Preloader

HLA-G gene editing in tumor cell lines as a novel alternative in cancer immunotherapy

  • 1.

    Marin-Acevedo, J. A. et al. Next generation of immune checkpoint therapy in cancer: New developments and challenges. J. Hematol. Oncol. 11, 1–20 (2018).

    Google Scholar 

  • 2.

    Hahn, A. W., Gill, D. M., Pal, S. K. & Agarwal, N. The future of immune checkpoint cancer therapy after PD-1 and CTLA-4. Immunotherapy 9, 681–692 (2017).

    CAS 
    PubMed 

    Google Scholar 

  • 3.

    Weber, J. Immune checkpoint proteins: A new therapeutic paradigm for cancerpreclinical background: CTLA-4 and PD-1 blockade. Semin. Oncol. 37, 430–439 (2010).

    CAS 
    PubMed 

    Google Scholar 

  • 4.

    Collin, M. Immune checkpoint inhibitors: A patent review (2010–2015). Expert Opin. Ther. Pat. 26, 555–564 (2016).

    CAS 
    PubMed 

    Google Scholar 

  • 5.

    Hargadon, K. M., Johnson, C. E. & Williams, C. J. Immune checkpoint blockade therapy for cancer: An overview of FDA-approved immune checkpoint inhibitors. Int. Immunopharmacol. 62, 29–39 (2018).

    CAS 
    PubMed 

    Google Scholar 

  • 6.

    Darvin, P., Toor, S. M., Sasidharan Nair, V. & Elkord, E. Immune checkpoint inhibitors: recent progress and potential biomarkers. Exp. Mol. Med. 50, 1–11 (2018).

    PubMed 

    Google Scholar 

  • 7.

    Carosella, E. D., Ploussard, G., LeMaoult, J. & Desgrandchamps, F. A systematic review of immunotherapy in urologic cancer: Evolving roles for targeting of CTLA-4, PD-1/PD-L1, and HLA-G. Eur. Urol. 68, 267–279 (2015).

    CAS 
    PubMed 

    Google Scholar 

  • 8.

    Carosella, E. D., Rouas-Freiss, N., Roux, D. T. Le, Moreau, P. & LeMaoult, J. HLA-G. An Immune Checkpoint Molecule. Advances in Immunology vol. 127 (Elsevier Inc., 2015).

  • 9.

    Rouas-Freiss, N., Gonçalves, R. M. B., Menier, C., Dausset, J. & Carosella, E. D. Direct evidence to support the role of HLA-G in protecting the fetus from maternal uterine natural killer cytolysis. Proc. Natl. Acad. Sci. USA 94, 11520–11525 (1997).

    ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • 10.

    Riteau, B. et al. HLA-G2, -G3, and -G4 isoforms expressed as nonmature cell surface glycoproteins inhibit NK and antigen-specific CTL cytolysis. J. Immunol. 166, 5018–5026 (2001).

    CAS 
    PubMed 

    Google Scholar 

  • 11.

    Tronik-Le Roux, D. et al. Novel landscape of HLA-G isoforms expressed in clear cell renal cell carcinoma patients. Mol. Oncol. 11, 1561–1578 (2017).

  • 12.

    LeMaoult, J., Krawice-Radanne, I., Dausset, J. & Carosella, E. D. HLA-G1-expressing antigen-presenting cells induce immunosuppressive CD4+ T cells. Proc. Natl. Acad. Sci. USA 101, 7064–7069 (2004).

    ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • 13.

    Lefebvre, S. et al. Modulation of HLA-G expression in human thymic and amniotic epithelial cells. Hum. Immunol. 61, 1095–1101 (2000).

    CAS 
    PubMed 

    Google Scholar 

  • 14.

    Le Discorde, M., Moreau, P., Sabatier, P., Legeais, J. M. & Carosella, E. D. Expression of HLA-G in human cornea, an immune-privileged tissue. In Human Immunology vol. 64 1039–1044 (Elsevier Inc., 2003).

  • 15.

    Menier, C. et al. Erythroblasts secrete the nonclassical HLA-G molecule from primitive to definitive hematopoiesis. Blood 104, 3153–3160 (2004).

    CAS 
    PubMed 

    Google Scholar 

  • 16.

    Loumagne, L. et al. In vivo evidence that secretion of HLA-G by immunogenic tumor cells allows their evasion from immunosurveillance. Int. J. Cancer 135, 2107–2117 (2014).

