C. Centers for Disease, Prevention. Prevalence and most common causes of disability among adults—United States, 2005. MMWR Morb. Mortal. Wkly. Rep. 58, 421–426 (2009).
Anderson, D. D. et al. Post-traumatic osteoarthritis: improved understanding and opportunities for early intervention. J. Orthop. Res. 29, 802–809 (2011).
Google Scholar
Riedl, M., Vadala, G., Papalia, R. & Denaro, V. Three-dimensional, scaffold-free, autologous chondrocyte transplantation: a systematic review. Orthop. J. Sports Med. 8, 2325967120951152 (2020).
Google Scholar
Tyyni, A. & Karlsson, J. Biological treatment of joint cartilage damage. Scand. J. Med. Sci. Sports 10, 249–265 (2000).
Google Scholar
Freitag, J. et al. Adipose-derived mesenchymal stem cell therapy in the treatment of knee osteoarthritis: a randomized controlled trial. Regen. Med. 14, 213–230 (2019).
Google Scholar
Johnson, K. A. Mesenchymal stem cell treatment of osteoarthritis. Vet. Comp. Orthop. Traumatol. 32, v (2019).
Google Scholar
Horesh, D. et al. Doublecortin, a stabilizer of microtubules. Hum. Mol. Genet. 8, 1599–1610 (1999).
Google Scholar
Bai, J. et al. RNAi reveals doublecortin is required for radial migration in rat neocortex. Nat. Neurosci. 6, 1277–1283 (2003).
Google Scholar
Gleeson, J. G. et al. Doublecortin, a brain-specific gene mutated in human X-linked lissencephaly and double cortex syndrome, encodes a putative signaling protein. Cell 92, 63–72 (1998).
Google Scholar
des Portes, V. et al. Doublecortin is the major gene causing X-linked subcortical laminar heterotopia (SCLH). Hum. Mol. Genet. 7, 1063–1070 (1998).
Google Scholar
Zhang, Y. et al. Doublecortin is expressed in articular chondrocytes. Biochem. Biophys. Res. Commun. 363, 694–700 (2007).
Google Scholar
Zhang, Q. et al. Expression of doublecortin reveals articular chondrocyte lineage in mouse embryonic limbs. Genesis 49, 75–82 (2011).
Google Scholar
Yamagami, T., Molotkov, A. & Zhou, C. J. Canonical Wnt signaling activity during synovial joint development. J. Mol. Histol. 40, 311–316 (2009).
Google Scholar
Craft, A. M. et al. Specification of chondrocytes and cartilage tissues from embryonic stem cells. Development 140, 2597–2610 (2013).
Google Scholar
Craft, A. M. et al. Generation of articular chondrocytes from human pluripotent stem cells. Nat. Biotechnol. 33, 638–645 (2015).
Google Scholar
Deshmukh, V. et al. A small-molecule inhibitor of the Wnt pathway (SM04690) as a potential disease modifying agent for the treatment of osteoarthritis of the knee. Osteoarthritis Cartilage 26, 18–27 (2018).
Google Scholar
Castelucci, B. G. et al. Time-dependent regulation of morphological changes and cartilage differentiation markers in the mouse pubic symphysis during pregnancy and postpartum recovery. PLoS ONE 13, e0195304 (2018).
Google Scholar
Decker, R. S. et al. Cell origin, volume and arrangement are drivers of articular cartilage formation, morphogenesis and response to injury in mouse limbs. Dev. Biol. 426, 56–68 (2017).
Google Scholar
Lee, J. Y. et al. Pre-transplantational control of the post-transplantational fate of human pluripotent stem cell-derived cartilage. Stem Cell Rep. 11, 440–453 (2018).
Pitsillides, A. A. & Beier, F. Cartilage biology in osteoarthritis-lessons from developmental biology. Nat. Rev. Rheumatol. 7, 654–663 (2011).
