O’Brien, F. J. Biomaterials & scaffolds for tissue engineering. Mater. Today 14, 88–95 (2011).
Google Scholar
Bose, S., Roy, M. & Bandyopadhyay, A. Recent advances in bone tissue engineering scaffolds. Trends Biotechnol. 30, 546–554 (2012).
Google Scholar
Eming, S. A., Martin, P. & Tomic-Canic, M. Wound repair and regeneration: Mechanisms, signaling, and translation. Sci. Transl Med. 6, 265sr266 (2014).
Google Scholar
Veiseh, O. & Vegas, A. J. Domesticating the foreign body response: Recent advances and applications. Adv. Drug Deliv. Rev. 144, 148–161 (2019).
Google Scholar
Prakasam, M. et al. Biodegradable materials and metallic implants — a review. J. Funct. Biomater. 8, 44 (2017).
Google Scholar
Veiseh, O. et al. Size- and shape-dependent foreign body immune response to materials implanted in rodents and non-human primates. Nat. Mater. 14, 643–651 (2015).
Google Scholar
Zhang, L. et al. Zwitterionic hydrogels implanted in mice resist the foreign-body reaction. Nat. Biotechnol. 31, 553–556 (2013).
Google Scholar
Vegas, A. J. et al. Combinatorial hydrogel library enables identification of materials that mitigate the foreign body response in primates. Nat. Biotechnol. 34, 345–352 (2016).
Google Scholar
Zhang, D. et al. Silk-Inspired β-peptide materials resist fouling and the foreign-body response. Angew. Chem. Int. Ed. 59, 9586–9593 (2020).
Google Scholar
Zhang, D. et al. Dealing with the foreign-body response to implanted biomaterials: strategies and applications of new materials. Adv. Funct. Mater. 31, 2007226 (2020).
Google Scholar
Ouanounou, A., Hassanpour, S. & Glogauer, M. The influence of systemic medications on osseointegration of dental implants. J. Can. Dent. Assoc. 82, g7 (2016).
Dondossola, E. et al. Examination of the foreign body response to biomaterials by nonlinear intravital microscopy. Nat. Biomed. Eng. 1, 0007 (2017).
Google Scholar
Gurevich, D. B., French, K. E., Collin, J. D., Cross, S. J. & Martin, P. Live imaging the foreign body response in zebrafish reveals how dampening inflammation reduces fibrosis. J. Cell Sci. 133, jcs236075 (2020).
Google Scholar
Appel, A. A., Anastasio, M. A., Larson, J. C. & Brey, E. M. Imaging challenges in biomaterials and tissue engineering. Biomaterials 34, 6615–6630 (2013).
Google Scholar
Andresen, V. et al. Infrared multiphoton microscopy: subcellular-resolved deep tissue imaging. Curr. Opin. Biotechnol. 20, 54–62 (2009).
Google Scholar
Ebrahim, S. & Weigert, R. Intravital microscopy in mammalian multicellular organisms. Curr. Opin. Cell Biol. 59, 97–103 (2019).
Google Scholar
Li, R., Ng, T. S. C., Garlin, M. A., Weissleder, R. & Miller, M. A. Understanding the in vivo fate of advanced materials by imaging. Adv. Funct. Mater. 30, 1910369 (2020).
Google Scholar
Pittet, M. J. & Weissleder, R. Intravital imaging. Cell 147, 983–991 (2011).
Google Scholar
Choi, M., Kwok, S. J. J. & Yun, S. H. In vivo fluorescence microscopy: lessons from observing cell behavior in their native environment. Physiology 30, 40–49 (2015).
Google Scholar
Zipfel, W. R. et al. Live tissue intrinsic emission microscopy using multiphoton-excited native fluorescence and second harmonic generation. Proc. Natl Acad. Sci. USA 100, 7075–7080 (2003).
Google Scholar
Monici, M. Cell and tissue autofluorescence research and diagnostic applications. Biotechnol. Annu. Rev. 11, 227–256 (2005).
Google Scholar
Asfour, H., Otridge, J., Thomasian, R., Larson, C. & Sarvazyan, N. Autofluorescence properties of balloon polymers used in medical applications. J. Biomed. Opt. 25, 106004 (2020).
Google Scholar
Okabe, M., Ikawa, M., Kominami, K., Nakanishi, T. & Nishimune, Y. ‘Green mice’ as a source of ubiquitous green cells. FEBS Lett. 407, 313–319 (1997).
Google Scholar
Rizzo, M. A., Davidson, M. W. & Piston, D. W. Fluorescent protein tracking and detection: applications using fluorescent proteins in living cells. Cold Spring Harb. Protoc. 2009, pdb top64 (2009).
Google Scholar
Zhang, G., Fiore, G. L., St. Clair, T. L. & Fraser, C. L. Difluoroboron dibenzoylmethane PCL-PLA block copolymers: Matrix effects on room temperature phosphorescence. Macromolecules 42, 3162–3169 (2009).
