Preloader

Host responses to implants revealed by intravital microscopy

  • 1.

    O’Brien, F. J. Biomaterials & scaffolds for tissue engineering. Mater. Today 14, 88–95 (2011).

    Article 
    CAS 

    Google Scholar 

  • 2.

    Bose, S., Roy, M. & Bandyopadhyay, A. Recent advances in bone tissue engineering scaffolds. Trends Biotechnol. 30, 546–554 (2012).

    CAS 
    Article 

    Google Scholar 

  • 3.

    Eming, S. A., Martin, P. & Tomic-Canic, M. Wound repair and regeneration: Mechanisms, signaling, and translation. Sci. Transl Med. 6, 265sr266 (2014).

    Article 
    CAS 

    Google Scholar 

  • 4.

    Veiseh, O. & Vegas, A. J. Domesticating the foreign body response: Recent advances and applications. Adv. Drug Deliv. Rev. 144, 148–161 (2019).

    CAS 
    Article 

    Google Scholar 

  • 5.

    Prakasam, M. et al. Biodegradable materials and metallic implants — a review. J. Funct. Biomater. 8, 44 (2017).

    Article 
    CAS 

    Google Scholar 

  • 6.

    Veiseh, O. et al. Size- and shape-dependent foreign body immune response to materials implanted in rodents and non-human primates. Nat. Mater. 14, 643–651 (2015).

    CAS 
    Article 

    Google Scholar 

  • 7.

    Zhang, L. et al. Zwitterionic hydrogels implanted in mice resist the foreign-body reaction. Nat. Biotechnol. 31, 553–556 (2013).

    CAS 
    Article 

    Google Scholar 

  • 8.

    Vegas, A. J. et al. Combinatorial hydrogel library enables identification of materials that mitigate the foreign body response in primates. Nat. Biotechnol. 34, 345–352 (2016).

    CAS 
    Article 

    Google Scholar 

  • 9.

    Zhang, D. et al. Silk-Inspired β-peptide materials resist fouling and the foreign-body response. Angew. Chem. Int. Ed. 59, 9586–9593 (2020).

    CAS 
    Article 

    Google Scholar 

  • 10.

    Zhang, D. et al. Dealing with the foreign-body response to implanted biomaterials: strategies and applications of new materials. Adv. Funct. Mater. 31, 2007226 (2020).

    Article 
    CAS 

    Google Scholar 

  • 11.

    Ouanounou, A., Hassanpour, S. & Glogauer, M. The influence of systemic medications on osseointegration of dental implants. J. Can. Dent. Assoc. 82, g7 (2016).

    Google Scholar 

  • 12.

    Dondossola, E. et al. Examination of the foreign body response to biomaterials by nonlinear intravital microscopy. Nat. Biomed. Eng. 1, 0007 (2017).

    CAS 
    Article 

    Google Scholar 

  • 13.

    Gurevich, D. B., French, K. E., Collin, J. D., Cross, S. J. & Martin, P. Live imaging the foreign body response in zebrafish reveals how dampening inflammation reduces fibrosis. J. Cell Sci. 133, jcs236075 (2020).

    CAS 

    Google Scholar 

  • 14.

    Appel, A. A., Anastasio, M. A., Larson, J. C. & Brey, E. M. Imaging challenges in biomaterials and tissue engineering. Biomaterials 34, 6615–6630 (2013).

    CAS 
    Article 

    Google Scholar 

  • 15.

    Andresen, V. et al. Infrared multiphoton microscopy: subcellular-resolved deep tissue imaging. Curr. Opin. Biotechnol. 20, 54–62 (2009).

    CAS 
    Article 

    Google Scholar 

  • 16.

    Ebrahim, S. & Weigert, R. Intravital microscopy in mammalian multicellular organisms. Curr. Opin. Cell Biol. 59, 97–103 (2019).

    CAS 
    Article 

    Google Scholar 

  • 17.

    Li, R., Ng, T. S. C., Garlin, M. A., Weissleder, R. & Miller, M. A. Understanding the in vivo fate of advanced materials by imaging. Adv. Funct. Mater. 30, 1910369 (2020).

    CAS 
    Article 

    Google Scholar 

  • 18.

    Pittet, M. J. & Weissleder, R. Intravital imaging. Cell 147, 983–991 (2011).

    CAS 
    Article 

    Google Scholar 

  • 19.

    Choi, M., Kwok, S. J. J. & Yun, S. H. In vivo fluorescence microscopy: lessons from observing cell behavior in their native environment. Physiology 30, 40–49 (2015).

    CAS 
    Article 

    Google Scholar 

  • 20.

    Zipfel, W. R. et al. Live tissue intrinsic emission microscopy using multiphoton-excited native fluorescence and second harmonic generation. Proc. Natl Acad. Sci. USA 100, 7075–7080 (2003).

    CAS 
    Article 

    Google Scholar 

  • 21.

    Monici, M. Cell and tissue autofluorescence research and diagnostic applications. Biotechnol. Annu. Rev. 11, 227–256 (2005).

    CAS 
    Article 

    Google Scholar 

  • 22.

    Asfour, H., Otridge, J., Thomasian, R., Larson, C. & Sarvazyan, N. Autofluorescence properties of balloon polymers used in medical applications. J. Biomed. Opt. 25, 106004 (2020).

    Article 

    Google Scholar 

  • 23.

    Okabe, M., Ikawa, M., Kominami, K., Nakanishi, T. & Nishimune, Y. ‘Green mice’ as a source of ubiquitous green cells. FEBS Lett. 407, 313–319 (1997).

    CAS 
    Article 

    Google Scholar 

  • 24.

    Rizzo, M. A., Davidson, M. W. & Piston, D. W. Fluorescent protein tracking and detection: applications using fluorescent proteins in living cells. Cold Spring Harb. Protoc. 2009, pdb top64 (2009).

    Article 

    Google Scholar 

  • 25.