Google Scholar
Decker, R. S., Koyama, E. & Pacifici, M. Articular cartilage: structural and developmental intricacies and questions. Curr. Osteoporos. Rep. 13, 407–414 (2015).
Google Scholar
Akiyama, H. et al. Osteo-chondroprogenitor cells are derived from Sox9 expressing precursors. Proc. Natl Acad. Sci. USA 102, 14665–14670 (2005).
Google Scholar
Ge, D. et al. Doublecortin may play a role in defining chondrocyte phenotype. Int. J. Mol. Sci. 15, 6941–6960 (2014).
Google Scholar
Klatt, A. R., Paulsson, M. & Wagener, R. Expression of matrilins during maturation of mouse skeletal tissues. Matrix Biol. 21, 289–296 (2002).
Google Scholar
Segat, D. et al. Expression of matrilin-1, -2 and -3 in developing mouse limbs and heart. Matrix Biol. 19, 649–655 (2000).
Google Scholar
Yu, G. et al. Yield and characterization of subcutaneous human adipose-derived stem cells by flow cytometric and adipogenic mRNA analyzes. Cytotherapy 12, 538–546 (2010).
Google Scholar
Bae, H. C. et al. Hypoxic condition enhances chondrogenesis in synovium-derived mesenchymal stem cells. Biomater. Res. 22, 28 (2018).
Google Scholar
Lee, H. H. et al. Hypoxia enhances chondrogenesis and prevents terminal differentiation through PI3K/Akt/FoxO dependent anti-apoptotic effect. Sci. Rep. 3, 2683 (2013).
Google Scholar
Munir, S. et al. Hypoxia enhances chondrogenic differentiation of human adipose tissue-derived stromal cells in scaffold-free and scaffold systems. Cell Tissue Res. 355, 89–102 (2014).
Google Scholar
van den Borne, M. P. et al. International Cartilage Repair Society (ICRS) and Oswestry macroscopic cartilage evaluation scores validated for use in Autologous Chondrocyte Implantation (ACI) and microfracture. Osteoarthritis Cartilage 15, 1397–1402 (2007).
Google Scholar
Koh, Y. G., Choi, Y. J., Kwon, O. R. & Kim, Y. S. Second-look arthroscopic evaluation of cartilage lesions after mesenchymal stem cell implantation in osteoarthritic knees. Am. J. Sports Med. 42, 1628–1637 (2014).
Google Scholar
Li, L. et al. Mesenchymal stem cells in combination with hyaluronic acid for articular cartilage defects. Sci. Rep. 8, 9900 (2018).
Google Scholar
Mainil-Varlet, P. et al. Histological assessment of cartilage repair: a report by the Histology Endpoint Committee of the International Cartilage Repair Society (ICRS). J. Bone Jt. Surg. Am. 85-A(Suppl. 2), 45–57 (2003).
Ma, A. et al. Reconstruction of cartilage with clonal mesenchymal stem cell-acellular dermal matrix in cartilage defect model in nonhuman primates. Int. Immunopharmacol. 16, 399–408 (2013).
Google Scholar
Allard, J. et al. Immunohistochemical toolkit for tracking and quantifying xenotransplanted human stem cells. Regen. Med. 9, 437–452 (2014).
Google Scholar
Ahn, J. et al. Transplantation of human Wharton’s jelly-derived mesenchymal stem cells highly expressing TGFbeta receptors in a rabbit model of disc degeneration. Stem Cell. Res. Ther. 6, 190 (2015).
Google Scholar
Koyama, E. et al. A distinct cohort of progenitor cells participates in synovial joint and articular cartilage formation during mouse limb skeletogenesis. Dev. Biol. 316, 62–73 (2008).
Google Scholar
Hartmann, C. & Tabin, C. J. Wnt-14 plays a pivotal role in inducing synovial joint formation in the developing appendicular skeleton. Cell 104, 341–351 (2001).