Google Scholar
Karman, M., Verde-Sesto, E., Weder, C. & Simon, Y. C. Mechanochemical fluorescence switching in polymers containing dithiomaleimide moieties. ACS Macro Lett. 7, 1099–1104 (2018).
Google Scholar
Li, W. et al. α-Lipoic acid stabilized DTX/IR780 micelles for photoacoustic/fluorescence imaging guided photothermal therapy/chemotherapy of breast cancer. Biomater. Sci. 6, 1201–1216 (2018).
Google Scholar
Adam, V. Phototransformable fluorescent proteins: which one for which application? Histochem. Cell Biol. 142, 19–41 (2014).
Google Scholar
Miller, M. A. & Weissleder, R. Imaging the pharmacology of nanomaterials by intravital microscopy: Toward understanding their biological behavior. Adv. Drug Deliv. Rev. 113, 61–86 (2017).
Google Scholar
Zielinski, M., Oron, D., Chauvat, D. & Zyss, J. Second-harmonic generation from a single core/shell quantum dot. Small 5, 2835–2840 (2009).
Google Scholar
Karvounis, A., Timpu, F., Vogler-Neuling, V. V., Savo, R. & Grange, R. Barium titanate nanostructures and thin films for photonics. Adv. Opt. Mater. 8, 2001249 (2020).
Google Scholar
Aptel, F. et al. Multimodal nonlinear imaging of the human cornea. Invest. Ophthalmol. Vis. Sci. 51, 2459–2465 (2010).
Google Scholar
Debarre, D. et al. Imaging lipid bodies in cells and tissues using third-harmonic generation microscopy. Nat. Methods 3, 47–53 (2006).
Google Scholar
Weigelin, B., Bakker, G. J. & Friedl, P. Third harmonic generation microscopy of cells and tissue organization. J. Cell Sci. 129, 245–255 (2016).
Google Scholar
Bakker, G. J., Andresen, V., Hoffman, R. M. & Friedl, P. Fluorescence lifetime microscopy of tumor cell invasion, drug delivery, and cytotoxicity. Methods Enzymol. 504, 109–125 (2012).
Google Scholar
Nobis, M. et al. A RhoA-FRET biosensor mouse for intravital imaging in normal tissue homeostasis and disease contexts. Cell Rep. 21, 274–288 (2017).
Google Scholar
Warren, S. C. et al. Removing physiological motion from intravital and clinical functional imaging data. eLife 7, e35800 (2018).
Google Scholar
Conway, J. R. W. et al. Intravital imaging to monitor therapeutic response in moving hypoxic regions resistant to PI3K pathway targeting in pancreatic cancer. Cell Rep. 23, 3312–3326 (2018).
Google Scholar
Lee, M. et al. In vivo imaging of the tumor and its associated microenvironment using combined CARS/2-photon microscopy. Intravital 4, e1055430 (2015).
Google Scholar
Cao, X., Masatani, P., Torraca, G. & Wen, Z. Q. Identification of a mixed microparticle by combined microspectroscopic techniques: a real forensic case study in the biopharmaceutical industry. Appl. Spectrosc. 64, 895–900 (2010).
Google Scholar
Zhou, H., Simmons, C. S., Sarntinoranont, M. & Subhash, G. Raman spectroscopy methods to characterize the mechanical response of soft biomaterials. Biomacromolecules 21, 3485–3497 (2020).
Google Scholar
Morris, M. D. & Mandair, G. S. Raman assessment of bone quality. Clin. Orthop. Relat. Res. 469, 2160–2169 (2011).
Google Scholar
Lach, S. et al. Spectroscopic methods used in implant material studies. Molecules 25, 579 (2020).
Google Scholar
Filho, I. P. T. et al. Hemoglobin oxygen saturation measurements using resonance Raman intravital microscopy. Am. J. Physiol. Heart Circ. Physiol. 289, H488–H495 (2005).
Google Scholar
Taruttis, A. & Ntziachristos, V. Advances in real-time multispectral optoacoustic imaging and its applications. Nat. Photonics 9, 219–227 (2015).
Google Scholar
Liu, W. & Yao, J. Photoacoustic microscopy: principles and biomedical applications. Biomed. Eng. Lett. 8, 203–213 (2018).
Google Scholar
Omar, M., Schwarz, M., Soliman, D., Symvoulidis, P. & Ntziachristos, V. Pushing the optical imaging limits of cancer with multi-frequency-band raster-scan optoacoustic mesoscopy (RSOM). Neoplasia 17, 208–214 (2015).
Google Scholar
Lee, D., Park, S., Noh, W.-C., Im, J.-S. & Kim, C. Photoacoustic imaging of dental implants in a porcine jawbone ex vivo. Opt. Lett. 42, 1760–1763 (2017).