    Zhang, G., Fiore, G. L., St. Clair, T. L. & Fraser, C. L. Difluoroboron dibenzoylmethane PCL-PLA block copolymers: Matrix effects on room temperature phosphorescence. Macromolecules 42, 3162–3169 (2009).

    CAS 
    Article 

    Google Scholar 

  • 26.

    Karman, M., Verde-Sesto, E., Weder, C. & Simon, Y. C. Mechanochemical fluorescence switching in polymers containing dithiomaleimide moieties. ACS Macro Lett. 7, 1099–1104 (2018).

    CAS 
    Article 

    Google Scholar 

  • 27.

    Li, W. et al. α-Lipoic acid stabilized DTX/IR780 micelles for photoacoustic/fluorescence imaging guided photothermal therapy/chemotherapy of breast cancer. Biomater. Sci. 6, 1201–1216 (2018).

    CAS 
    Article 

    Google Scholar 

  • 28.

    Adam, V. Phototransformable fluorescent proteins: which one for which application? Histochem. Cell Biol. 142, 19–41 (2014).

    CAS 
    Article 

    Google Scholar 

  • 29.

    Miller, M. A. & Weissleder, R. Imaging the pharmacology of nanomaterials by intravital microscopy: Toward understanding their biological behavior. Adv. Drug Deliv. Rev. 113, 61–86 (2017).

    CAS 
    Article 

    Google Scholar 

  • 30.

    Zielinski, M., Oron, D., Chauvat, D. & Zyss, J. Second-harmonic generation from a single core/shell quantum dot. Small 5, 2835–2840 (2009).

    CAS 
    Article 

    Google Scholar 

  • 31.

    Karvounis, A., Timpu, F., Vogler-Neuling, V. V., Savo, R. & Grange, R. Barium titanate nanostructures and thin films for photonics. Adv. Opt. Mater. 8, 2001249 (2020).

    CAS 
    Article 

    Google Scholar 

  • 32.

    Aptel, F. et al. Multimodal nonlinear imaging of the human cornea. Invest. Ophthalmol. Vis. Sci. 51, 2459–2465 (2010).

    Article 

    Google Scholar 

  • 33.

    Debarre, D. et al. Imaging lipid bodies in cells and tissues using third-harmonic generation microscopy. Nat. Methods 3, 47–53 (2006).

    CAS 
    Article 

    Google Scholar 

  • 34.

    Weigelin, B., Bakker, G. J. & Friedl, P. Third harmonic generation microscopy of cells and tissue organization. J. Cell Sci. 129, 245–255 (2016).

    CAS 

    Google Scholar 

  • 35.

    Bakker, G. J., Andresen, V., Hoffman, R. M. & Friedl, P. Fluorescence lifetime microscopy of tumor cell invasion, drug delivery, and cytotoxicity. Methods Enzymol. 504, 109–125 (2012).

    CAS 
    Article 

    Google Scholar 

  • 36.

    Nobis, M. et al. A RhoA-FRET biosensor mouse for intravital imaging in normal tissue homeostasis and disease contexts. Cell Rep. 21, 274–288 (2017).

    CAS 
    Article 

    Google Scholar 

  • 37.

    Warren, S. C. et al. Removing physiological motion from intravital and clinical functional imaging data. eLife 7, e35800 (2018).

    Article 

    Google Scholar 

  • 38.

    Conway, J. R. W. et al. Intravital imaging to monitor therapeutic response in moving hypoxic regions resistant to PI3K pathway targeting in pancreatic cancer. Cell Rep. 23, 3312–3326 (2018).

    CAS 
    Article 

    Google Scholar 

  • 39.

    Lee, M. et al. In vivo imaging of the tumor and its associated microenvironment using combined CARS/2-photon microscopy. Intravital 4, e1055430 (2015).

    Article 

    Google Scholar 

  • 40.

    Cao, X., Masatani, P., Torraca, G. & Wen, Z. Q. Identification of a mixed microparticle by combined microspectroscopic techniques: a real forensic case study in the biopharmaceutical industry. Appl. Spectrosc. 64, 895–900 (2010).

    CAS 
    Article 

    Google Scholar 

  • 41.

    Zhou, H., Simmons, C. S., Sarntinoranont, M. & Subhash, G. Raman spectroscopy methods to characterize the mechanical response of soft biomaterials. Biomacromolecules 21, 3485–3497 (2020).

    Article 
    CAS 

    Google Scholar 

  • 42.

    Morris, M. D. & Mandair, G. S. Raman assessment of bone quality. Clin. Orthop. Relat. Res. 469, 2160–2169 (2011).

    Article 

    Google Scholar 

  • 43.

    Lach, S. et al. Spectroscopic methods used in implant material studies. Molecules 25, 579 (2020).

    CAS 
    Article 

    Google Scholar 

  • 44.

    Filho, I. P. T. et al. Hemoglobin oxygen saturation measurements using resonance Raman intravital microscopy. Am. J. Physiol. Heart Circ. Physiol. 289, H488–H495 (2005).

    Article 
    CAS 

    Google Scholar 

  • 45.

    Taruttis, A. & Ntziachristos, V. Advances in real-time multispectral optoacoustic imaging and its applications. Nat. Photonics 9, 219–227 (2015).

    CAS 
    Article 

    Google Scholar 

  • 46.

    Liu, W. & Yao, J. Photoacoustic microscopy: principles and biomedical applications. Biomed. Eng. Lett. 8, 203–213 (2018).

    Article 

    Google Scholar 

  • 47.

    Omar, M., Schwarz, M., Soliman, D., Symvoulidis, P. & Ntziachristos, V. Pushing the optical imaging limits of cancer with multi-frequency-band raster-scan optoacoustic mesoscopy (RSOM). Neoplasia 17, 208–214 (2015).

    Article 

    Google Scholar 

  • 48.