Google Scholar
Archer, C. W., Dowthwaite, G. P. & Francis-West, P. Development of synovial joints. Birth Defects Res. C Embryo Today 69, 144–155 (2003).
Google Scholar
Pacifici, M. et al. Cellular and molecular mechanisms of synovial joint and articular cartilage formation. Ann. NY Acad. Sci. 1068, 74–86 (2006).
Google Scholar
DeLise, A. M., Fischer, L. & Tuan, R. S. Cellular interactions and signaling in cartilage development. Osteoarthritis Cartilage 8, 309–334 (2000).
Google Scholar
Hyde, G., Dover, S., Aszodi, A., Wallis, G. A. & Boot-Handford, R. P. Lineage tracing using matrilin-1 gene expression reveals that articular chondrocytes exist as the joint interzone forms. Dev. Biol. 304, 825–833 (2007).
Google Scholar
Yamane, S., Cheng, E., You, Z. & Reddi, A. H. Gene expression profiling of mouse articular and growth plate cartilage. Tissue Eng. 13, 2163–2173 (2007).
Google Scholar
Holtzer, H., Abbott, J., Lash, J. & Holtzer, S. The loss of phenotypic traits by differentiated cells in vitro, I. Dedifferentiation of cartilage cells. Proc. Natl Acad. Sci. USA 46, 1533–1542 (1960).
Google Scholar
Ahrens, P. B., Solursh, M. & Reiter, R. S. Stage-related capacity for limb chondrogenesis in cell culture. Dev. Biol. 60, 69–82 (1977).
Google Scholar
Tuan, R. S. Stemming cartilage degeneration: adult mesenchymal stem cells as a cell source for articular cartilage tissue engineering. Arthritis Rheum. 54, 3075–3078 (2006).
Google Scholar
Smith, B., Sigal, I. R. & Grande, D. A. Immunology and cartilage regeneration. Immunol. Res. 63, 181–186 (2015).
Google Scholar
Adkisson, H. D. et al. Immune evasion by neocartilage-derived chondrocytes: implications for biologic repair of joint articular cartilage. Stem Cell Res. 4, 57–68 (2010).
Google Scholar
Robinson, D., Guetsky, M., Halperin, R., Schneider, D. & Nevo, Z. Articular cartilage reconstruction using xenogeneic epiphyses slices. Cell Tissue Bank 3, 269–277 (2002).
Google Scholar
Nogami, M. et al. Isolation and characterization of human amniotic mesenchymal stem cells and their chondrogenic differentiation. Transplantation 93, 1221–1228 (2012).
Google Scholar
Jang, K. M., Lee, J. H., Park, C. M., Song, H. R. & Wang, J. H. Xenotransplantation of human mesenchymal stem cells for repair of osteochondral defects in rabbits using osteochondral biphasic composite constructs. Knee Surg. Sports Traumatol. Arthrosc. 22, 1434–1444 (2014).
Google Scholar
Li, W. J. et al. Evaluation of articular cartilage repair using biodegradable nanofibrous scaffolds in a swine model: a pilot study. J. Tissue Eng. Regen. Med. 3, 1–10 (2009).
Google Scholar
Sato, M. et al. Direct transplantation of mesenchymal stem cells into the knee joints of Hartley strain guinea pigs with spontaneous osteoarthritis. Arthritis Res. Ther. 14, R31 (2012).
Google Scholar
Wei, X. & Messner, K. Maturation-dependent durability of spontaneous cartilage repair in rabbit knee joint. J. Biomed. Mater. Res. 46, 539–548 (1999).
Google Scholar
Bekkers, J. E. et al. Single-stage cell-based cartilage regeneration using a combination of chondrons and mesenchymal stromal cells: comparison with microfracture. Am. J. Sports Med. 41, 2158–2166 (2013).
Google Scholar
de Windt, T. S. et al. Allogeneic mesenchymal stem cells stimulate cartilage regeneration and are safe for single-stage cartilage repair in humans upon mixture with recycled autologous chondrons. Stem Cells 35, 256–264 (2017).