Google Scholar
SoRelle, E. D. et al. Spatiotemporal tracking of brain-tumor-associated myeloid cells in vivo through optical coherence tomography with plasmonic labeling and speckle modulation. ACS Nano 13, 7985–7995 (2019).
Google Scholar
Si, P., Honkala, A., de la Zerda, A. & Smith, B. R. Optical microscopy and coherence tomography of cancer in living subjects. Trends Cancer 6, 205–222 (2020).
Google Scholar
Wang, M., Kim, M., Xia, F. & Xu, C. Impact of the emission wavelengths on in vivo multiphoton imaging of mouse brains. Biomed. Opt. Express 10, 1905–1918 (2019).
Google Scholar
Bakker, G.-J. et al. Intravital deep-tumor single-beam 2-, 3- and 4-photon microscopy. Preprint at bioRxiv https://doi.org/10.1101/2020.09.29.312827 (2020).
Google Scholar
Dondossola, E. et al. Intravital microscopy of osteolytic progression and therapy response of cancer lesions in the bone. Sci. Transl Med. 10, eaao5726 (2018).
Google Scholar
Greenbaum, A. et al. Bone CLARITY: Clearing, imaging, and computational analysis of osteoprogenitors within intact bone marrow. Sci. Transl Med. 9, eaah6518 (2017).
Google Scholar
Graf, B. W. et al. Long-term time-lapse multimodal intravital imaging of regeneration and bone-marrow-derived cell dynamics in skin. Technology 01, 8–19 (2013).
Google Scholar
Haeger, A. et al. Collective cancer invasion forms an integrin-dependent radioresistant niche. J. Exp. Med. 217, e20181184 (2020).
Google Scholar
Jiang, D. et al. Injury triggers fascia fibroblast collective cell migration to drive scar formation through N-cadherin. Nat. Commun. 11, 5653 (2020).
Google Scholar
Giampieri, S. et al. Localized and reversible TGFβ signalling switches breast cancer cells from cohesive to single cell motility. Nat. Cell Biol. 11, 1287–1296 (2009).
Google Scholar
Vennin, C. et al. CAF hierarchy driven by pancreatic cancer cell p53-status creates a pro-metastatic and chemoresistant environment via perlecan. Nat. Commun. 10, 3637 (2019).
Google Scholar
Denais, C. M. et al. Nuclear envelope rupture and repair during cancer cell migration. Science 352, 353–358 (2016).
Google Scholar
Erard, M., Dupré-Crochet, S. & Nüße, O. Biosensors for spatiotemporal detection of reactive oxygen species in cells and tissues. Am. J. Physiol. Regul. Integr. Comp. Physiol. 314, R667–R683 (2018).
Google Scholar
You, S. et al. Intravital imaging by simultaneous label-free autofluorescence-multiharmonic microscopy. Nat. Commun. 9, 2125 (2018).
Google Scholar
Heymann, F. et al. Polypropylene mesh implantation for hernia repair causes myeloid cell–driven persistent inflammation. JCI Insight 4, e123862 (2019).
Google Scholar
Xie, X. et al. Single-cell transcriptome profiling reveals neutrophil heterogeneity in homeostasis and infection. Nat. Immunol. 21, 1119–1133 (2020).
Google Scholar
Karreman, M. A. et al. Fast and precise targeting of single tumor cells in vivo by multimodal correlative microscopy. J. Cell Sci. 129, 444–456 (2016).
Google Scholar
Gurevich, D. B. et al. Live imaging of wound angiogenesis reveals macrophage orchestrated vessel sprouting and regression. EMBO J. 37, e97786 (2018).
Google Scholar
Marsh, E., Gonzalez, D. G., Lathrop, E. A., Boucher, J. & Greco, V. Positional stability and membrane occupancy define skin fibroblast homeostasis. Cell 175, 1620–1633.e13 (2018).
Google Scholar
Lämmermann, T. et al. Neutrophil swarms require LTB4 and integrins at sites of cell death in vivo. Nature 498, 371–375 (2013).
Google Scholar
Kozai, T. D. Y., Jaquins-Gerstl, A. S., Vazquez, A. L., Michael, A. C. & Cui, X. T. Brain tissue responses to neural implants impact signal sensitivity and intervention strategies. ACS Chem. Neurosci. 6, 48–67 (2015).
Google Scholar
Holstein, J. H. et al. Intravital microscopic studies of angiogenesis during bone defect healing in mice calvaria. Injury 42, 765–771 (2011).
Google Scholar
Alieva, M., Ritsma, L., Giedt, R. J., Weissleder, R. & van Rheenen, J. Imaging windows for long-term intravital imaging. Intravital 3, e29917 (2014).
Google Scholar
Doloff, J. C. et al. Colony stimulating factor-1 receptor is a central component of the foreign body response to biomaterial implants in rodents and non-human primates. Nat. Mater. 16, 671–680 (2017).