    Lee, D., Park, S., Noh, W.-C., Im, J.-S. & Kim, C. Photoacoustic imaging of dental implants in a porcine jawbone ex vivo. Opt. Lett. 42, 1760–1763 (2017).

    CAS 
    Article 

    Google Scholar 

  • 49.

    SoRelle, E. D. et al. Spatiotemporal tracking of brain-tumor-associated myeloid cells in vivo through optical coherence tomography with plasmonic labeling and speckle modulation. ACS Nano 13, 7985–7995 (2019).

    CAS 
    Article 

    Google Scholar 

  • 50.

    Si, P., Honkala, A., de la Zerda, A. & Smith, B. R. Optical microscopy and coherence tomography of cancer in living subjects. Trends Cancer 6, 205–222 (2020).

    CAS 
    Article 

    Google Scholar 

  • 51.

    Wang, M., Kim, M., Xia, F. & Xu, C. Impact of the emission wavelengths on in vivo multiphoton imaging of mouse brains. Biomed. Opt. Express 10, 1905–1918 (2019).

    CAS 
    Article 

    Google Scholar 

  • 52.

    Bakker, G.-J. et al. Intravital deep-tumor single-beam 2-, 3- and 4-photon microscopy. Preprint at bioRxiv https://doi.org/10.1101/2020.09.29.312827 (2020).

    Article 

    Google Scholar 

  • 53.

    Dondossola, E. et al. Intravital microscopy of osteolytic progression and therapy response of cancer lesions in the bone. Sci. Transl Med. 10, eaao5726 (2018).

    Article 
    CAS 

    Google Scholar 

  • 54.

    Greenbaum, A. et al. Bone CLARITY: Clearing, imaging, and computational analysis of osteoprogenitors within intact bone marrow. Sci. Transl Med. 9, eaah6518 (2017).

    Article 

    Google Scholar 

  • 55.

    Graf, B. W. et al. Long-term time-lapse multimodal intravital imaging of regeneration and bone-marrow-derived cell dynamics in skin. Technology 01, 8–19 (2013).

    Article 

    Google Scholar 

  • 56.

    Haeger, A. et al. Collective cancer invasion forms an integrin-dependent radioresistant niche. J. Exp. Med. 217, e20181184 (2020).

    Article 
    CAS 

    Google Scholar 

  • 57.

    Jiang, D. et al. Injury triggers fascia fibroblast collective cell migration to drive scar formation through N-cadherin. Nat. Commun. 11, 5653 (2020).

    CAS 
    Article 

    Google Scholar 

  • 58.

    Giampieri, S. et al. Localized and reversible TGFβ signalling switches breast cancer cells from cohesive to single cell motility. Nat. Cell Biol. 11, 1287–1296 (2009).

    CAS 
    Article 

    Google Scholar 

  • 59.

    Vennin, C. et al. CAF hierarchy driven by pancreatic cancer cell p53-status creates a pro-metastatic and chemoresistant environment via perlecan. Nat. Commun. 10, 3637 (2019).

    Article 
    CAS 

    Google Scholar 

  • 60.

    Denais, C. M. et al. Nuclear envelope rupture and repair during cancer cell migration. Science 352, 353–358 (2016).

    CAS 
    Article 

    Google Scholar 

  • 61.

    Erard, M., Dupré-Crochet, S. & Nüße, O. Biosensors for spatiotemporal detection of reactive oxygen species in cells and tissues. Am. J. Physiol. Regul. Integr. Comp. Physiol. 314, R667–R683 (2018).

    CAS 
    Article 

    Google Scholar 

  • 62.

    You, S. et al. Intravital imaging by simultaneous label-free autofluorescence-multiharmonic microscopy. Nat. Commun. 9, 2125 (2018).

    Article 
    CAS 

    Google Scholar 

  • 63.

    Heymann, F. et al. Polypropylene mesh implantation for hernia repair causes myeloid cell–driven persistent inflammation. JCI Insight 4, e123862 (2019).

    Article 

    Google Scholar 

  • 64.

    Xie, X. et al. Single-cell transcriptome profiling reveals neutrophil heterogeneity in homeostasis and infection. Nat. Immunol. 21, 1119–1133 (2020).

    CAS 
    Article 

    Google Scholar 

  • 65.

    Karreman, M. A. et al. Fast and precise targeting of single tumor cells in vivo by multimodal correlative microscopy. J. Cell Sci. 129, 444–456 (2016).

    CAS 

    Google Scholar 

  • 66.

    Gurevich, D. B. et al. Live imaging of wound angiogenesis reveals macrophage orchestrated vessel sprouting and regression. EMBO J. 37, e97786 (2018).

    Article 
    CAS 

    Google Scholar 

  • 67.

    Marsh, E., Gonzalez, D. G., Lathrop, E. A., Boucher, J. & Greco, V. Positional stability and membrane occupancy define skin fibroblast homeostasis. Cell 175, 1620–1633.e13 (2018).

    CAS 
    Article 

    Google Scholar 

  • 68.

    Lämmermann, T. et al. Neutrophil swarms require LTB4 and integrins at sites of cell death in vivo. Nature 498, 371–375 (2013).

    Article 
    CAS 

    Google Scholar 

  • 69.

    Kozai, T. D. Y., Jaquins-Gerstl, A. S., Vazquez, A. L., Michael, A. C. & Cui, X. T. Brain tissue responses to neural implants impact signal sensitivity and intervention strategies. ACS Chem. Neurosci. 6, 48–67 (2015).

    CAS 
    Article 

    Google Scholar 

  • 70.

    Holstein, J. H. et al. Intravital microscopic studies of angiogenesis during bone defect healing in mice calvaria. Injury 42, 765–771 (2011).

    CAS 
    Article 

    Google Scholar 

  • 71.

    Alieva, M., Ritsma, L., Giedt, R. J., Weissleder, R. & van Rheenen, J. Imaging windows for long-term intravital imaging. Intravital 3, e29917 (2014).

    Article 

    Google Scholar 

  • 72.