    CAS 
    PubMed 

    Google Scholar 

  • 17.

    Sasidharan Nair, V. & Elkord, E. Immune checkpoint inhibitors in cancer therapy: A focus on T-regulatory cells: A. Immunol. Cell Biol. 96, 21–33 (2018).

    CAS 
    PubMed 

    Google Scholar 

  • 18.

    Huang, C. H., Lee, K. C. & Doudna, J. A. Applications of CRISPR-Cas enzymes in cancer therapeutics and detection. Trends Cancer 4, 499–512 (2018).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • 19.

    Liu, B., Saber, A. & Haisma, H. J. CRISPR/Cas9: A powerful tool for identification of new targets for cancer treatment. Drug Discov. Today 24, 955–970 (2019).

    CAS 
    PubMed 

    Google Scholar 

  • 20.

    Zhang, C., Peng, Y., Hublitz, P., Zhang, H. & Dong, T. Genetic abrogation of immune checkpoints in antigen-specific cytotoxic T-lymphocyte as a potential alternative to blockade immunotherapy. Sci. Rep. 8, 1–13 (2018).

    ADS 

    Google Scholar 

  • 21.

    Van Acker, H. H., Capsomidis, A., Smits, E. L. & Van Tendeloo, V. F. CD56 in the immune system: More than a marker for cytotoxicity?. Front. Immunol. 8, 1–9 (2017).

    Google Scholar 

  • 22.

    Dumont, C. et al. CD8+PD-1– ILT2+ T cells are an intratumoral cytotoxic population selectively inhibited by the immune-checkpoint HLA-G. Cancer Immunol. Res. 7, 1619–1632 (2019).

    CAS 
    PubMed 

    Google Scholar 

  • 23.

    George, S., Rini, B. I. & Hammers, H. J. Emerging role of combination immunotherapy in the first-line treatment of advanced renal cell carcinoma: A review. JAMA Oncol. 5, 411–421 (2019).

    PubMed 

    Google Scholar 

  • 24.

    Jain, P., Jain, C. & Velcheti, V. Role of immune-checkpoint inhibitors in lung cancer. Ther. Adv. Respir. Dis. 12, 1–13 (2018).

    CAS 

    Google Scholar 

  • 25.

    Lalani, A. K. A. et al. Systemic treatment of metastatic clear cell renal cell carcinoma in 2018: Current paradigms, use of immunotherapy, and future directions. Eur. Urol. 75, 100–110 (2019).

    PubMed 

    Google Scholar 

  • 26.

    Lazarus, G., Audrey, J. & Iskandar, A. W. B. Efficacy and safety profiles of programmed cell death-1/programmed cell death ligand-1 inhibitors in the treatment of triple-negative breast cancer: A comprehensive systematic review. Oncol. Rev. 13, 161–169 (2019).

    Google Scholar 

  • 27.

    Lugowska, I., Teterycz, P. & Rutkowski, P. Immunotherapy of Melanoma. Contemp. Oncol. 22, 61–67 (2018).

    Google Scholar 

  • 28.

    Rotte, A. Combination of CTLA-4 and PD-1 blockers for treatment of cancer. J. Exp. Clin. Cancer Res. 38, 1–12 (2019).

    Google Scholar 

  • 29.

    Cooper, M. R., Alrajhi, A. M. & Durand, C. R. Role of immune checkpoint inhibitors in small cell lung cancer. Am. J. Ther. 25, e349–e356 (2018).

    PubMed 

    Google Scholar 

  • 30.

    Lin, A. & Yan, W. H. Heterogeneity of HLA-G expression in cancers: Facing the challenges. Front. Immunol. 9, 2164 (2018).

    PubMed 
    PubMed Central 

    Google Scholar 

  • 31.

    Menier, C., Rouas-Freiss, N. & Carosella, E. The HLA-G non classical MHC class I molecule is expressed in cancer with poor prognosis. Implications in tumour escape from immune system and clinical applications. Atlas Genet. Cytogenet. Oncol. Haematol. 13, 531–542 (2011).

    Google Scholar 

  • 32.

    Kochetov, A. V. Alternative translation start sites and hidden coding potential of eukaryotic mRNAs. BioEssays 30, 683–691 (2008).

    CAS 
    PubMed 

    Google Scholar 

  • 33.