Google Scholar
MacRae, C. A. & Peterson, R. T. Zebrafish as tools for drug discovery. Nat. Rev. Drug Discov. 14, 721–731 (2015).
Google Scholar
Witherel, C. E., Gurevich, D., Collin, J. D., Martin, P. & Spiller, K. L. Host–biomaterial interactions in zebrafish. ACS Biomater. Sci. Eng. 4, 1233–1240 (2018).
Google Scholar
Zhang, X. et al. The zebrafish embryo as a model to quantify early inflammatory cell responses to biomaterials. J. Biomed. Mater. Res. A 105, 2522–2532 (2017).
Google Scholar
White, R. M. et al. Transparent adult zebrafish as a tool for in vivo transplantation analysis. Cell Stem Cell 2, 183–189 (2008).
Google Scholar
Wancket, L. M. Animal models for evaluation of bone implants and devices: comparative bone structure and common model uses. Vet. Pathol. 52, 842–850 (2015).
Google Scholar
Sandison, J. C. A method for the microscopic study of the growth of transplanted bone in the transparent chamber of the rabbit’s ear. Anat. Rec. 40, 41–49 (1928).
Google Scholar
Albrektsson, T. & Albrektsson, B. Microcirculation in grafted bone: a chamber technique for vital microscopy of rabbit bone transplants. Acta Orthop. Scand. 49, 1–7 (1978).
Google Scholar
Hsieh, A. S., Winet, H., Bao, J. Y., Glas, H. & Plenk, H. Evidence for reperfusion injury in cortical bone as a function of crush injury ischemia duration: a rabbit bone chamber study. Bone 28, 94–103 (2001).
Google Scholar
Penel, G., Delfosse, C., Descamps, M. & Leroy, G. Composition of bone and apatitic biomaterials as revealed by intravital Raman microspectroscopy. Bone 36, 893–901 (2005).
Google Scholar
Veronesi, F. et al. Osseointegration is improved by coating titanium implants with a nanostructured thin film with titanium carbide and titanium oxides clustered around graphitic carbon. Mater. Sci. Eng. C Mater. Biol. Appl. 70, 264–271 (2017).
Google Scholar
Diekmann, J. et al. Examination of a biodegradable magnesium screw for the reconstruction of the anterior cruciate ligament: A pilot in vivo study in rabbits. Mater. Sci. Eng. C Mater. Biol. Appl. 59, 1100–1109 (2016).
Google Scholar
Ribatti, D., Annese, T. & Tamma, R. The use of the chick embryo CAM assay in the study of angiogenic activiy of biomaterials. Microvasc. Res. 131, 104026 (2020).
Google Scholar
Ling, T.-Y. et al. Differentiation of lung stem/progenitor cells into alveolar pneumocytes and induction of angiogenesis within a 3D gelatin – Microbubble scaffold. Biomaterials 35, 5660–5669 (2014).
Google Scholar
Moreno-Jiménez, I. et al. The chorioallantoic membrane (CAM) assay for the study of human bone regeneration: a refinement animal model for tissue engineering. Sci. Rep. 6, 32168 (2016).
Google Scholar
Valdes, T. I., Kreutzer, D. & Moussy, F. The chick chorioallantoic membrane as a novel in vivo model for the testing of biomaterials. J. Biomed. Mater. Res. 62, 273–282 (2002).
Google Scholar
Woloszyk, A., Liccardo, D. & Mitsiadis, T. A. Three-dimensional imaging of the developing vasculature within stem cell-seeded scaffolds cultured in ovo. Front. Physiol. 7, 146 (2016).
Rodrigues, M., Kosaric, N., Bonham, C. A. & Gurtner, G. C. Wound healing: a cellular perspective. Physiol. Rev. 99, 665–706 (2019).
Google Scholar
Schmidt, A., von Woedtke, T., Vollmar, B., Hasse, S. & Bekeschus, S. Nrf2 signaling and inflammation are key events in physical plasma-spurred wound healing. Theranostics 9, 1066–1084 (2019).
Google Scholar
Krzyszczyk, P., Schloss, R., Palmer, A. & Berthiaume, F. The role of macrophages in acute and chronic wound healing and interventions to promote pro-wound healing phenotypes. Front. Physiol. 9, 419 (2018).
Google Scholar
Lu, H. et al. Fibroblast transdifferentiation promotes conversion of M1 macrophages and replenishment of cardiac resident macrophages following cardiac injury in mice. Eur. J. Immunol. 50, 795–808 (2020).
Google Scholar
Kalluri, R. The biology and function of fibroblasts in cancer. Nat. Rev. Cancer 16, 582–598 (2016).