    Doloff, J. C. et al. Colony stimulating factor-1 receptor is a central component of the foreign body response to biomaterial implants in rodents and non-human primates. Nat. Mater. 16, 671–680 (2017).

    CAS 
    Article 

    Google Scholar 

  • 73.

    MacRae, C. A. & Peterson, R. T. Zebrafish as tools for drug discovery. Nat. Rev. Drug Discov. 14, 721–731 (2015).

    CAS 
    Article 

    Google Scholar 

  • 74.

    Witherel, C. E., Gurevich, D., Collin, J. D., Martin, P. & Spiller, K. L. Host–biomaterial interactions in zebrafish. ACS Biomater. Sci. Eng. 4, 1233–1240 (2018).

    CAS 
    Article 

    Google Scholar 

  • 75.

    Zhang, X. et al. The zebrafish embryo as a model to quantify early inflammatory cell responses to biomaterials. J. Biomed. Mater. Res. A 105, 2522–2532 (2017).

    CAS 
    Article 

    Google Scholar 

  • 76.

    White, R. M. et al. Transparent adult zebrafish as a tool for in vivo transplantation analysis. Cell Stem Cell 2, 183–189 (2008).

    CAS 
    Article 

    Google Scholar 

  • 77.

    Wancket, L. M. Animal models for evaluation of bone implants and devices: comparative bone structure and common model uses. Vet. Pathol. 52, 842–850 (2015).

    CAS 
    Article 

    Google Scholar 

  • 78.

    Sandison, J. C. A method for the microscopic study of the growth of transplanted bone in the transparent chamber of the rabbit’s ear. Anat. Rec. 40, 41–49 (1928).

    Article 

    Google Scholar 

  • 79.

    Albrektsson, T. & Albrektsson, B. Microcirculation in grafted bone: a chamber technique for vital microscopy of rabbit bone transplants. Acta Orthop. Scand. 49, 1–7 (1978).

    CAS 
    Article 

    Google Scholar 

  • 80.

    Hsieh, A. S., Winet, H., Bao, J. Y., Glas, H. & Plenk, H. Evidence for reperfusion injury in cortical bone as a function of crush injury ischemia duration: a rabbit bone chamber study. Bone 28, 94–103 (2001).

    CAS 
    Article 

    Google Scholar 

  • 81.

    Penel, G., Delfosse, C., Descamps, M. & Leroy, G. Composition of bone and apatitic biomaterials as revealed by intravital Raman microspectroscopy. Bone 36, 893–901 (2005).

    CAS 
    Article 

    Google Scholar 

  • 82.

    Veronesi, F. et al. Osseointegration is improved by coating titanium implants with a nanostructured thin film with titanium carbide and titanium oxides clustered around graphitic carbon. Mater. Sci. Eng. C Mater. Biol. Appl. 70, 264–271 (2017).

    CAS 
    Article 

    Google Scholar 

  • 83.

    Diekmann, J. et al. Examination of a biodegradable magnesium screw for the reconstruction of the anterior cruciate ligament: A pilot in vivo study in rabbits. Mater. Sci. Eng. C Mater. Biol. Appl. 59, 1100–1109 (2016).

    CAS 
    Article 

    Google Scholar 

  • 84.

    Ribatti, D., Annese, T. & Tamma, R. The use of the chick embryo CAM assay in the study of angiogenic activiy of biomaterials. Microvasc. Res. 131, 104026 (2020).

    CAS 
    Article 

    Google Scholar 

  • 85.

    Ling, T.-Y. et al. Differentiation of lung stem/progenitor cells into alveolar pneumocytes and induction of angiogenesis within a 3D gelatin – Microbubble scaffold. Biomaterials 35, 5660–5669 (2014).

    CAS 
    Article 

    Google Scholar 

  • 86.

    Moreno-Jiménez, I. et al. The chorioallantoic membrane (CAM) assay for the study of human bone regeneration: a refinement animal model for tissue engineering. Sci. Rep. 6, 32168 (2016).

    Article 
    CAS 

    Google Scholar 

  • 87.

    Valdes, T. I., Kreutzer, D. & Moussy, F. The chick chorioallantoic membrane as a novel in vivo model for the testing of biomaterials. J. Biomed. Mater. Res. 62, 273–282 (2002).

    CAS 
    Article 

    Google Scholar 

  • 88.

    Woloszyk, A., Liccardo, D. & Mitsiadis, T. A. Three-dimensional imaging of the developing vasculature within stem cell-seeded scaffolds cultured in ovo. Front. Physiol. 7, 146 (2016).

    Google Scholar 

  • 89.

    Rodrigues, M., Kosaric, N., Bonham, C. A. & Gurtner, G. C. Wound healing: a cellular perspective. Physiol. Rev. 99, 665–706 (2019).

    CAS 
    Article 

    Google Scholar 

  • 90.

    Schmidt, A., von Woedtke, T., Vollmar, B., Hasse, S. & Bekeschus, S. Nrf2 signaling and inflammation are key events in physical plasma-spurred wound healing. Theranostics 9, 1066–1084 (2019).

    CAS 
    Article 

    Google Scholar 

  • 91.

    Krzyszczyk, P., Schloss, R., Palmer, A. & Berthiaume, F. The role of macrophages in acute and chronic wound healing and interventions to promote pro-wound healing phenotypes. Front. Physiol. 9, 419 (2018).

    Article 

    Google Scholar 

  • 92.

    Lu, H. et al. Fibroblast transdifferentiation promotes conversion of M1 macrophages and replenishment of cardiac resident macrophages following cardiac injury in mice. Eur. J. Immunol. 50, 795–808 (2020).

    CAS 
    Article 

    Google Scholar 

  • 93.

    Kalluri, R. The biology and function of fibroblasts in cancer. Nat. Rev. Cancer 16, 582–598 (2016).

    CAS 
    Article 

    Google Scholar 

  • 94.