Google Scholar
de Windt, T. S. et al. Allogeneic MSCs and recycled autologous chondrons mixed in a one-stage cartilage cell transplantion: a first-in-man trial in 35 patients. Stem Cells 35, 1984–1993 (2017).
Google Scholar
Saris, T. F. F. et al. Five-year outcome of 1-stage cell-based cartilage repair using recycled autologous chondrons and allogenic mesenchymal stromal cells: a first-in-human clinical trial. J. Sports Med. 49, 941–947 (2021).
Coleman, C. M. & Tuan, R. S. Functional role of growth/differentiation factor 5 in chondrogenesis of limb mesenchymal cells. Mech. Dev. 120, 823–836 (2003).
Google Scholar
Sun, Y., You, Y., Jiang, W., Zhai, Z. & Dai, K. 3D-bioprinting a genetically inspired cartilage scaffold with GDF5-conjugated BMSC-laden hydrogel and polymer for cartilage repair. Theranostics 9, 6949–6961 (2019).
Google Scholar
Ahmad, J., Eaves, F. F. 3rd, Rohrich, R. J. & Kenkel, J. M. The American Society for Aesthetic Plastic Surgery (ASAPS) survey: current trends in liposuction. Aesthet. Surg. J. 31, 214–224 (2011).
Google Scholar
Christensen, B. B. et al. Particulated cartilage for chondral and osteochondral repair: a review. Cartilage https://doi.org/10.1177/1947603520904757 (2020).
de Mulder, E. L., Hannink, G., van Kuppevelt, T. H., Daamen, W. F. & Buma, P. Similar hyaline-like cartilage repair of osteochondral defects in rabbits using isotropic and anisotropic collagen scaffolds. Tissue Eng. Part A 20, 635–645 (2014).
Google Scholar
Tay, L. X. et al. Treatment outcomes of alginate-embedded allogenic mesenchymal stem cells versus autologous chondrocytes for the repair of focal articular cartilage defects in a rabbit model. Am. J. Sports Med. 40, 83–90 (2012).
Google Scholar
Ramallal, M. et al. Xeno-implantation of pig chondrocytes into rabbit to treat localized articular cartilage defects: an animal model. Wound Repair Regen. 12, 337–345 (2004).
Google Scholar
Hattori, S., Oxford, C. & Reddi, A. H. Identification of superficial zone articular chondrocyte stem/progenitor cells. Biochem. Biophys. Res. Commun. 358, 99–103 (2007).
Google Scholar
Danso, E. K., Julkunen, P. & Korhonen, R. K. Poisson’s ratio of bovine meniscus determined combining unconfined and confined compression. J. Biomech. 77, 233–237 (2018).
Google Scholar
Fortin, M., Soulhat, J., Shirazi-Adl, A., Hunziker, E. B. & Buschmann, M. D. Unconfined compression of articular cartilage: nonlinear behavior and comparison with a fibril-reinforced biphasic model. J. Biomech. Eng. 122, 189–195 (2000).
Google Scholar
Korhonen, R. K. et al. Comparison of the equilibrium response of articular cartilage in unconfined compression, confined compression and indentation. J. Biomech. 35, 903–909 (2002).
Google Scholar
Li, L. P., Herzog, W., Korhonen, R. K. & Jurvelin, J. S. The role of viscoelasticity of collagen fibers in articular cartilage: axial tension versus compression. Med. Eng. Phys. 27, 51–57 (2005).
Google Scholar
Wu, Y. et al. Viscoelastic shear properties of porcine temporomandibular joint disc. Orthod. Craniofac. Res. 18, 156–163 (2015).
Google Scholar
Treppo, S. et al. Comparison of biomechanical and biochemical properties of cartilage from human knee and ankle pairs. J. Orthop. Res. 18, 739–748 (2000).
Google Scholar