Google Scholar
Liu, Y., Rath, B., Tingart, M. & Eschweiler, J. Role of implants surface modification in osseointegration: A systematic review. J. Biomed. Mater. Res. A 108, 470–484 (2020).
Google Scholar
Li, J. et al. In vitro and in vivo evaluations of mechanical properties, biocompatibility and osteogenic ability of sintered porous titanium alloy implant. RSC Adv. 8, 36512–36520 (2018).
Google Scholar
Sanchez, C. J. et al. Staphylococcus aureus biofilms decrease osteoblast viability, inhibits osteogenic differentiation, and increases bone resorption in vitro. BMC Musculoskelet. Disord. 14, 187 (2013).
Google Scholar
Lee, H. G. et al. Aggravation of inflammatory response by costimulation with titanium particles and mechanical perturbations in osteoblast- and macrophage-like cells. Am. J. Physiol. Cell Physiol. 304, C431–C439 (2013).
Google Scholar
Katou, F., Andoh, N., Motegi, K. & Nagura, H. Immuno-inflammatory responses in the tissue adjacent to titanium miniplates used in the treatment of mandibular fractures. J. Craniomaxillofac. Surg. 24, 155–162 (1996).
Google Scholar
Riviș, M. et al. The implications of titanium alloys applied in maxillofacial osteosynthesis. Appl. Sci. 10, 3203 (2020).
Google Scholar
Perino, G. et al. Diagnostic guidelines for the histological particle algorithm in the periprosthetic neo-synovial tissue. BMC Clin. Pathol. 18, 7 (2018).
Google Scholar
Lechner, J., Noumbissi, S. & von Baehr, V. Titanium implants and silent inflammation in jawbone — a critical interplay of dissolved titanium particles and cytokines TNF-α and RANTES/CCL5 on overall health? EPMA J. 9, 331–343 (2018).
Google Scholar
Khosravi, N., Maeda, A., DaCosta, R. S. & Davies, J. E. Nanosurfaces modulate the mechanism of peri-implant endosseous healing by regulating neovascular morphogenesis. Commun. Biol. 1, 72 (2018).
Google Scholar
Mouraret, S. et al. A pre-clinical murine model of oral implant osseointegration. Bone 58, 177–184 (2014).
Google Scholar
Wang, B. et al. Mechanoadaptive strain and functional osseointegration of dental implants in rats. Bone 137, 115375 (2020).
Google Scholar
Bandaru, P. et al. Mechanical cues regulating proangiogenic potential of human mesenchymal stem cells through YAP-mediated mechanosensing. Small 16, 2001837 (2020).
Google Scholar
Loebel, C., Mauck, R. L. & Burdick, J. A. Local nascent protein deposition and remodelling guide mesenchymal stromal cell mechanosensing and fate in three-dimensional hydrogels. Nat. Mater. 18, 883–891 (2019).
Google Scholar
Sparks, D. S. et al. A preclinical large-animal model for the assessment of critical-size load-bearing bone defect reconstruction. Nat. Protoc. 15, 877–924 (2020).
Google Scholar
Holzapfel, B. M. et al. Tissue engineered humanized bone supports human hematopoiesis in vivo. Biomaterials 61, 103–114 (2015).
Google Scholar
Fakhry, M., Hamade, E., Badran, B., Buchet, R. & Magne, D. Molecular mechanisms of mesenchymal stem cell differentiation towards osteoblasts. World J. Stem Cell 5, 136–148 (2013).
Google Scholar
Deckers, M. M. L. et al. Bone morphogenetic proteins stimulate angiogenesis through osteoblast-derived vascular endothelial growth factor A. Endocrinology 143, 1545–1553 (2002).
Google Scholar
Abarrategi, A. et al. Versatile humanized niche model enables study of normal and malignant human hematopoiesis. J. Clin. Invest. 127, 543–548 (2017).
Google Scholar
Xie, Y. et al. Osteoimmunomodulatory effects of biomaterial modification strategies on macrophage polarization and bone regeneration. Regen. Biomater. 7, 233–245 (2020).
Google Scholar
Benson, R. A. et al. Non-invasive multiphoton imaging of islets transplanted into the pinna of the NOD mouse ear reveals the immediate effect of anti-CD3 treatment in autoimmune diabetes. Front. Immunol. 9, 1006 (2018).
Google Scholar
Samuel, R. et al. Generation of functionally competent and durable engineered blood vessels from human induced pluripotent stem cells. Proc. Natl Acad. Sci. USA 110, 12774–12779 (2013).
Google Scholar
van den Berg, C. W. et al. Renal subcapsular transplantation of PSC-derived kidney organoids induces neo-vasculogenesis and significant glomerular and tubular maturation in vivo. Stem Cell Rep. 10, 751–765 (2018).
Google Scholar
Rudnicki, M. et al. Hypoxia response and VEGF-A expression in human proximal tubular epithelial cells in stable and progressive renal disease. Lab. Invest. 89, 337–346 (2009).