    Liu, Y., Rath, B., Tingart, M. & Eschweiler, J. Role of implants surface modification in osseointegration: A systematic review. J. Biomed. Mater. Res. A 108, 470–484 (2020).

    CAS 
    Article 

    Google Scholar 

  • 95.

    Li, J. et al. In vitro and in vivo evaluations of mechanical properties, biocompatibility and osteogenic ability of sintered porous titanium alloy implant. RSC Adv. 8, 36512–36520 (2018).

    CAS 
    Article 

    Google Scholar 

  • 96.

    Sanchez, C. J. et al. Staphylococcus aureus biofilms decrease osteoblast viability, inhibits osteogenic differentiation, and increases bone resorption in vitro. BMC Musculoskelet. Disord. 14, 187 (2013).

    Article 

    Google Scholar 

  • 97.

    Lee, H. G. et al. Aggravation of inflammatory response by costimulation with titanium particles and mechanical perturbations in osteoblast- and macrophage-like cells. Am. J. Physiol. Cell Physiol. 304, C431–C439 (2013).

    CAS 
    Article 

    Google Scholar 

  • 98.

    Katou, F., Andoh, N., Motegi, K. & Nagura, H. Immuno-inflammatory responses in the tissue adjacent to titanium miniplates used in the treatment of mandibular fractures. J. Craniomaxillofac. Surg. 24, 155–162 (1996).

    CAS 
    Article 

    Google Scholar 

  • 99.

    Riviș, M. et al. The implications of titanium alloys applied in maxillofacial osteosynthesis. Appl. Sci. 10, 3203 (2020).

    Article 
    CAS 

    Google Scholar 

  • 100.

    Perino, G. et al. Diagnostic guidelines for the histological particle algorithm in the periprosthetic neo-synovial tissue. BMC Clin. Pathol. 18, 7 (2018).

    CAS 
    Article 

    Google Scholar 

  • 101.

    Lechner, J., Noumbissi, S. & von Baehr, V. Titanium implants and silent inflammation in jawbone — a critical interplay of dissolved titanium particles and cytokines TNF-α and RANTES/CCL5 on overall health? EPMA J. 9, 331–343 (2018).

    Article 

    Google Scholar 

  • 102.

    Khosravi, N., Maeda, A., DaCosta, R. S. & Davies, J. E. Nanosurfaces modulate the mechanism of peri-implant endosseous healing by regulating neovascular morphogenesis. Commun. Biol. 1, 72 (2018).

    Article 
    CAS 

    Google Scholar 

  • 103.

    Mouraret, S. et al. A pre-clinical murine model of oral implant osseointegration. Bone 58, 177–184 (2014).

    CAS 
    Article 

    Google Scholar 

  • 104.

    Wang, B. et al. Mechanoadaptive strain and functional osseointegration of dental implants in rats. Bone 137, 115375 (2020).

    CAS 
    Article 

    Google Scholar 

  • 105.

    Bandaru, P. et al. Mechanical cues regulating proangiogenic potential of human mesenchymal stem cells through YAP-mediated mechanosensing. Small 16, 2001837 (2020).

    CAS 
    Article 

    Google Scholar 

  • 106.

    Loebel, C., Mauck, R. L. & Burdick, J. A. Local nascent protein deposition and remodelling guide mesenchymal stromal cell mechanosensing and fate in three-dimensional hydrogels. Nat. Mater. 18, 883–891 (2019).

    CAS 
    Article 

    Google Scholar 

  • 107.

    Sparks, D. S. et al. A preclinical large-animal model for the assessment of critical-size load-bearing bone defect reconstruction. Nat. Protoc. 15, 877–924 (2020).

    CAS 
    Article 

    Google Scholar 

  • 108.

    Holzapfel, B. M. et al. Tissue engineered humanized bone supports human hematopoiesis in vivo. Biomaterials 61, 103–114 (2015).

    CAS 
    Article 

    Google Scholar 

  • 109.

    Fakhry, M., Hamade, E., Badran, B., Buchet, R. & Magne, D. Molecular mechanisms of mesenchymal stem cell differentiation towards osteoblasts. World J. Stem Cell 5, 136–148 (2013).

    Article 

    Google Scholar 

  • 110.

    Deckers, M. M. L. et al. Bone morphogenetic proteins stimulate angiogenesis through osteoblast-derived vascular endothelial growth factor A. Endocrinology 143, 1545–1553 (2002).

    CAS 
    Article 

    Google Scholar 

  • 111.

    Abarrategi, A. et al. Versatile humanized niche model enables study of normal and malignant human hematopoiesis. J. Clin. Invest. 127, 543–548 (2017).

    Article 

    Google Scholar 

  • 112.

    Xie, Y. et al. Osteoimmunomodulatory effects of biomaterial modification strategies on macrophage polarization and bone regeneration. Regen. Biomater. 7, 233–245 (2020).

    CAS 
    Article 

    Google Scholar 

  • 113.

    Benson, R. A. et al. Non-invasive multiphoton imaging of islets transplanted into the pinna of the NOD mouse ear reveals the immediate effect of anti-CD3 treatment in autoimmune diabetes. Front. Immunol. 9, 1006 (2018).

    Article 
    CAS 

    Google Scholar 

  • 114.

    Samuel, R. et al. Generation of functionally competent and durable engineered blood vessels from human induced pluripotent stem cells. Proc. Natl Acad. Sci. USA 110, 12774–12779 (2013).

    CAS 
    Article 

    Google Scholar 

  • 115.

    van den Berg, C. W. et al. Renal subcapsular transplantation of PSC-derived kidney organoids induces neo-vasculogenesis and significant glomerular and tubular maturation in vivo. Stem Cell Rep. 10, 751–765 (2018).

    Article 

    Google Scholar 

  • 116.

    Rudnicki, M. et al. Hypoxia response and VEGF-A expression in human proximal tubular epithelial cells in stable and progressive renal disease. Lab. Invest. 89, 337–346 (2009).