    Brogna, S. & Wen, J. Nonsense-mediated mRNA decay (NMD) mechanisms. Nat. Struct. Mol. Biol. 16, 107–113 (2009).

    CAS 
    PubMed 

    Google Scholar 

  • 34.

    Hug, N., Longman, D. & Cáceres, J. F. Mechanism and regulation of the nonsense-mediated decay pathway. Nucleic Acids Res. 44, 1483–1495 (2015).

    Google Scholar 

  • 35.

    Butler, J. E. F. & Kadonaga, J. T. The RNA polymerase II core promoter: A key component in the regulation of gene expression. Genes Dev. 16, 2583–2592 (2002).

    CAS 
    PubMed 

    Google Scholar 

  • 36.

    Wan, T. et al. Genome editing of mutant KRAS through supramolecular polymer-mediated delivery of Cas9 ribonucleoprotein for colorectal cancer therapy. J. Control. Release 322, 236–247 (2020).

    CAS 
    PubMed 

    Google Scholar 

  • 37.

    Baliou, S. et al. CRISPR therapeutic tools for complex genetic disorders and cancer (Review). Int. J. Oncol. 53, 443–468 (2018).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • 38.

    Mollanoori, H., Shahraki, H., Rahmati, Y. & Teimourian, S. CRISPR/Cas9 and CAR-T cell, collaboration of two revolutionary technologies in cancer immunotherapy, an instruction for successful cancer treatment. Hum. Immunol. 79, 876–882 (2018).

    CAS 
    PubMed 

    Google Scholar 

  • 39.

    Hu, W. et al. CRISPR/Cas9-mediated PD-1 disruption enhances human mesothelin-targeted CAR T cell effector functions. Cancer Immunol. Immunother. 68, 365–377 (2019).

    CAS 
    PubMed 

    Google Scholar 

  • 40.

    Wu, S. S., Li, Q. C., Yin, C. Q., Xue, W. & Song, C. Q. Advances in CRISPR/Cas-based gene therapy in human genetic diseases. Theranostics 10, 4374–4382 (2020).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • 41.

    Hung, S. S. C. et al. AAV-Mediated CRISPR/Cas gene editing of retinal cells in vivo. Investig. Ophthalmol. Vis. Sci. 57, 3470–3476 (2016).

    CAS 

    Google Scholar 

  • 42.

    Chew, W. L. et al. A multifunctional AAV-CRISPR-Cas9 and its host response. Nat. Methods 13, 868–874 (2016).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • 43.

    Wang, D., Zhang, F. & Gao, G. CRISPR-based therapeutic genome editing: Strategies and in vivo delivery by AAV vectors. Cell 181, 136–150 (2020).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • 44.

    Wittnebel, S. et al. The sensitivity of renal cell carcinoma cells to interferon alpha correlates with p53-induction and involves Bax. Eur. Cytokine Netw. 16, 123–127 (2005).

    CAS 
    PubMed 

    Google Scholar 

  • 45.

    García, M. et al. The immune-checkpoint HLA-G/ILT4 is involved in the regulation of VEGF expression in clear cell renal cell carcinoma. BMC Cancer https://doi.org/10.1186/s12885-020-07113-8 (2020).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • 46.

    Ran, F. A. et al. Genome engineering using the CRISPR-Cas9 system. Nat. Protoc. 8, 2281–2308 (2013).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • 47.

    Moro, L. N. et al. Generation of myostatin edited horse embryos using CRISPR/Cas9 technology and somatic cell nuclear transfer. Sci. Rep. 10, 1–10 (2020).

    ADS 

    Google Scholar 

  • 48.

    Zilberman, S. et al. HLA-G1 and HLA-G5 active dimers are present in malignant cells and effusions: The influence of the tumor microenvironment. Eur. J. Immunol. 42, 1599–1608 (2012).

    CAS 
    PubMed 

    Google Scholar 

  • 49.

    Hsiau, T. et al. Inference of CRISPR Edits from Sanger Trace Data. bioRxiv 1–17. https://doi.org/10.1101/251082 (2019).

  • 50.

    Luzzani, C. et al. A therapy-grade protocol for differentiation of pluripotent stem cells into mesenchymal stem cells using platelet lysate as supplement. Stem Cell Res. Ther. 6, 1–13 (2015).

    Google Scholar 

  • Source link