Google Scholar
Schepers, A. G. et al. Lineage tracing reveals Lgr5+ stem cell activity in mouse intestinal adenomas. Science 337, 730–735 (2012).
Google Scholar
Richardson, A., Park, M., Watson, S. L., Wakefield, D. & Di Girolamo, N. Visualizing the fate of transplanted K14-confetti corneal epithelia in a mouse model of limbal stem cell deficiency. Investig. Ophthalmol. Vis. Sci. 59, 1630–1640 (2018).
Google Scholar
Nalbach, L. et al. Improvement of islet transplantation by the fusion of islet cells with functional blood vessels. EMBO Mol. Med. 13, e12616 (2021).
Google Scholar
Koffler, J. et al. Improved vascular organization enhances functional integration of engineered skeletal muscle grafts. Proc. Natl Acad. Sci. USA 108, 14789–14794 (2011).
Google Scholar
Perry, L., Merdler, U., Elishaev, M. & Levenberg, S. Enhanced host neovascularization of prevascularized engineered muscle following transplantation into immunocompetent versus immunocompromised mice. Cells 8, 1472 (2019).
Google Scholar
Juhas, M., Engelmayr, G. C., Fontanella, A. N., Palmer, G. M. & Bursac, N. Biomimetic engineered muscle with capacity for vascular integration and functional maturation in vivo. Proc. Natl Acad. Sci. USA 111, 5508–5513 (2014).
Google Scholar
Juhas, M. et al. Incorporation of macrophages into engineered skeletal muscle enables enhanced muscle regeneration. Nat. Biomed. Eng. 2, 942–954 (2018).
Google Scholar
Perry, L., Landau, S., Flugelman, M. Y. & Levenberg, S. Genetically engineered human muscle transplant enhances murine host neovascularization and myogenesis. Commun. Biol. 1, 161 (2018).
Google Scholar
Calcagni, M. et al. In vivo visualization of the origination of skin graft vasculature in a wild-type/GFP crossover model. Microvasc. Res. 82, 237–245 (2011).
Google Scholar
Celli, S., Albert, M. L. & Bousso, P. Visualizing the innate and adaptive immune responses underlying allograft rejection by two-photon microscopy. Nat. Med. 17, 744–749 (2011).
Google Scholar
Chen, Q. et al. In situ sprayed bioresponsive immunotherapeutic gel for post-surgical cancer treatment. Nat. Nanotechnol. 14, 89–97 (2019).
Google Scholar
Kastrup, C. J. et al. Painting blood vessels and atherosclerotic plaques with an adhesive drug depot. Proc. Natl Acad. Sci. USA 109, 21444–21449 (2012).
Google Scholar
Eles, J. R., Vazquez, A. L., Kozai, T. D. Y. & Cui, X. T. Meningeal inflammatory response and fibrous tissue remodeling around intracortical implants: An in vivo two-photon imaging study. Biomaterials 195, 111–123 (2019).
Google Scholar
Kozai, T. D. Y., Jaquins-Gerstl, A. S., Vazquez, A. L., Michael, A. C. & Cui, X. T. Dexamethasone retrodialysis attenuates microglial response to implanted probes in vivo. Biomaterials 87, 157–169 (2016).
Google Scholar
Wei, Q. et al. Protein interactions with polymer coatings and biomaterials. Angew. Chem. Int. Ed. 53, 8004–8031 (2014).
Google Scholar
Faust, J. J. et al. An actin-based protrusion originating from a podosome-enriched region initiates macrophage fusion. Mol. Biol. Cell 30, 2254–2267 (2019).
Google Scholar
Selders, G. S., Fetz, A. E., Radic, M. Z. & Bowlin, G. L. An overview of the role of neutrophils in innate immunity, inflammation and host-biomaterial integration. Regen. Biomater. 4, 55–68 (2017).
Google Scholar
Koschwanez, H. E., Reichert, W. M. & Klitzman, B. Intravital microscopy evaluation of angiogenesis and its effects on glucose sensor performance. J. Biomed. Mater. Res. A 93A, 1348–1357 (2010).
Google Scholar
Kwee, B. J. & Mooney, D. J. Manipulating the intersection of angiogenesis and inflammation. Ann. Biomed. Eng. 43, 628–640 (2015).
Google Scholar
Witherel, C. E., Abebayehu, D., Barker, T. H. & Spiller, K. L. Macrophage and fibroblast interactions in biomaterial-mediated fibrosis. Adv. Healthc. Mater. 8, e1801451 (2019).
Google Scholar
Filová, E. et al. Analysis and three-dimensional visualization of collagen in artificial scaffolds using nonlinear microscopy techniques. J. Biomed. Opt. 15, 066011 (2010).