    CAS 
    Article 

    Google Scholar 

  • 117.

    Schepers, A. G. et al. Lineage tracing reveals Lgr5+ stem cell activity in mouse intestinal adenomas. Science 337, 730–735 (2012).

    CAS 
    Article 

    Google Scholar 

  • 118.

    Richardson, A., Park, M., Watson, S. L., Wakefield, D. & Di Girolamo, N. Visualizing the fate of transplanted K14-confetti corneal epithelia in a mouse model of limbal stem cell deficiency. Investig. Ophthalmol. Vis. Sci. 59, 1630–1640 (2018).

    CAS 
    Article 

    Google Scholar 

  • 119.

    Nalbach, L. et al. Improvement of islet transplantation by the fusion of islet cells with functional blood vessels. EMBO Mol. Med. 13, e12616 (2021).

    CAS 
    Article 

    Google Scholar 

  • 120.

    Koffler, J. et al. Improved vascular organization enhances functional integration of engineered skeletal muscle grafts. Proc. Natl Acad. Sci. USA 108, 14789–14794 (2011).

    CAS 
    Article 

    Google Scholar 

  • 121.

    Perry, L., Merdler, U., Elishaev, M. & Levenberg, S. Enhanced host neovascularization of prevascularized engineered muscle following transplantation into immunocompetent versus immunocompromised mice. Cells 8, 1472 (2019).

    CAS 
    Article 

    Google Scholar 

  • 122.

    Juhas, M., Engelmayr, G. C., Fontanella, A. N., Palmer, G. M. & Bursac, N. Biomimetic engineered muscle with capacity for vascular integration and functional maturation in vivo. Proc. Natl Acad. Sci. USA 111, 5508–5513 (2014).

    CAS 
    Article 

    Google Scholar 

  • 123.

    Juhas, M. et al. Incorporation of macrophages into engineered skeletal muscle enables enhanced muscle regeneration. Nat. Biomed. Eng. 2, 942–954 (2018).

    CAS 
    Article 

    Google Scholar 

  • 124.

    Perry, L., Landau, S., Flugelman, M. Y. & Levenberg, S. Genetically engineered human muscle transplant enhances murine host neovascularization and myogenesis. Commun. Biol. 1, 161 (2018).

    Article 
    CAS 

    Google Scholar 

  • 125.

    Calcagni, M. et al. In vivo visualization of the origination of skin graft vasculature in a wild-type/GFP crossover model. Microvasc. Res. 82, 237–245 (2011).

    Article 

    Google Scholar 

  • 126.

    Celli, S., Albert, M. L. & Bousso, P. Visualizing the innate and adaptive immune responses underlying allograft rejection by two-photon microscopy. Nat. Med. 17, 744–749 (2011).

    CAS 
    Article 

    Google Scholar 

  • 127.

    Chen, Q. et al. In situ sprayed bioresponsive immunotherapeutic gel for post-surgical cancer treatment. Nat. Nanotechnol. 14, 89–97 (2019).

    CAS 
    Article 

    Google Scholar 

  • 128.

    Kastrup, C. J. et al. Painting blood vessels and atherosclerotic plaques with an adhesive drug depot. Proc. Natl Acad. Sci. USA 109, 21444–21449 (2012).

    CAS 
    Article 

    Google Scholar 

  • 129.

    Eles, J. R., Vazquez, A. L., Kozai, T. D. Y. & Cui, X. T. Meningeal inflammatory response and fibrous tissue remodeling around intracortical implants: An in vivo two-photon imaging study. Biomaterials 195, 111–123 (2019).

    CAS 
    Article 

    Google Scholar 

  • 130.

    Kozai, T. D. Y., Jaquins-Gerstl, A. S., Vazquez, A. L., Michael, A. C. & Cui, X. T. Dexamethasone retrodialysis attenuates microglial response to implanted probes in vivo. Biomaterials 87, 157–169 (2016).

    CAS 
    Article 

    Google Scholar 

  • 131.

    Wei, Q. et al. Protein interactions with polymer coatings and biomaterials. Angew. Chem. Int. Ed. 53, 8004–8031 (2014).

    CAS 
    Article 

    Google Scholar 

  • 132.

    Faust, J. J. et al. An actin-based protrusion originating from a podosome-enriched region initiates macrophage fusion. Mol. Biol. Cell 30, 2254–2267 (2019).

    CAS 
    Article 

    Google Scholar 

  • 133.

    Selders, G. S., Fetz, A. E., Radic, M. Z. & Bowlin, G. L. An overview of the role of neutrophils in innate immunity, inflammation and host-biomaterial integration. Regen. Biomater. 4, 55–68 (2017).

    CAS 
    Article 

    Google Scholar 

  • 134.

    Koschwanez, H. E., Reichert, W. M. & Klitzman, B. Intravital microscopy evaluation of angiogenesis and its effects on glucose sensor performance. J. Biomed. Mater. Res. A 93A, 1348–1357 (2010).

    CAS 

    Google Scholar 

  • 135.

    Kwee, B. J. & Mooney, D. J. Manipulating the intersection of angiogenesis and inflammation. Ann. Biomed. Eng. 43, 628–640 (2015).

    Article 

    Google Scholar 

  • 136.

    Witherel, C. E., Abebayehu, D., Barker, T. H. & Spiller, K. L. Macrophage and fibroblast interactions in biomaterial-mediated fibrosis. Adv. Healthc. Mater. 8, e1801451 (2019).

    Article 
    CAS 

    Google Scholar 

  • 137.

    Filová, E. et al. Analysis and three-dimensional visualization of collagen in artificial scaffolds using nonlinear microscopy techniques. J. Biomed. Opt. 15, 066011 (2010).

    Article 
    CAS 

    Google Scholar 

  • 138.

    Druecke, D. et al. Neovascularization of poly(ether ester) block-copolymer scaffolds in vivo: Long-term investigations using intravital fluorescent microscopy. J. Biomed. Mater. Res. A 68A, 10–18 (2004).

