peptides from transmembrane regions. Nat. Methods 8, 785–786 (2011).
Google Scholar
Almagro Armenteros, J. J., Sønderby, C. K., Sønderby, S. K., Nielsen, H. & Winther, O. DeepLoc: Prediction of protein subcellular localization using deep learning. Bioinformatics 33, 3387–3395 (2017).
Google Scholar
Doytchinova, I. A. & Flower, D. R. VaxiJen: a server for prediction of protective antigens, tumour antigens and subunit vaccines. BMC Bioinform. 8, 4 (2007).
Google Scholar
Westerhout, J. et al. Allergenicity prediction of novel and modified proteins: Not a mission impossible! Development of a random forest allergenicity prediction model. Regul. Toxicol. Pharmacol. 107, 104422 (2019).
Google Scholar
Dimitrov, I., Flower, D. R. & Doytchinova, I. AllerTOP: A server for in silico prediction of allergens. BMC Bioinform. 14, 1–9 (2013).
Google Scholar
Venkatarajan, M. S. & Braun, W. New quantitative descriptors of amino acids based on multidimensional scaling of a large number of physical–chemical properties. Mol. Model. Annu. 7, 445–453 (2001).
Google Scholar
Faria, A. R. et al. High-throughput analysis of synthetic peptides for the immunodiagnosis of canine visceral leishmaniasis. PLoS Negl. Trop. Dis. 5, e1310 (2011).
Google Scholar
Beaver, J. E., Bourne, P. E. & Ponomarenko, J. V. EpitopeViewer: a Java application for the visualization and analysis of immune epitopes in the Immune Epitope Database and Analysis Resource (IEDB). Immunome Res. 3, 3 (2007).
Google Scholar
Shey, R. A. et al. In-silico design of a multi-epitope vaccine candidate against onchocerciasis and related filarial diseases. Sci. Rep. 9, 1–18 (2019).
Google Scholar
Möller, S., Croning, M. D. & Apweiler, R. Evaluation of methods for the prediction of membrane spanning regions. Bioinformatics 17, 646–653 (2001).
Google Scholar
Walker, J. M. The Proteomics Protocols Handbook (Springer, 2005).
Google Scholar
Gasteiger, E. et al. Protein Identification and Analysis Tools on the ExPASy Server 571–607 (Springer, 2005).
Hebditch, M., Carballo-Amador, M. A., Charonis, S., Curtis, R. & Warwicker, J. Protein–Sol: A web tool for predicting protein solubility from sequence. Bioinformatics 33, 3098–3100 (2017).
Google Scholar
Buchan, D. W., Minneci, F., Nugent, T. C., Bryson, K. & Jones, D. T. Scalable web services for the PSIPRED Protein Analysis Workbench. Nucleic Acids Res. 41, W349–W357 (2013).
Google Scholar
Saha, R. & Prasad, B. V. In silico approach for designing of a multi-epitope based vaccine against novel Coronavirus (SARS-COV-2). bioRxiv https://doi.org/10.1101/2020.03.31.017459 (2020).
Google Scholar
Wiederstein, M. & Sippl, M. J. ProSA-web: interactive web service for the recognition of errors in three-dimensional structures of proteins. Nucleic Acids Res. 35, W407–W410 (2007).
Google Scholar
Lovell, S. C. et al. Structure validation by Cα geometry: ϕ, ψ and Cβ deviation. Proteins 50, 437–450 (2003).
Google Scholar
Ullah, M. A., Sarkar, B. & Islam, S. S. Exploiting the reverse vaccinology approach to design novel subunit vaccines against Ebola virus. Immunobiology 225, 151949 (2020).
Google Scholar
Fadaka, A. O., Sibuyi, N. R. S., Madiehe, A. M. & Meyer, M. MicroRNA-based regulation of Aurora a kinase in breast cancer. Oncotarget 11, 4306 (2020).
Google Scholar
Ojo, O. A. et al. Deciphering the interaction of puerarin with cancer macromolecules: An in silico investigation. J. Biomol. Struct. Dyn. https://doi.org/10.1080/07391102.2020.1819425 (2020).
Google Scholar
Grote, A. et al. JCat: a novel tool to adapt codon usage of a target gene to its potential expression host. Nucleic Acids Res. 33, W526–W531 (2005).
Google Scholar
Morla, S., Makhija, A. & Kumar, S. Synonymous codon usage pattern in glycoprotein gene of rabies virus. Gene 584, 1–6 (2016).
Google Scholar
Castiglione, F., Mantile, F., De Berardinis, P. & Prisco, A. How the interval between prime and boost injection affects the immune response in a computational model of the immune system. Comput. Math. Methods Med. 2012, 1–9 (2012).
Google Scholar
Kroger, A. General Recommendations on Immunization; US Department of Health and Human Services (Public Health Servic, Centers for Disease Control, 2013).
Nain, Z., Karim, M. M., Sen, M. K. & Adhikari, U. K. Structural basis and designing of peptide vaccine using PE-PGRS family protein of Mycobacterium ulcerans: An integrated vaccinomics approach. Mol. Immunol. 120, 146–163 (2020).
Google Scholar
Chauhan, V. & Singh, M. P. Immuno-informatics approach to design a multi-epitope vaccine to combat cytomegalovirus infection. Eur. J. Pharm. Sci. 147, 105279 (2020).
Google Scholar
Jorgensen, W. L., Chandrasekhar, J., Madura, J. D., Impey, R. W. & Klein, M. L. Comparison of simple potential functions for simulating liquid water. J. Chem. Phys. 79, 926–935 (1983).
Google Scholar
Blessy, J. J. & Sharmila, D. J. S. Molecular simulation of N-acetylneuraminic acid analogs and molecular dynamics studies of cholera toxin-Neu5Gc complex. J. Biomol. Struct. Dyn. 33, 1126–1139 (2015).
Google Scholar
Hoover, W. G. Canonical dynamics: Equilibrium phase-space distributions. Phys. Rev. A 31, 1695 (1985).
Google Scholar