Google Scholar
Druecke, D. et al. Neovascularization of poly(ether ester) block-copolymer scaffolds in vivo: Long-term investigations using intravital fluorescent microscopy. J. Biomed. Mater. Res. A 68A, 10–18 (2004).
Google Scholar
Klenke, F. M. et al. Impact of pore size on the vascularization and osseointegration of ceramic bone substitutes in vivo. J. Biomed. Mater. Res. A 85A, 777–786 (2008).
Google Scholar
Jang, G. H., Hwang, M. P., Kim, S. Y., Jang, H. S. & Lee, K. H. A systematic in-vivo toxicity evaluation of nanophosphor particles via zebrafish models. Biomaterials 35, 440–449 (2014).
Google Scholar
Reismann, D. et al. Longitudinal intravital imaging of the femoral bone marrow reveals plasticity within marrow vasculature. Nat. Commun. 8, 2153 (2017).
Google Scholar
Stiers, P.-J., van Gastel, N., Moermans, K., Stockmans, I. & Carmeliet, G. An ectopic imaging window for intravital imaging of engineered bone tissue. JBMR Plus 2, 92–102 (2018).
Google Scholar
Wang, H. et al. Two-photon dual imaging platform for in vivo monitoring cellular oxidative stress in liver injury. Sci. Rep. 7, 45374 (2017).
Google Scholar
Reissaus, C. A. et al. A versatile, portable intravital microscopy platform for studying beta-cell biology in vivo. Sci. Rep. 9, 8449 (2019).
Google Scholar
Sanman, L. E., van der Linden, W. A., Verdoes, M. & Bogyo, M. Bifunctional probes of cathepsin protease activity and pH reveal alterations in endolysosomal pH during bacterial infection. Cell Chem. Biol. 23, 793–804 (2016).
Google Scholar
Jaffer, F. A. et al. Optical visualization of cathepsin K activity in atherosclerosis with a novel, protease-activatable fluorescence sensor. Circulation 115, 2292–2298 (2007).
Google Scholar
Sun, W. W. et al. Nanoarchitecture and dynamics of the mouse enteric glycocalyx examined by freeze-etching electron tomography and intravital microscopy. Commun. Biol. 3, 5 (2020).
Google Scholar
Astone, M. et al. Zebrafish mutants and TEAD reporters reveal essential functions for Yap and Taz in posterior cardinal vein development. Sci. Rep. 8, 10189 (2018).
Google Scholar
Subramanian, B. C. et al. The LTB4–BLT1 axis regulates actomyosin and β2-integrin dynamics during neutrophil extravasation. J. Cell Biol. 219, e201910215 (2020).
Google Scholar
LeBleu, V. S. et al. Identification of human epididymis protein-4 as a fibroblast-derived mediator of fibrosis. Nat. Med. 19, 227–231 (2013).
Google Scholar
Jain, N. & Vogel, V. Spatial confinement downsizes the inflammatory response of macrophages. Nat. Mater. 17, 1134–1144 (2018).
Google Scholar
de Buhr, N. & von Köckritz-Blickwede, M. How neutrophil extracellular traps become visible. J. Immunol. Res. 2016, 4604713 (2016).
Honda, M. et al. Intravital imaging of neutrophil recruitment in hepatic ischemia-reperfusion injury in mice. Transplantation 95, 551–558 (2013).
Google Scholar
Sedin, J. et al. High resolution intravital imaging of the renal immune response to injury and infection in mice. Front. Immunol. 10, 2744 (2019).
Google Scholar
Yam, A. O. & Chtanova, T. Imaging the neutrophil: Intravital microscopy provides a dynamic view of neutrophil functions in host immunity. Cell. Immunol. 350, 103898 (2020).
Google Scholar
Turk, M., Naumenko, V., Mahoney, D. J. & Jenne, C. N. Tracking cell recruitment and behavior within the tumor microenvironment using advanced intravital imaging approaches. Cells 7, 69 (2018).
Google Scholar
Park, J. et al. Cancer cells induce metastasis-supporting neutrophil extracellular DNA traps. Sci. Transl Med. 8, 361ra138 (2016).
Google Scholar
Handschuh, J., Amore, J. & Müller, A. J. From the cradle to the grave of an infection: host-pathogen interaction visualized by intravital microscopy. Cytom. A 97, 458–470 (2020).
Google Scholar
Kreisel, D. et al. In vivo two-photon imaging reveals monocyte-dependent neutrophil extravasation during pulmonary inflammation. Proc. Natl Acad. Sci. USA 107, 18073–18078 (2010).
Google Scholar
Yamamoto, N. et al. Cellular dynamics visualized in live cells in vitro and in vivo by differential dual-color nuclear-cytoplasmic fluorescent-protein expression. Cancer Res. 64, 4251–4256 (2004).
Google Scholar
Burnett, S. H. et al. Conditional macrophage ablation in transgenic mice expressing a Fas-based suicide gene. J. Leukoc. Biol. 75, 612–623 (2004).