    CAS 
    Article 

    Google Scholar 

  • 139.

    Klenke, F. M. et al. Impact of pore size on the vascularization and osseointegration of ceramic bone substitutes in vivo. J. Biomed. Mater. Res. A 85A, 777–786 (2008).

    CAS 
    Article 

    Google Scholar 

  • 140.

    Jang, G. H., Hwang, M. P., Kim, S. Y., Jang, H. S. & Lee, K. H. A systematic in-vivo toxicity evaluation of nanophosphor particles via zebrafish models. Biomaterials 35, 440–449 (2014).

    CAS 
    Article 

    Google Scholar 

  • 141.

    Reismann, D. et al. Longitudinal intravital imaging of the femoral bone marrow reveals plasticity within marrow vasculature. Nat. Commun. 8, 2153 (2017).

    Article 
    CAS 

    Google Scholar 

  • 142.

    Stiers, P.-J., van Gastel, N., Moermans, K., Stockmans, I. & Carmeliet, G. An ectopic imaging window for intravital imaging of engineered bone tissue. JBMR Plus 2, 92–102 (2018).

    Article 

    Google Scholar 

  • 143.

    Wang, H. et al. Two-photon dual imaging platform for in vivo monitoring cellular oxidative stress in liver injury. Sci. Rep. 7, 45374 (2017).

    CAS 
    Article 

    Google Scholar 

  • 144.

    Reissaus, C. A. et al. A versatile, portable intravital microscopy platform for studying beta-cell biology in vivo. Sci. Rep. 9, 8449 (2019).

    Article 
    CAS 

    Google Scholar 

  • 145.

    Sanman, L. E., van der Linden, W. A., Verdoes, M. & Bogyo, M. Bifunctional probes of cathepsin protease activity and pH reveal alterations in endolysosomal pH during bacterial infection. Cell Chem. Biol. 23, 793–804 (2016).

    CAS 
    Article 

    Google Scholar 

  • 146.

    Jaffer, F. A. et al. Optical visualization of cathepsin K activity in atherosclerosis with a novel, protease-activatable fluorescence sensor. Circulation 115, 2292–2298 (2007).

    CAS 
    Article 

    Google Scholar 

  • 147.

    Sun, W. W. et al. Nanoarchitecture and dynamics of the mouse enteric glycocalyx examined by freeze-etching electron tomography and intravital microscopy. Commun. Biol. 3, 5 (2020).

    CAS 
    Article 

    Google Scholar 

  • 148.

    Astone, M. et al. Zebrafish mutants and TEAD reporters reveal essential functions for Yap and Taz in posterior cardinal vein development. Sci. Rep. 8, 10189 (2018).

    Article 
    CAS 

    Google Scholar 

  • 149.

    Subramanian, B. C. et al. The LTB4–BLT1 axis regulates actomyosin and β2-integrin dynamics during neutrophil extravasation. J. Cell Biol. 219, e201910215 (2020).

    CAS 
    Article 

    Google Scholar 

  • 150.

    LeBleu, V. S. et al. Identification of human epididymis protein-4 as a fibroblast-derived mediator of fibrosis. Nat. Med. 19, 227–231 (2013).

    CAS 
    Article 

    Google Scholar 

  • 151.

    Jain, N. & Vogel, V. Spatial confinement downsizes the inflammatory response of macrophages. Nat. Mater. 17, 1134–1144 (2018).

    CAS 
    Article 

    Google Scholar 

  • 152.

    de Buhr, N. & von Köckritz-Blickwede, M. How neutrophil extracellular traps become visible. J. Immunol. Res. 2016, 4604713 (2016).

    Google Scholar 

  • 153.

    Honda, M. et al. Intravital imaging of neutrophil recruitment in hepatic ischemia-reperfusion injury in mice. Transplantation 95, 551–558 (2013).

    Article 

    Google Scholar 

  • 154.

    Sedin, J. et al. High resolution intravital imaging of the renal immune response to injury and infection in mice. Front. Immunol. 10, 2744 (2019).

    CAS 
    Article 

    Google Scholar 

  • 155.

    Yam, A. O. & Chtanova, T. Imaging the neutrophil: Intravital microscopy provides a dynamic view of neutrophil functions in host immunity. Cell. Immunol. 350, 103898 (2020).

    CAS 
    Article 

    Google Scholar 

  • 156.

    Turk, M., Naumenko, V., Mahoney, D. J. & Jenne, C. N. Tracking cell recruitment and behavior within the tumor microenvironment using advanced intravital imaging approaches. Cells 7, 69 (2018).

    Article 
    CAS 

    Google Scholar 

  • 157.

    Park, J. et al. Cancer cells induce metastasis-supporting neutrophil extracellular DNA traps. Sci. Transl Med. 8, 361ra138 (2016).

    Article 
    CAS 

    Google Scholar 

  • 158.

    Handschuh, J., Amore, J. & Müller, A. J. From the cradle to the grave of an infection: host-pathogen interaction visualized by intravital microscopy. Cytom. A 97, 458–470 (2020).

    Article 

    Google Scholar 

  • 159.

    Kreisel, D. et al. In vivo two-photon imaging reveals monocyte-dependent neutrophil extravasation during pulmonary inflammation. Proc. Natl Acad. Sci. USA 107, 18073–18078 (2010).

    CAS 
    Article 

    Google Scholar 

  • 160.

    Yamamoto, N. et al. Cellular dynamics visualized in live cells in vitro and in vivo by differential dual-color nuclear-cytoplasmic fluorescent-protein expression. Cancer Res. 64, 4251–4256 (2004).

    CAS 
    Article 

    Google Scholar 

  • 161.

    Burnett, S. H. et al. Conditional macrophage ablation in transgenic mice expressing a Fas-based suicide gene. J. Leukoc. Biol. 75, 612–623 (2004).

    CAS 
    Article 

    Google Scholar 

  • 162.

    Nguyen-Chi, M. et al. Identification of polarized macrophage subsets in zebrafish. eLife 4, e07288 (2015).

    Article 

    Google Scholar 

  • 163.

    Snippert, H. J. et al. Intestinal crypt homeostasis results from neutral competition between symmetrically dividing Lgr5 stem cells. Cell 143, 134–144 (2010).

    CAS 
    Article 

    Google Scholar 

  • 164.

    Yoshikawa, S. et al. Intravital imaging of Ca2+ signals in lymphocytes of Ca2+ biosensor transgenic mice: indication of autoimmune diseases before the pathological onset. Sci. Rep. 6, 18738 (2016).

    CAS 
    Article 

    Google Scholar 

  • 165.

    Everhart, M. B. et al. Duration and intensity of NF-κB activity determine the severity of endotoxin-induced acute lung injury. J. Immunol. 176, 4995–5005 (2006).

    CAS 
    Article 

    Google Scholar 

  • 166.

    Nicholls, P. J. et al. Measuring nonapoptotic caspase activity with a transgenic reporter in mice. Preprint at bioRxiv https://doi.org/10.1101/196105 (2021).

    Article 

    Google Scholar 

  • 167.

    Park, S.-J. et al. Imaging inflammation using an activated macrophage probe with Slc18b1 as the activation-selective gating target. Nat. Commun. 10, 1111 (2019).

    Article 
    CAS 

    Google Scholar 

  • 168.

    Uddin, M. I. et al. Applications of azo-based probes for imaging retinal hypoxia. ACS Med. Chem. Lett. 6, 445–449 (2015).

    CAS 
    Article 

    Google Scholar 

  • 169.

    Xiang, J. et al. Biocompatible green and red fluorescent organic dots with remarkably large two-photon action cross sections for targeted cellular imaging and real-time intravital blood vascular visualization. ACS Appl. Mater. Interfaces 7, 14965–14974 (2015).

    CAS 
    Article 

    Google Scholar 

  • 170.

    Kim, H. Y. et al. Quantitative imaging of tumor-associated macrophages and their response to therapy using (64)Cu-labeled Macrin. ACS Nano 12, 12015–12029 (2018).

    CAS 
    Article 

    Google Scholar 

  • 171.

    Smith, B. R. et al. Selective uptake of single-walled carbon nanotubes by circulating monocytes for enhanced tumour delivery. Nat. Nanotechnol. 9, 481–487 (2014).

    CAS 
    Article 

    Google Scholar 

  • 172.

    Maeda, H. et al. Real-time intravital imaging of pH variation associated with osteoclast activity. Nat. Chem. Biol. 12, 579–585 (2016).

    CAS 
    Article 

    Google Scholar 

  • 173.

    Pezzotti, G. Raman piezo-spectroscopic analysis of natural and synthetic biomaterials. Anal. Bioanal. Chem. 381, 577–590 (2005).

    CAS 
    Article 

    Google Scholar 

  • 174.

    Wagner, R. L. Erlauterungstaflen zur Physiologie und Entwicklungsgeschichte (Leopold Voss, 1839).

  • 175.

    Sandison, J. C. Observations on the growth of blood vessels as seen in the transparent chamber introduced into the rabbit’s ear. Am. J. Anat. 41, 475–496 (1928).

    Article 

    Google Scholar 

  • 176.

    Algire, G. H. An adaptation of the transparent-chamber technique to the mouse. J. Natl Cancer Inst. 4, 1–11 (1943).

    Google Scholar 

  • 177.

    Kiehn, C. L., Cebul, F., Berg, M., Gutentag, J. & Glover, D. M. A study of the vascularization of experimental bone grafts by means of radioactive phosphorus and the transparent chamber. Ann. Surg. 136, 404–411 (1952).

    CAS 

    Google Scholar 

  • 178.

    Funk, W., Endrich, B. & Messmer, K. A novel method for follow-up studies of the microcirculation in non-malignant tissue implants. Res. Exp. Med. 186, 259–270 (1986).

    CAS 
    Article 

    Google Scholar 

  • 179.

    Brånemark, P. I. Intravital microscopy. Its present status and its potentialities. Med. Biol. Illus. 16, 100–108 (1966).

    Google Scholar 

  • 180.

    Mazo, I. B. et al. Hematopoietic progenitor cell rolling in bone marrow microvessels: parallel contributions by endothelial selectins and vascular cell adhesion molecule 1. J. Exp. Med. 188, 465–474 (1998).

    CAS 
    Article 

    Google Scholar 

  • 181.

    Spanel-Borowski, K. The chick chorioallantoic membrane as test system for biocompatible materials. Res. Exp. Med. 189, 69–75 (1989).

    CAS 
    Article 

    Google Scholar 

  • 182.

    Valdes, T. I., Klueh, U., Kreutzer, D. & Moussy, F. Ex ova chick chorioallantoic membrane as a novel in vivo model for testing biosensors. J. Biomed. Mater. Res. A 67A, 215–223 (2003).

    CAS 
    Article 

    Google Scholar 

  • 183.

    Weigelin, B. et al. Cytotoxic T cells are able to efficiently eliminate cancer cells by additive cytotoxicity. Nat. Commun. https://doi.org/10.1038/s41467-021-25282-3 (2021).

    Article 

    Google Scholar 

  • 184.

    Schiessl, I. M., Fremter, K., Burford, J. L., Castrop, H. & Peti-Peterdi, J. Long-term cell fate tracking of individual renal cells using Serial intravital microscopy. Methods Mol. Biol. 2150, 25–44 (2020).

    CAS 
    Article 

    Google Scholar 

  • 185.

    Urciuolo, A. et al. Intravital three-dimensional bioprinting. Nat. Biomed. Eng. 4, 901–915 (2020).

    CAS 
    Article 

    Google Scholar 

  • Source link