Google Scholar
Nguyen-Chi, M. et al. Identification of polarized macrophage subsets in zebrafish. eLife 4, e07288 (2015).
Google Scholar
Snippert, H. J. et al. Intestinal crypt homeostasis results from neutral competition between symmetrically dividing Lgr5 stem cells. Cell 143, 134–144 (2010).
Google Scholar
Yoshikawa, S. et al. Intravital imaging of Ca2+ signals in lymphocytes of Ca2+ biosensor transgenic mice: indication of autoimmune diseases before the pathological onset. Sci. Rep. 6, 18738 (2016).
Google Scholar
Everhart, M. B. et al. Duration and intensity of NF-κB activity determine the severity of endotoxin-induced acute lung injury. J. Immunol. 176, 4995–5005 (2006).
Google Scholar
Nicholls, P. J. et al. Measuring nonapoptotic caspase activity with a transgenic reporter in mice. Preprint at bioRxiv https://doi.org/10.1101/196105 (2021).
Google Scholar
Park, S.-J. et al. Imaging inflammation using an activated macrophage probe with Slc18b1 as the activation-selective gating target. Nat. Commun. 10, 1111 (2019).
Google Scholar
Uddin, M. I. et al. Applications of azo-based probes for imaging retinal hypoxia. ACS Med. Chem. Lett. 6, 445–449 (2015).
Google Scholar
Xiang, J. et al. Biocompatible green and red fluorescent organic dots with remarkably large two-photon action cross sections for targeted cellular imaging and real-time intravital blood vascular visualization. ACS Appl. Mater. Interfaces 7, 14965–14974 (2015).
Google Scholar
Kim, H. Y. et al. Quantitative imaging of tumor-associated macrophages and their response to therapy using (64)Cu-labeled Macrin. ACS Nano 12, 12015–12029 (2018).
Google Scholar
Smith, B. R. et al. Selective uptake of single-walled carbon nanotubes by circulating monocytes for enhanced tumour delivery. Nat. Nanotechnol. 9, 481–487 (2014).
Google Scholar
Maeda, H. et al. Real-time intravital imaging of pH variation associated with osteoclast activity. Nat. Chem. Biol. 12, 579–585 (2016).
Google Scholar
Pezzotti, G. Raman piezo-spectroscopic analysis of natural and synthetic biomaterials. Anal. Bioanal. Chem. 381, 577–590 (2005).
Google Scholar
Wagner, R. L. Erlauterungstaflen zur Physiologie und Entwicklungsgeschichte (Leopold Voss, 1839).
Sandison, J. C. Observations on the growth of blood vessels as seen in the transparent chamber introduced into the rabbit’s ear. Am. J. Anat. 41, 475–496 (1928).
Google Scholar
Algire, G. H. An adaptation of the transparent-chamber technique to the mouse. J. Natl Cancer Inst. 4, 1–11 (1943).
Kiehn, C. L., Cebul, F., Berg, M., Gutentag, J. & Glover, D. M. A study of the vascularization of experimental bone grafts by means of radioactive phosphorus and the transparent chamber. Ann. Surg. 136, 404–411 (1952).
Google Scholar
Funk, W., Endrich, B. & Messmer, K. A novel method for follow-up studies of the microcirculation in non-malignant tissue implants. Res. Exp. Med. 186, 259–270 (1986).
Google Scholar
Brånemark, P. I. Intravital microscopy. Its present status and its potentialities. Med. Biol. Illus. 16, 100–108 (1966).
Mazo, I. B. et al. Hematopoietic progenitor cell rolling in bone marrow microvessels: parallel contributions by endothelial selectins and vascular cell adhesion molecule 1. J. Exp. Med. 188, 465–474 (1998).
Google Scholar
Spanel-Borowski, K. The chick chorioallantoic membrane as test system for biocompatible materials. Res. Exp. Med. 189, 69–75 (1989).
Google Scholar
Valdes, T. I., Klueh, U., Kreutzer, D. & Moussy, F. Ex ova chick chorioallantoic membrane as a novel in vivo model for testing biosensors. J. Biomed. Mater. Res. A 67A, 215–223 (2003).
Google Scholar
Weigelin, B. et al. Cytotoxic T cells are able to efficiently eliminate cancer cells by additive cytotoxicity. Nat. Commun. https://doi.org/10.1038/s41467-021-25282-3 (2021).
Google Scholar
Schiessl, I. M., Fremter, K., Burford, J. L., Castrop, H. & Peti-Peterdi, J. Long-term cell fate tracking of individual renal cells using Serial intravital microscopy. Methods Mol. Biol. 2150, 25–44 (2020).
Google Scholar
Urciuolo, A. et al. Intravital three-dimensional bioprinting. Nat. Biomed. Eng. 4, 901–915 (2020).
Google Scholar

